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Markov Decision Processes

Definition [edit]
A Markov decision process is a 4-tuple (S, A, P,, R, ), where

¢ S is a finite set of states,

o A is a finite set of actions (alternatively, A, is the finite set of actions available from state s),

e P,(s,s') = Pr(s;11 = 8’ | st = s,a; = a) is the probability that action a in state s at time ¢ will lead to state s’ at time ¢ + 1,

e R,(s,s') is the immediate reward (or expected immediate reward) received after transitioning from state s to state s’, due to action a

What kind of additional structure is reasonable
to assume in MDPs ?

Example of a simple MDP with three states (green circles) and two &7 L .
actions (orange circles), with two rewards (orange arrows). From wiki ped Ia



Irrelevant Relevant

A realistic additional assumption

Emission mapping
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Goal: Generalization to new observations where the underlying MDP is the same
Solution: Ignore irrelevant information
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Figure: Train and Test on Atari proposed by Witty et al. 2018
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Figure: Train and Test on Atari proposed by Farebrother, Machado, and
Bowling 2018



State Abstractions and Bisimulation

State abstractions have been studied as a way to distinguish relevant from
irrelevant information in order to create a more compact representation for
easier decision making and planning.

Definition 1 (Bisimulation Relations (Givan et al., 2003)).
Given an MDP M, an equivalence relation B between
states is a bisimulation relation if for all states s1,s9 € S
that are equivalent under B (i.e. s1Bss), the following
conditions hold for all actions a € A:

R(s1,a) = R(s2,a)
P(G|s1,a) = P(G|s2,a),YVG € S/B

Where S/ B denotes the partition of S under the relation
B, the set of all groups of equivalent states, and where

P(Gls,a) = . caP(s|s,a).



Bisimulation Metrics

State abstraction only groups equivalent states. What about a metric
for state similarity?

Definition 3 (Bisimulation Metric (Theorem 2.6 in Ferns et al. [7])). Let (S.A.P,R) be a finite
MDP and let ¢ € (0,1) be a discount factor. Let met be the space of bounded pseudometrics on §
equipped with the metric induced by the uniform norm. Define I’ : met — met by

-

* ~
F(s,s'f = max(1— ¢)|r® — r%| + cW (P2, P3). 2)
(5,8 = max(L- )lrg = 3| + W (P, P2) (

Then F has a unique fixed point d which is the bisimulation metric.



On-Policy Bisimulation Metrics

Let’s modify the previous definition to get rid of the max over actions:

Theorem 1. Let met be the space of bounded pseudometrics on S and 7 a policy that is continuously
improving. Define F : met — met by

F(d,m)(sir85) = (1 — ) - [RE, = RL| + ¢- W(d)(PZ, PL). 5)

Then F has a least fixed point d which is a T*-bisimulation metric.



Another issue...

Computing the empirical Wasserstein of a generative model is difficult.
However, there are closed form solutions for Gaussian distributions:

1/2 1 2
Wa (N (i 2i)y N (g, 25))% = [l — 5112 + 1212 =212 | %

Frobenius norm



The representation learning objective

Learn a representation where L1 distance between any two states is a
measure of their bisimilarity:

16) = (lm1 -zl - d(ol,oz>)2
= <|21 — 25| — Eg, [\TZ,? — To| + v-dp(Pc?l»Pé‘g)DQ
- <|¢<01)—¢(02)y — Eanm, [‘R(Olaa)_R(O%a)‘

W (4(6(0))16(01).a), a(6(05)6(02).2))



Deep Bisimulation for Control (DBC)

Algorithm 1 Deep Bisimulation for Control (DBC)
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for Time t = 0 to oo do

Encode observation z; = ¢(st)

Execute action a; ~ m(z¢)

Record data: D «+ D U {St, at, St41, 7"t+1}
Sample batch B; ~ D

Permute batch randomly: B; = permute( ;)

Train policy: Ep, [J(7)] > Algorithm 2
Train encoder: Ep, 5. [J(¢)] > Equation (4)
Train dynamics: J(P,¢) = (P(P(st), at) —zi4+1)*
Train reward: J(R,P,¢) = (R(P(p(st),as) —ri+1)°

Algorithm 2 Train Policy (changes to SAC in blue)

O ok ) b B

: Get value: V = min;—1,2 Qi(¢(s)) — alog(a £¢(s))
Train critics: J(Qi, ¢) = (Qi(d(s)) —r — V)

Train actor: J(7) = alogp(alé(s)) — min;—1,2 Qi(¢p(s))
Train alpha: J(a) = —alog p(alo(s))

Update target critics: @QQ; <— 7Qi + (1 — TQ)Qq,

Update target encoder: ¢ < T3¢ + (1 — 74 )0




Representation Learning with Bisimulation Metrics

Distractions:

No Background




Representation Learning with Bisimulation Metrics

Distractions:

No Background

Simple Distractors




Representation Learning with Bisimulation Metrics

Distractions:

No Background

Simple Distractors

Natural Video




Representation Learning with Bisimulation Metrics

t-SNE of Bisimulation codes t-SNE of VAE codes
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Connections to Causal Inference

environment e = 1: environment e = 2: environment e = 3:
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Figure 1: An example including three environments. The invariance (1) and (2) holds
if we consider S* = {X5, X4}. Considering indirect causes instead of direct ones (e.g.
{Xs5, X5}) or an incomplete set of direct causes (e.g. {X4}) may not be sufficient to

guarantee invariant prediction. Figure from Peters et al. (2016)

Theorem 3 (Connections to causal feature sets (Thm 1 in Zhang et al. [36])). If we partition
observations using the bisimulation metric, those clusters (a bisimulation partition) correspond to
the causal feature set of the observation space with respect to current and future reward.



Generalization to new observations
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Generalization to new reward functions

Theorem 4 (Task Generalization). Given an encoder ¢ : S — Z that maps observations to a latent

bisimulation metric representation where ||¢(s;) — ¢(s;)||2 := d(si,s;), ¢ encodes information
about all the causal ancestors of the reward AN (R).

Figure 3: Causal graph of two
time steps. Reward depends
only on s! as a causal parent,

but s! causally depends on s?,

so AN(R) is the set {s!, s?}.




Generalization to new reward functions

episode_reward

Frozen encoders trained on Walker walk.
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Representation Learning with Bisimulation Metrics

CARLA highway with traffic



Representation Learning with Bisimulation Metrics

vehicle reward =highway progression
- collision penalty
+ throttle
- brake
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Table 1: Driving metrics, averaged over 100 episodes, after 100k training steps. Standard error shown.
Arrow direction indicates if we desire the metric larger or smaller.

SAC DeepMDP DBC (ours)
trials succeeded (100m) 1 12% 17% 24%
highway progression (m) 123.2 £7.43 106.7 £ 11.1 179.0+ 114
crash intensity 4 4604 £+ 30.7 1958 £15.6 2673 £ 38.5
average steer I 16.6% +0.019% 10.4% +0.015% 7.3% +0.012%

average brake L 1.3%+0.006% 4.3% £0.033% 1.6% £ 0.022%
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Latent Encoding z = [z, ..., Zg]

Sunny Cloudy Sunset

DBC Agent POV during episode

Mapping of latent encodings in different settings



Conclusions

o Goal was to learn lossy representations that only capture relevant
information.

o« We do this by learning a representation where L1 distance is bisimilarity
between states.

o« We show policy optimization on this representation improves
generalization.

Arxiv: 2006.10742



