Oftline Deep Reinforcement Learning Algorithms
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What makes modern machine learning work?
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hat about reinforcement learning?

Mnih et al. ‘13
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Can we develop data-driven RL methods?
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Levine, Kumar, Tucker, Fu. Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems. ‘20
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How do we design offline RL algorithms?
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with any policy training phase
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Why is offline RL difficult?



Off-policy RL: a quick primer

T
RL objective: max Z Es, a,~x|T(s¢t, at)]
T
t=1
action: a T
a ~ m(als) Q-function: Q™ (s¢,a;) = Z Es,, a, ~x|T(S¢r, a1 )|st, a¢
- t/ =t
IRCK
o m(als) =1 if a=argmax Q" (s,a)
] a
AE. Q*(s,a) = r(s,a) + max Q*(s',a')
state: s a’
reward: r(s,a) \
This talk focuses entirely on enforce this equation at all states!

approximate dynamic programming
methods, but there are other
methods too! minimize ), (Q(ss,a;) — yi)?

minimize »_;(Q(si, a;) — [r(si, a;) + maxa Q(s], a;)])?




Off-policy RL: a quick primer

Q(s,a) «+ r(s,a) + maxQ(s’,a’) < don’t need on-policy data for this!
af

off-policy Q-learning;:
1. collect dataset {(s;,a;,s;,r;)} using some policy, add it to B
[@ 2. sample a batch (s;,a;,s;,r;) from B
X 3. minimize ), (Q(ss,a;) — [r(si, a;) + maxy Q(s], aj)])?

(S? a? SIJ Ir) 0n 0
dataset of transitions
(“replay buffer”)
off-policy

.’p T .\:\. Q-learning

w
See, e.g.
e=rladiatadelboprmlosntion Riedmiller, Neural Fitted Q-Iteration ‘05

Ernst et al., Tree-Based Batch Mode RL ‘05




Does it work?

~
N—

—
By

stored data from all
past experiments

{(S'L'J a;, S;)}z

live data collection

training buffers

off-policy (s,a,s’,r)

on-policy (s, a,s’,r)

labeled (s,a, Qr(s,a))

\

(

training threads

meinHQg(S, a) — Qr(s, a)||2

N

J

4 Bellman updaters \

compute Qr(s,a) =

r + maxy Qg(s’,a’

J

A

J

)
= 2,

Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan, Vanhoucke, Levine. QT-Opt: Scalable Deep Reinforcement Learning of Vision-Based Robotic Manipulation Skills



Does it work?

Method Dataset Success | Failure
Offline QT-Opt 580k offline 87% 13%
Finetuned QT-Opt | 580k offline + 28k online 96% 4%

Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan, Vanhoucke, Levine. QT-Opt: Scalable Deep Reinforcement Learning of Vision-Based Robotic Manipulation Skills



What’s the problem?

log scale (massive overestimation)
amount of data
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Hypothesis 2: Training data is not good

Usually not the case: behavioral cloning of best data does better!

Aviral
Kumar, Fu, Tucker, Levine. Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. NeurIPS ‘19 Kumar




Distribution shift in a nutshell

Example empirical risk minimization (ERM) problem: usually we are not worried — neural nets generalize well!
: 2 : :

0 < arg in Erxnop(x),y~p(y|x) [(f@ (x) —y) } what if we pick x* < arg maxy fy(x)?

given some x*, is fp(x*) correct? Y1

Eixnop(x) y~p(ylx) [(fc? (x) — y)z} is low

Erx(x) ymp(ulx) | (fo(x) —y)?] is not, for general p(x) # p(x)

v

what if x* ~ p(x)?  not necessarily...

12
Kumar, Fu, Tucker, Levine. Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. NeurlIPS ‘19



Where do we suffer from distribution shift?

; : Lal what is the objective?
al’
Q(S? a) % T(S9 a) + Ea”\'ﬂ-new [Q(S’7 a,)]’ mén E(S,a)N'ﬂ'ﬁ (Sua) [(Q(S7 a) T y(S? a))2i|
Y /‘ \
target value
y(s, a) behavior policy °
expect good accuracy when mg(als) = mpew(als) how often does that happen?
s HalfCheetah-v2: AverageReturn ” HalfCheetah-v2: log(Q)
even worse: Myew = arg Maxy Far(als) (@ (s, a)] o — o wl = i
(what if we pick x* < arg maxy fg(x)?) W
_l“;:||]1.1|1\' 0.9K .,:'!I.\- 06K 08K 1.0K (c’:.m\' 02K “"'Hfm.sn:!'fil\- 08K 1
how well it does how well it thinks
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Kumar, Fu, Tucker, Levine. Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. NeurlIPS ‘19
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How do prior methods address this?

Q(s,a) < r(s,a) + Earur.. [Q(s',a")] policy constraint” method

very old idea (but it had no single name?)
Thew (a]8) = arg max Ear(ajs)[Q(s,a)] s.t. Dki(n||mg) < e . o
Qs Todorov et al. [passive dynamics in linearly-

solvable MDPs
This solves distribution shift, right? ]

Kappen et al. [KL-divergence control, etc.]
No more erroneous values? . . _ .
trust regions, covariant policy gradients,

can partially mitigate with natural policy gradients, etc.

support constraint (see
Kumar et al. ‘19 “BEAR”)

/ used in some form in recent papers:
Issue 1: This might be way too conservative Fox et al. ‘15 (“Taming the Noise...”)
Issue 2: Estimating the behavior policy is difficult Fujimoto et al. 18 (*0ff Policy...”)

Jaques et al. 19 (“Way Off Policy...”)
Kumar et al. ‘19 (“Stabilizing...”)
Wu et al. ‘19 (“Behavior Regularized...”)

Levine, Kumar, Tucker, Fu. Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems. ‘20



How bad is it?

1. Offline Learning : p(s'ls;a) 2. Online Fine-tuning

- Ecti i - e AiEE D oltpledt g (s, AR
Issue 2: Estimating the behavior policy is difficult - expendemos - e
@;‘ - / Ty Qp |
£\ - :
w» —

Experiment: online finetuning from offline initialization

4. Log Likelihood of zp 3. Policy Constraint Methods see also:
. a———— - Ghasemipour et al., EMaQ: Expected-Max Q-Learning
i Kd 3},‘ BEAR (23] Operator for Simple Yet Effective Offline and Online RL, '20
K A\ ' === BEAR-loose
g “\\ = oz » More powerful behavior policy models lead to
T — " '_,_,aw"" improvement, implying behavior policy modeling is a
0 . . | I | | major bottleneck
" Offne Teaieing, | PONOK 00K 0K 50K [ OO 150K 200K
Timesteps Timesteps
\_Y_I \_Y_I \ J
|
offline online online training
training  training

Nair, Dalal, Gupta, Levine. Accelerating Online Reinforcement Learning with Offline Datasets. ‘20




Avoiding behavior policies with implicit constraints

Tnew (a|8) = arg max Earr(als)|Q(s,a)] s.t. Dky(m||mg) < €

See also:
1 1 traiohtf dt Peters et al. (REPS)
* - AT stralghtrorward to Rawlik et al. (“psi-learning”)
" (a’S) B Z(s) e (a’S) b ()\ A7 (s, a)) show via duality ...many follow-ups

approximate via weighted max likelihood!

1 1
Tnew(a[s) = argmax Eg a)r, {1og m(als) exp (—A’”‘ﬂd (s, a))]

T Z(s) A N
samples from dataset critic can be used
a~ mg(als) to give us this

‘ but maybe we can solve the overestimation problem at the root?

Peng*, Kumar*, Levine. Advantage-Weighted Regression. ‘19

17
Nair, Dalal, Gupta, Levine. Accelerating Online Reinforcement Learning with Offline Datasets. ‘20
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What about those Q-value errors?

750 4

i HalfCheetah-v2: AverageReturn HalfCheetah-v2: log(Q)
30
— — n=1000 : \

n=1000 y
n=10000 25 n=10000 y
n=100000 —— n=100000 :

n=1000000 1 —— n=1000000

) - - - r v - : ;
0.0K 02K 04K 06K 08K 1.0K 0.0K 02K 04K (L6K 0.8K 10K

v

TrainSteps :l'riunSn-[.;:: X
how well it does how well it thinks

it does (Q-values)

Q” — arg mén ml?x ozESND,aNM(a|S) (Q(s,a)] } term to push down big Q-values

regular objective { +E(s,a,s’)wD [(Q(Sa a) o (T(Sa a) + Eﬂ' [Q(Slv a,)]))z

can show that Q™ < Q™ for large enough «

true Q-function 19



Learning with Q-function lower bounds

Algorithm:
@ 1. Learn QT for current m such that Q” < Q7

2. W< argmaxy, . Hr [QW]

A bette?“ bound: a|WaMs pushes Q-values down pUSh up on (S, a) Samples in data
} }
Q" = arg m(gn mgx O Fs D a~p(als)@(8,a)] —aE (s a)~p[Q(s, a)]

FBsasen [(Q(s.2) — (r(s.8) + EL[Q(,a)]))’

no longer guaranteed that Q™ (s,a) < Q™(s,a) for all (s, a)

but guaranteed that F (4s) [@”(s, a)| < Erals)|Q7 (s,a)] for all s € D

Kumar, Zhou, Tucker, Levine. Conservative Q-Learning for Offline Reinforcement Learning. ‘20

Aviral
Kumar




The conservative Q-learning (CQL) bound

minimize the big maximize Q-values of
Q-values state-action pairs in data

\ /

QE%QL — arg mén m&x aFs D a~p(als)Q(S,a)] — al(s a)~p[Q(s, a)]
1

+5Esa8)~D [(Q(Sv a) — (r(s,a) + Ex[Q(s', almﬂ

Theorem 3.2 (Equation 2 results in a tighter lower bound). The value of the policy under the Q-
function from Equation 2, V™ (s) = E (as)|Q7 (s,a)], lower-bounds the true value of the policy
obtained via exact policy evaluation, V™ (s) = E (as)[Q™ (s,a)], when i =, ﬂL‘E’(Jrff.in,’HM/

concentration
constant

- — jlri-(""1|S) -1 (-:’.I".T.I!’ERI’IIELK
Vs, V™(s) < V™(s) —a(l —yP™) " Epals [ —1] s)+ (I —~yP™
(s) (s) —a(l —~vP7) @) | 7 (als) (s) + (I —~P7) (1—)
\ ] | J
| |
pessimism due to regularizer accounts for sampling error

Kumar, Zhou, Tucker, Levine. Conservative Q-Learning for Offline Reinforcement Learning. ‘20



Does the bound hold in practice?

Underestimation vs. overestimation

E[Q(Sv a)] o E[Q(Sa a)] .

from Monte Carlo estimation

Task Name CQL(H) | CQL (Egn.1) | Ensemble(2) Ens.(4) | Ens.(10) | Ens.(20) BEAR
hopper-medium-expert -43.20 -151.36 3.71eb 2.93e6 0.32e6 | 24.05e3 63.93
hopper-mixed -10.93 -22.87 15.00e6 59.93¢3 8.92¢3 247e3 | 1399.46
hopper-medium -7.48 -156.70 26.03el12 | 437.57e6 1.12e12 285e3 4.32
\ / all prior methods have positive errors = wild optimism

CQL always has negative errors = pessimism

Kumar, Zhou, Tucker, Levine. Conservative Q-Learning for Offline Reinforcement Learning. ‘20



D4RL: Datasets for Data-Driven Deep RL

What are some important principles to keep in mind?

Data from non-RL policies, including data from humans

simulation & human data from

Stitching: data where dynamic programming can find Rajeswaran et al.

much better solutions . I I

Realistic tasks

i S 5
| w30, . R
B T LRt PR

Justin Aviral
Fu, Kumar, Nachum Tucker, Levine. D4RL: Datasets for Data-Driven Deep Reinforcement Learning. ‘20 Fu Kumar




How does CQL compare?

“1%” dataset from Agarwal et al.

Task Name | QR-DOQN | REM || CQL(H)

Pong (1%) -13.8 -6.9 19.3

Breakout 7.9 11.0 61.1

baseline: just Q*bert 383.6 | 1.5~ 6x b A0 2.0

Clone the data Sﬂﬂqu'ﬂﬁt fﬁ'Z‘:} B Y etter ?9.4

‘ Asterix™® 166.3 386.5 5924

Domain Task Name BC | SAC | BEAR | BRAC-p | BRAC-v CQL(H) | CQL(p
antmaze-umaze 635.0 0.0 73.0 50.0 70.0 74.0 735
nothin antmaze-umaze-diverse 55.0 0.0 61.0 40.0 70.0 84.0 61.0
) g AntMaze antmaze-medj Lo o0 Q.0 o0, 0.0 0.0 61.2 4.6
works on ‘ antmaze-med 0.1 “Infinjtap,» 53.7 5.1
the harder antmaze-larg CQL seems to work pretty 0.0 ely better 15.8 3.2
mazes? = antmaze-larg well on many tasks! 0.0 0.0 14.9 2.3
T pen-human ———— = 8.1 0.6 37.5 55.8
hammer-humg 0.3 1.5 4.4 2.1
door-human | And we seem to know why | 03 | > SXbetter . 99 91
nothing Adroit re]ﬂca[e-hl__lmz it works! -0.3 -0,3 0.20 0.35
pen-cloned : 1.6 -2.5 39.2 40.3
beats _ hammer-cloned 0% n2 T 03 %M 2.1 5.7
behavioral doorcloned | Byt there is still plenty of | —p=] Dy 04 o3
cloning? relocate-clon . -0. -0. -0. "
, kitchen-comp|  room for improvement... 0.0 fg 0 T 438 31.3
Kitchen kitchen-partiak —— — 0.0 "~ === 1.3y bett 49.8 50.1
_ kitchen-undirected 47.5 2.5 47.2 0.0 vu o or 510 524

Kumar, Zhou, Tucker, Levine. Conservative Q-Learning for Offline Reinforcement Learning. ‘20



» Offline RL is quite difficult, but has enormous
promise, and initial results suggest it can be
extremely powerful

» Effective (dynamic programming) offline RL
methods can be implemented by imposing
constraints on the policy, perhaps implicitly

» Learning a lower bound Q-function (i.e., Q@QL = arg mén max aFgp a~p(als) [@(S, )] — aFs 2y p[Q(s, a)]
"

conservative Q-learning) can substantially

1 / !/
improve offline RL performance 5 Esas)~p |(@s,a) = (r(s,a) + Ex|Q(s', a)]))

Kumar, Fu, Tucker, Levine. Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. NeurlPS ‘19

Nair, Dalal, Gupta, Levine. Accelerating Online Reinforcement Learning with Offline Datasets. ‘20
Kumar, Zhou, Tucker, Levine. Conservative Q-Learning for Offline Reinforcement Learning. ‘20

Fu, Kumar, Nachum Tucker, Levine. D4RL: Datasets for Data-Driven Deep Reinforcement Learning. ‘20
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