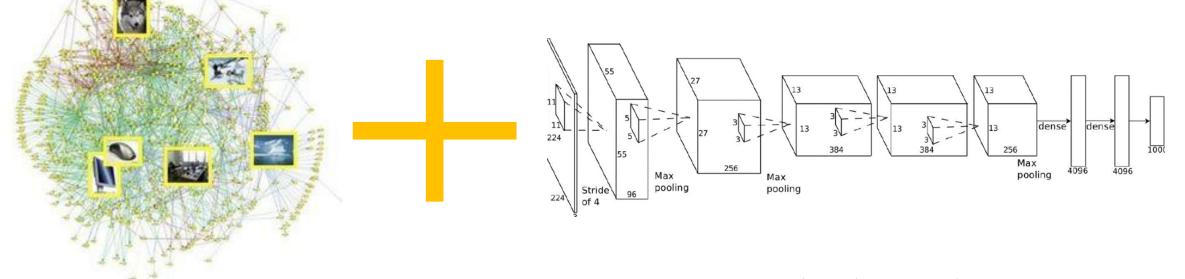
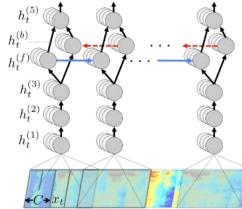
Offline Deep Reinforcement Learning Algorithms

Sergey Levine UC Berkeley

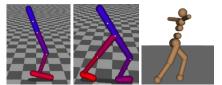
What makes modern machine learning work?





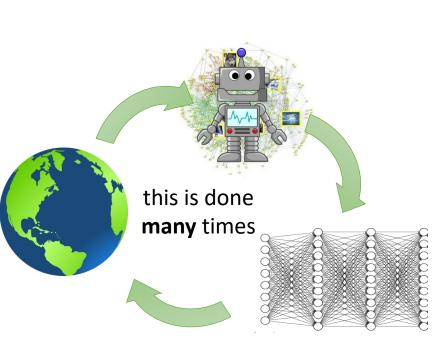
What about reinforcement learning?

Mnih et al. '13

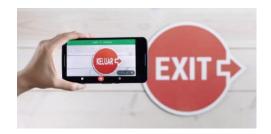


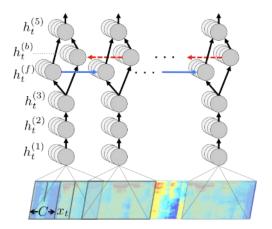
Schulman et al. '14 & '15

Levine*, Finn*, et al. '16

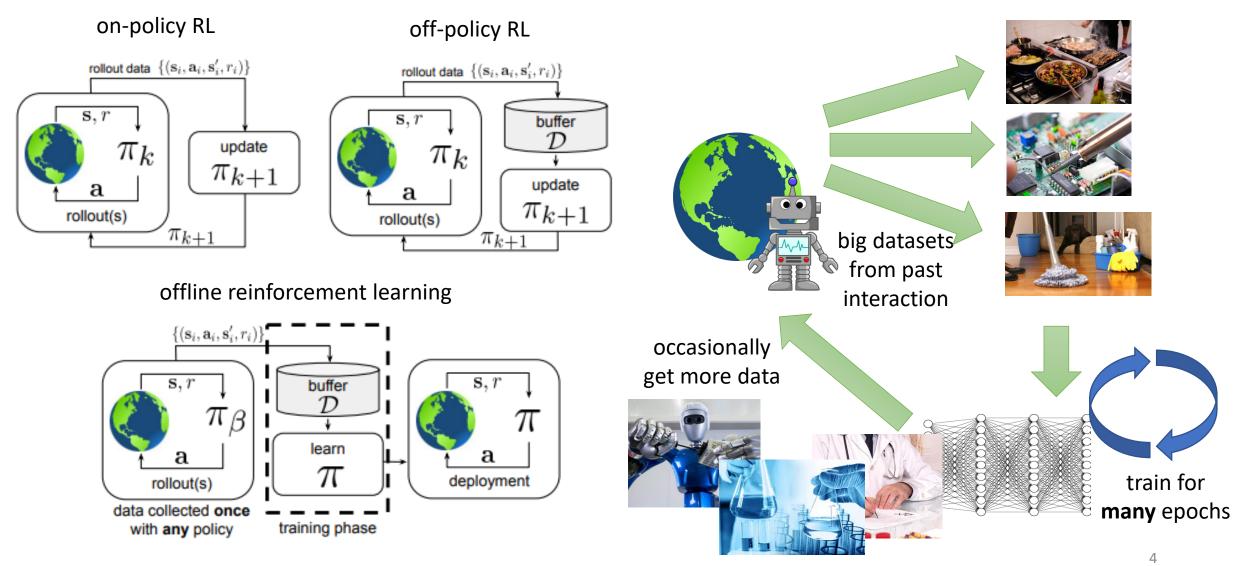


enormous gulf

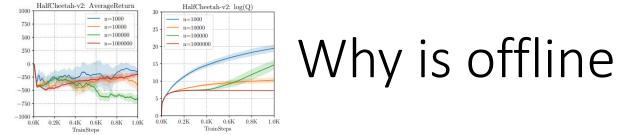




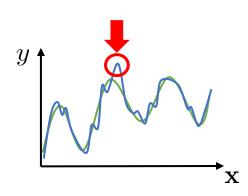
Can we develop **data-driven** RL methods?



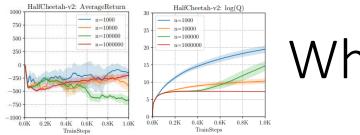
Levine, Kumar, Tucker, Fu. Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems. '20



Why is offline RL difficult?

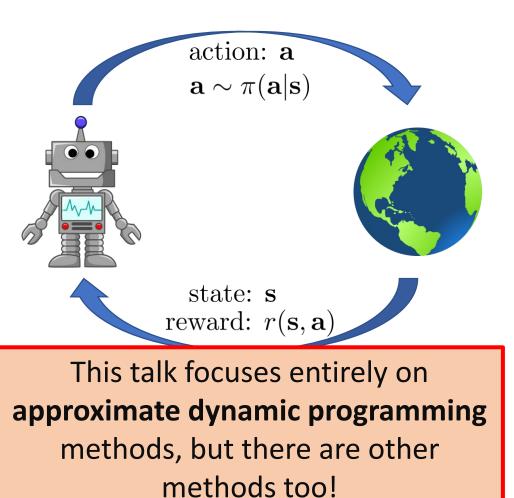


Conservative Q-Learning



Why is offline RL difficult?

Off-policy RL: a quick primer



Q-function:
$$Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^T E_{\mathbf{s}_{t'}, \mathbf{a}_{t'} \sim \pi}[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t]$$

$$\pi(\mathbf{a}|\mathbf{s}) = 1$$
 if $\mathbf{a} = \arg \max_{\mathbf{a}} Q^{\pi}(\mathbf{s}, \mathbf{a})$

RL objective: $\max_{\pi} \sum_{t=1}^{\infty} E_{\mathbf{s}_t, \mathbf{a}_t \sim \pi}[r(\mathbf{s}_t, \mathbf{a}_t)]$

$$Q^{\star}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \max_{\mathbf{a}'} Q^{\star}(\mathbf{s}', \mathbf{a}')$$

enforce this equation at all states!

minimize $\sum_{i} (Q(\mathbf{s}_{i}, \mathbf{a}_{i}) - [r(\mathbf{s}_{i}, \mathbf{a}_{i}) + \max_{\mathbf{a}_{i}} Q(\mathbf{s}_{i}', \mathbf{a}_{i}')])^{2}$ minimize $\sum_{i} (Q(\mathbf{s}_{i}, \mathbf{a}_{i}) - y_{i})^{2}$

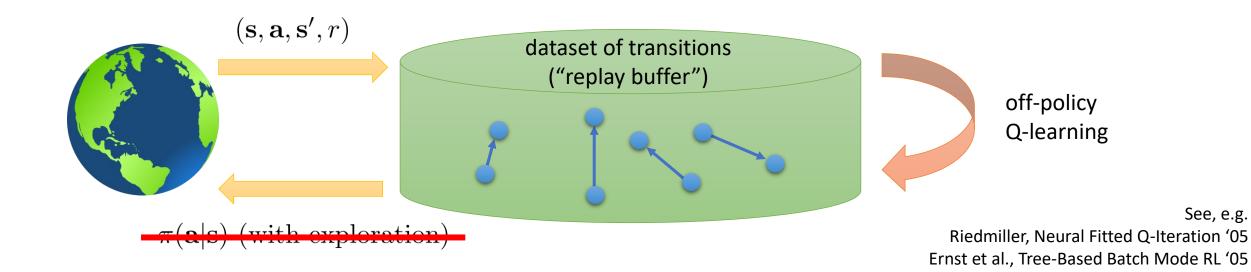
Off-policy RL: a quick primer

 $Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \max_{\mathbf{a}'} Q(\mathbf{s}', \mathbf{a}')$ \leftarrow don't need on-policy data for this!

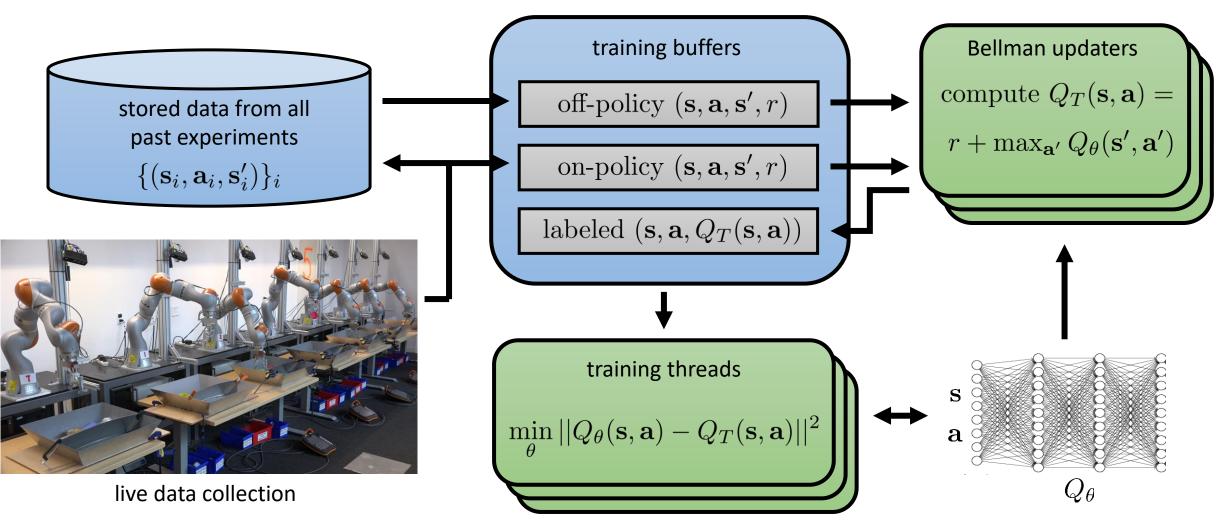
off-policy Q-learning:

1. collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy, add it to \mathcal{B}

 $\begin{array}{c} \mathbf{K} \times \\ \mathbf{K} \times \\ \mathbf{3. minimize} \sum_{i} (Q(\mathbf{s}_{i}, \mathbf{a}_{i}) - [r(\mathbf{s}_{i}, \mathbf{a}_{i}) + \max_{\mathbf{a}_{i}'} Q(\mathbf{s}_{i}', \mathbf{a}_{i}')])^{2} \end{array}$



Does it work?



Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan, Vanhoucke, Levine. QT-Opt: Scalable Deep Reinforcement Learning of Vision-Based Robotic Manipulation Skills

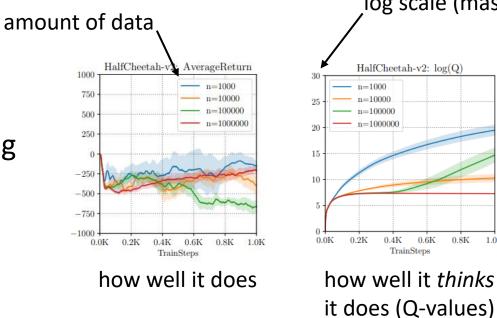
Does it work?

Method	Dataset	Success	Failure	
Offline QT-Opt	580k offline	87%	13%	
Finetuned QT-Opt	580k offline + 28k online	96%	4%	

Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan, Vanhoucke, Levine. QT-Opt: Scalable Deep Reinforcement Learning of Vision-Based Robotic Manipulation Skills

What's the problem?

Hypothesis 1: Overfitting



log scale (massive overestimation)

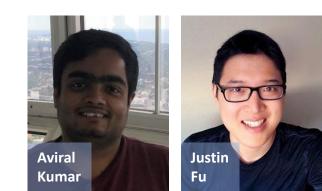
0.4K

0.6K

TrainSteps

0.8K

1.0K



Hypothesis 2: Training data is not good

Usually not the case: behavioral cloning of best data does better!

Kumar, Fu, Tucker, Levine. Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. NeurIPS '19

Distribution shift in a nutshell

Example empirical risk minimization (ERM) problem:

$$\theta \leftarrow \arg\min_{\theta} E_{\mathbf{x} \sim p(\mathbf{x}), y \sim p(y|\mathbf{x})} \left[(f_{\theta}(\mathbf{x}) - y)^2 \right]$$

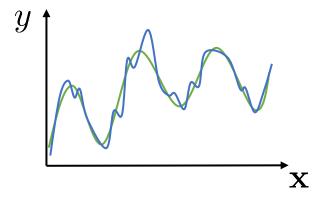
given some \mathbf{x}^* , is $f_{\theta}(\mathbf{x}^*)$ correct?

$$E_{\mathbf{x} \sim p(\mathbf{x}), y \sim p(y|\mathbf{x})} \left[(f_{\theta}(\mathbf{x}) - y)^2 \right]$$
 is low
 $E_{\mathbf{x} \sim \bar{p}(\mathbf{x}), y \sim p(y|\mathbf{x})} \left[(f_{\theta}(\mathbf{x}) - y)^2 \right]$ is not, for general $\bar{p}(\mathbf{x}) \neq p(\mathbf{x})$
what if $\mathbf{x}^* \sim p(\mathbf{x})$? not necessarily...

usually we are not worried – neural nets generalize well!

what if we pick
$$\mathbf{x}^{\star} \leftarrow \arg \max_{\mathbf{x}} f_{\theta}(\mathbf{x})$$
?

T



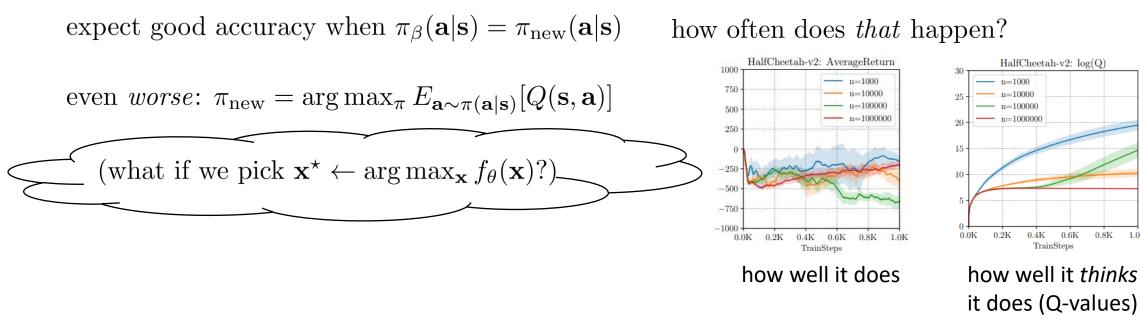
Where do we suffer from distribution shift?

$$Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \max_{\mathbf{a}'} Q(\mathbf{s}', \mathbf{a}')$$

$$Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + E_{\mathbf{a}' \sim \pi_{new}}[Q(\mathbf{s}', \mathbf{a}')]$$

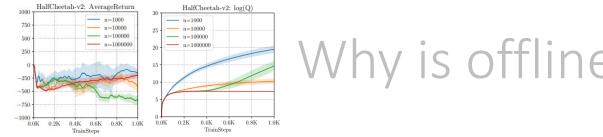
$$y(\mathbf{s}, \mathbf{a})$$

what is the objective?



Kumar, Fu, Tucker, Levine. Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. NeurIPS '19

0.8K 1.0K



Why is offline RL difficult?

How do prior methods address this?

$$\pi_{\text{new}}(\mathbf{a}|\mathbf{s}) = \arg\max_{\pi} E_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})}[Q(\mathbf{s},\mathbf{a})] \text{ s.t. } D_{\text{KL}}(\pi \| \pi_{\beta}) \le \epsilon$$

This solves distribution shift, right?

No more erroneous values?

can partially mitigate with **support** constraint (see Kumar et al. '19 "BEAR")

Issue 1: This might be way too conservative

Issue 2: Estimating the behavior policy is difficult

"policy constraint" method

very old idea (but it had no single name?)

Todorov et al. [passive dynamics in linearlysolvable MDPs]

Kappen et al. [KL-divergence control, etc.]

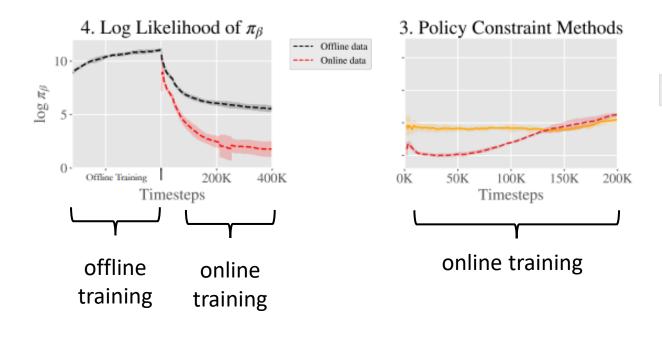
trust regions, covariant policy gradients, natural policy gradients, etc.

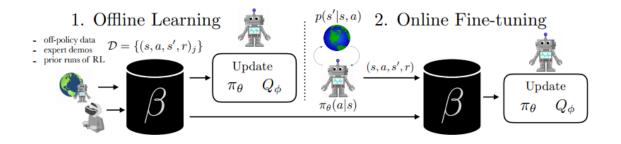
used in some form in recent papers: Fox et al. '15 ("Taming the Noise...") Fujimoto et al. '18 ("Off Policy...") Jaques et al. '19 ("Way Off Policy...") Kumar et al. '19 ("Stabilizing...") Wu et al. '19 ("Behavior Regularized...")

How bad is it?

Issue 2: Estimating the behavior policy is difficult

Experiment: online finetuning from offline initialization





see also:

BEAR [23]

-- BEAR-loose

Ghasemipour et al., EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL, '20

More powerful behavior policy models lead to improvement, implying behavior policy modeling is a major bottleneck

Nair, Dalal, Gupta, Levine. Accelerating Online Reinforcement Learning with Offline Datasets. '20

Avoiding behavior policies with **implicit** constraints

$$\pi_{\text{new}}(\mathbf{a}|\mathbf{s}) = \arg\max_{\pi} E_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})}[Q(\mathbf{s},\mathbf{a})] \text{ s.t. } D_{\text{KL}}(\pi \| \pi_{\beta}) \le \epsilon$$

$$\pi^{\star}(\mathbf{a}|\mathbf{s}) = \frac{1}{Z(\mathbf{s})} \pi_{\beta}(\mathbf{a}|\mathbf{s}) \exp\left(\frac{1}{\lambda} A^{\pi}(\mathbf{s},\mathbf{a})\right)$$

straightforward to show via duality

See also: Peters et al. (REPS) Rawlik et al. ("psi-learning") ...many follow-ups

approximate via **weighted** max likelihood!

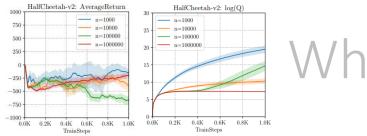
$$\pi_{\mathrm{new}}(\mathbf{a}|\mathbf{s}) = \arg\max_{\pi} E_{(\mathbf{s},\mathbf{a})\sim\pi_{\beta}} \left[\log \pi(\mathbf{a}|\mathbf{s}) \frac{1}{Z(\mathbf{s})} \exp\left(\frac{1}{\lambda} A^{\pi_{\mathrm{old}}}(\mathbf{s},\mathbf{a})\right) \right]$$

$$\lim_{\mathbf{s} \in \mathbf{a} \sim \pi_{\beta}(\mathbf{a}|\mathbf{s})} \sup_{\mathbf{s} \in \pi_{\beta}(\mathbf{a}|\mathbf{s})} \sup_{\mathbf{s} \in \pi_{\beta}(\mathbf{a}|\mathbf{s})} \exp\left(\frac{1}{\lambda} A^{\pi_{\mathrm{old}}}(\mathbf{s},\mathbf{a})\right) \right]$$

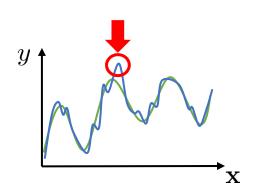
but maybe we can solve the overestimation problem at the **root**?

Peng*, Kumar*, Levine. Advantage-Weighted Regression. '19

Nair, Dalal, Gupta, Levine. Accelerating Online Reinforcement Learning with Offline Datasets. '20

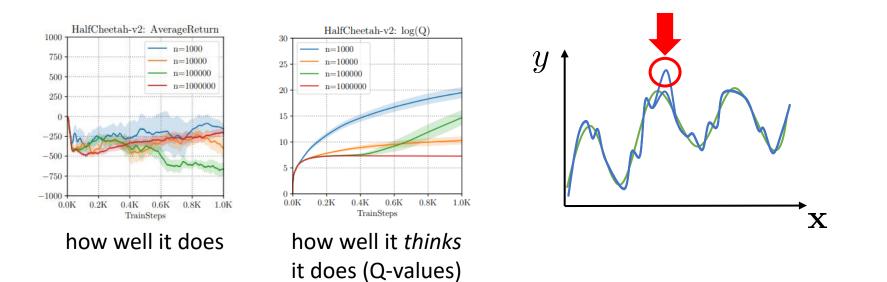


Why is offline RL difficult?



Conservative Q-Learning

What about those Q-value errors?



$$\hat{Q}^{\pi} = \arg\min_{Q} \max_{\mu} \alpha E_{\mathbf{s} \sim D, \mathbf{a} \sim \mu(\mathbf{a}|\mathbf{s})} [Q(\mathbf{s}, \mathbf{a})]$$
 term to push down big Q-values regular objective $-\left\{ +E_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim D} \left[(Q(\mathbf{s}, \mathbf{a}) - (r(\mathbf{s}, \mathbf{a}) + E_{\pi}[Q(\mathbf{s}', \mathbf{a}')]))^2 \right]$

can show that
$$\hat{Q}^{\pi} \leq Q^{\pi}$$
 for large enough α
 \uparrow
true Q-function

Learning with Q-function lower bounds

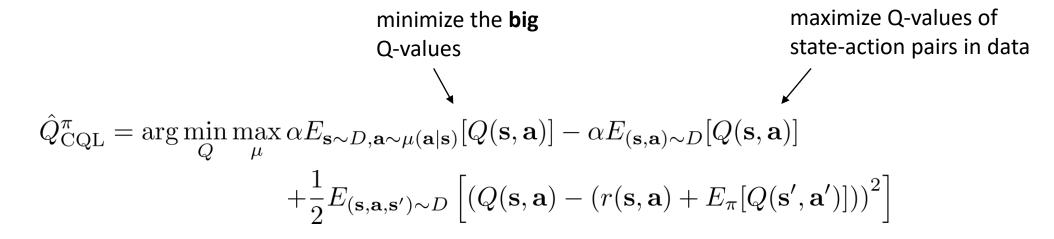
Algorithm:

1. Learn
$$\hat{Q}^{\pi}$$
 for current π such that $\hat{Q}^{\pi} \leq Q^{\pi}$
2. $\pi \leftarrow \arg \max_{\pi_{\text{new}}} E_{\pi_{\text{new}}}[\hat{Q}^{\pi}]$

no longer guaranteed that $\hat{Q}^{\pi}(\mathbf{s}, \mathbf{a}) \leq Q^{\pi}(\mathbf{s}, \mathbf{a})$ for all (\mathbf{s}, \mathbf{a})

but guaranteed that $E_{\pi(\mathbf{a}|\mathbf{s})}[\hat{Q}^{\pi}(\mathbf{s},\mathbf{a})] \leq E_{\pi(\mathbf{a}|\mathbf{s})}[Q^{\pi}(\mathbf{s},\mathbf{a})]$ for all $\mathbf{s} \in D$

The conservative Q-learning (CQL) bound



Theorem 3.2 (Equation 2 results in a tighter lower bound). The value of the policy under the Q-function from Equation 2, $\hat{V}^{\pi}(\mathbf{s}) = \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})}[\hat{Q}^{\pi}(\mathbf{s},\mathbf{a})]$, lower-bounds the true value of the policy obtained via exact policy evaluation, $V^{\pi}(\mathbf{s}) = \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})}[Q^{\pi}(\mathbf{s},\mathbf{a})]$, when $\mu = \pi$, according to: $\forall \mathbf{s}, \ \hat{V}^{\pi}(\mathbf{s}) \leq V^{\pi}(\mathbf{s}) - \alpha (I - \gamma P^{\pi})^{-1} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} \left[\frac{\pi(\mathbf{a}|\mathbf{s})}{\hat{\pi}_{\beta}(\mathbf{a}|\mathbf{s})} - 1\right](\mathbf{s}) + (I - \gamma P^{\pi})^{-1} \frac{C_{r,T,\delta}R_{\max}}{(1 - \gamma)}$.

Does the bound hold in practice?

Underestimation vs. overestimation

 $E[\hat{Q}(\mathbf{s},\mathbf{a})] - E[Q(\mathbf{s},\mathbf{a})]$

from Monte Carlo estimation

Task Name	$CQL(\mathcal{H})$	CQL (Eqn. 1)	Ensemble(2)	Ens.(4)	Ens.(10)	Ens.(20)	BEAR
hopper-medium-expert	-43.20	-151.36	3.71e6	2.93e6	0.32e6	24.05e3	65.93
hopper-mixed	-10.93	-22.87	15.00e6	59.93e3	8.92e3	2.47e3	1399.46
hopper-medium	-7.48	-156.70	26.03e12	437.57e6	1.12e12	885e3	4.32
all prior methods have positive errors = wild o							optimism

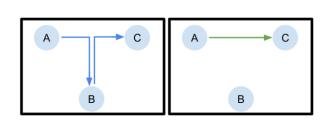
CQL **always** has negative errors = pessimism

D4RL: Datasets for Data-Driven Deep RL

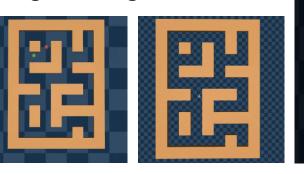
What are some important principles to keep in mind?

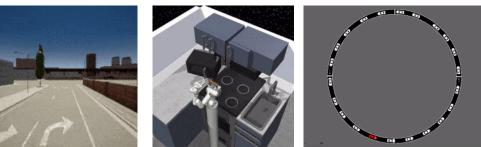
Data from non-RL policies, including data from humans

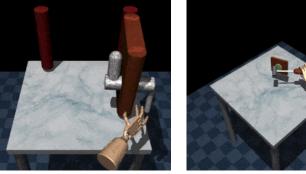
Stitching: data where dynamic programming can find much better solutions



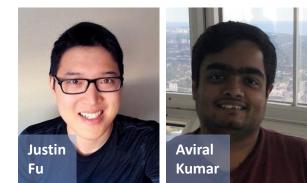
Realistic tasks

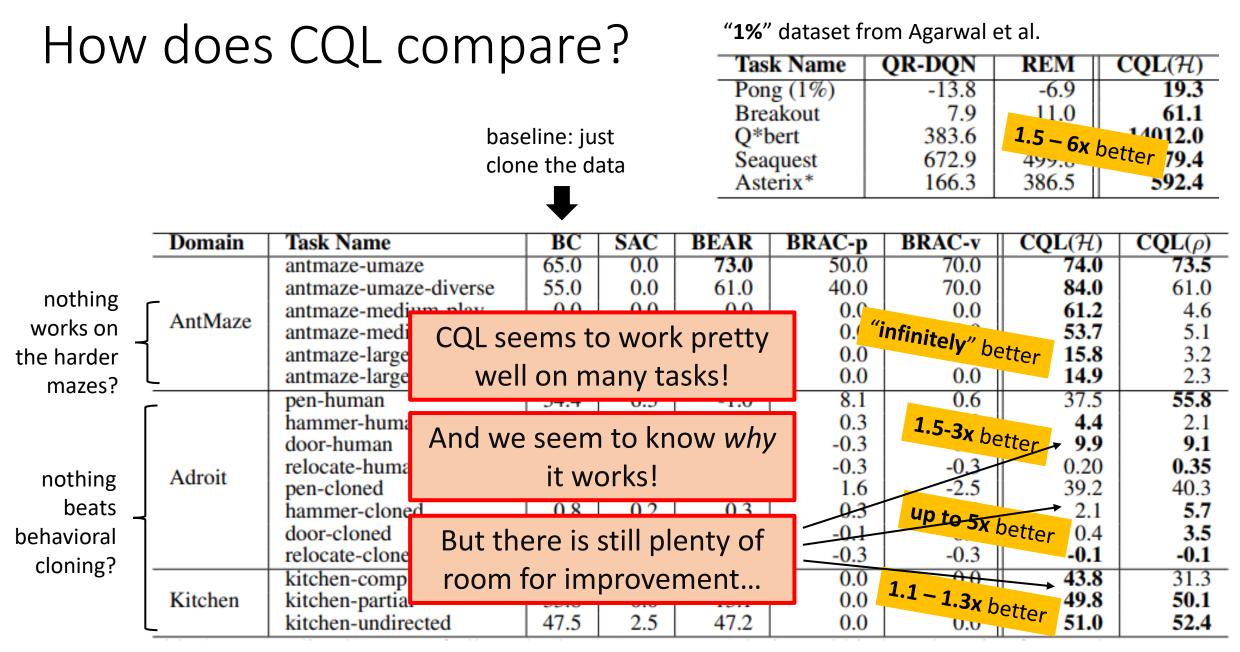


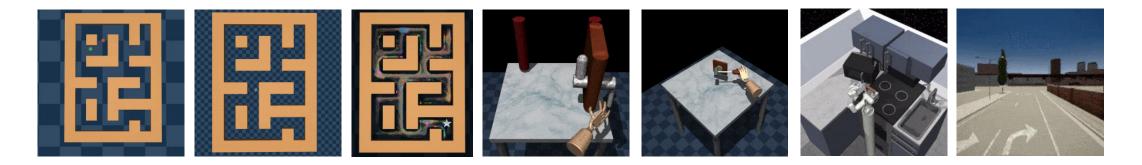




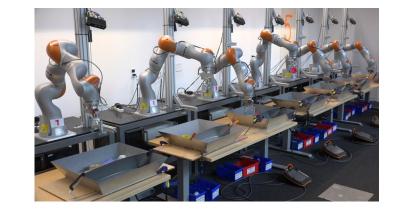
simulation & human data from Rajeswaran et al.







- Offline RL is quite difficult, but has enormous promise, and initial results suggest it can be extremely powerful
- Effective (dynamic programming) offline RL methods can be implemented by imposing constraints on the policy, perhaps implicitly
- Learning a lower bound Q-function (i.e., conservative Q-learning) can substantially improve offline RL performance



$$\hat{Q}_{\text{CQL}}^{\pi} = \arg\min_{Q} \max_{\mu} \alpha E_{\mathbf{s} \sim D, \mathbf{a} \sim \mu(\mathbf{a}|\mathbf{s})} [Q(\mathbf{s}, \mathbf{a})] - \alpha E_{(\mathbf{s}, \mathbf{a}) \sim D} [Q(\mathbf{s}, \mathbf{a})] + \frac{1}{2} E_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim D} \left[(Q(\mathbf{s}, \mathbf{a}) - (r(\mathbf{s}, \mathbf{a}) + E_{\pi}[Q(\mathbf{s}', \mathbf{a}')]))^2 \right]$$

Kumar, Fu, Tucker, Levine. **Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction.** NeurIPS '19 Nair, Dalal, Gupta, Levine. **Accelerating Online Reinforcement Learning with Offline Datasets.** '20 Kumar, Zhou, Tucker, Levine. **Conservative Q-Learning for Offline Reinforcement Learning.** '20 Fu, Kumar, Nachum Tucker, Levine. **D4RL: Datasets for Data-Driven Deep Reinforcement Learning.** '20