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Instructions as observations
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Language and goals in (human) cognition

[Hermer-Vazquez, Spelke, Katznelson 1999]
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What role can language play in shaping 
representations for RL?

[Hermer-Vazquez, Spelke, Katznelson 1999]



Language as a representation of options
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The options framework

[Sutton et al. 99, Bacon & Precup 16]



Learning from intermediate rewards

[Kearns & Singh 02, Kulkarni et al. 16]
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Learning from demonstrations

[Stolle & Precup 02, Fox & Krishnan et al. 16]
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Learning from policy sketches
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get wood use saw

[A, Klein and Levine. "Modular Multitask Reinforcement Learning with Policy Sketches.”]
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Learning from policy sketches
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[e.g. Branavan et al. 09, Oh et al. 17, Hermann et al. 17]
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A tiny bit of data goes a long way

Under review as a conference paper at ICLR 2017

A TASKS AND SKETCHES

The complete list of tasks, sketches, and symbols is given below. Tasks marked with an asterisk⇤ are
held out for the generalization experiments described in Section 4.4, but included in the multitask
training experiments in Sections 4.2 and 4.3.

Goal Sketch

Maze environment
goal1 left left
goal2 left down
goal3 right down
goal4 up left
goal5 up right
goal6 up right up
goal7 down right up
goal8 left left down
goal9 right down down
goal10 left up right

Crafting environment
make plank get wood use toolshed
make stick get wood use workbench
make cloth get grass use factory
make rope get grass use toolshed
make bridge get iron get wood use factory
make bed⇤ get wood use toolshed get grass use workbench
make axe⇤ get wood use workbench get iron use toolshed
make shears get wood use workbench get iron use workbench
get gold get iron get wood use factory use bridge
get gem get wood use workbench get iron use toolshed use axe

12
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The mini-craft task
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The path-walking task
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Fast adaptation

What if I don’t get a sketch at test time?
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Learning from policy sketches
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Natural language options

[Hu et al. 2019, “Hierarchical 
Decision Making by Generating 

and Following Natural 
Language Instructions”]



Learning with natural language options

Ï

build a peasant

build a dragon

mine for ore

attack peasant

attack with dragon

build a castle

A.P. Jacob[Jacob and Andreas. “Adaptable RL with natural language hierarchies.” In prep.]
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Language as a representation of goals
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Language for goal inference
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Language for goal inference
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Experimental results
be generated conditioned on a set of pre-provided
concept-learning observations. Here, agents are free
to interact with the environment as much as they
need, but receive observations only during interac-
tion. Thus our goal here will be to build agents that
can adapt quickly to new environments, rather than
requiring them to immediately perform well on held-
out data.

Why should we expect L3 to help in this setting?
In reinforcement learning, we typically encourage
our models to explore by injecting randomness into
either the agent’s action space or its underlying pa-
rameterization. But most random random policies
exhibit nonsensical behaviors; as a result, it is quite
inefficient both to sample in the space of network
weights and to perform policy optimization from a
random starting point. Our hope is that when pa-
rameters are instead chosen from within a structured
family, a stochastic search in this structured space
will only ever consider behaviors corresponding to
some reasonable final policy, and in this way dis-
cover good behavior much faster than ordinary RL.

Here the interpretation model f describes a policy
that chooses actions conditioned on the current en-
vironment state and its linguistic parameterization.
As the agent initially has no observations at all, we
simply design the proposal model to generate un-
conditional samples from a prior over descriptions.
Taking x to be an agent’s current observation of the
environment state, we define a state representation
network:

x FC tanh FC rep( )xtanh

and models:

f(a | x; w) / rnn-encode(w)> Wa rep(x)

q(w) = rnn-decode(w)

This parameterization assumes a discrete action
space, and assigns to each action a probability pro-
portional to a bilinear function of the encoded de-
scription and world state. f is effectively an in-
struction following model of a kind well-studied in
the natural language processing literature (Branavan
et al., 2009); the proposal model allows it to gener-
ate its own instructions without external direction.
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Figure 8: Learning curves for treasure hunting. These
show the average reward obtained by each learning algo-
rithm across multiple evaluation environments, after lan-
guage learning has already taken place. Multitask learns a
separate embedding for each task, while Scratch trains on
every task individually. L3 rapidly discovers high-scoring
policies in most environments. The dashed line indicates
the end of the concept-learning phase; subsequent perfor-
mance comes from fine-tuning. The max possible reward
for this task is 3 points. Error bands shows 95% confi-
dence intervals for mean performance.

To learn, we sample a fixed number of descrip-
tions w from q. For each description, we sample
multiple rollouts of the policy it induces to obtain an
estimate of the average reward it obtains. Finally, we
can take the highest-scoring description and perform
additional fine-tuning of its induced policy.

At language-learning time, we assume access to
both natural language descriptions of these target lo-
cations provided by human annotators, as well as
expert policies for navigating to the location of the
treasure. The multitask model we compare to re-
places these descriptions with trainable task embed-
dings.4 The learner is trained from task-specific ex-
pert policies using DAgger (Ross et al., 2011) dur-
ing the language-learning phase, and adapts to indi-
vidual environments using “vanilla” policy gradient
(Williams, 1992) during the concept learning phase.

The environment implementation and linguistic
annotations are in this case adapted from a natural

4In the case of RL in particular, the contribution from L3 are
orthogonal to those of meta-learning—one could imagine using
a technique like RL2 (Duan et al., 2016) to generate candidate
descriptions more efficiently, or use MAML (Finn et al., 2017)
rather than zero-shot reward as the training criterion for the in-
terpretation model.

Latent Goal Descriptions



Language for goal inference
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Figure 6: Example predictions for string editing.

posal model. These results are shown in Table 3.
A few interesting facts stand out. Under the or-

dinary evaluation condition (with no ground-truth
annotations provided), language-learning with nat-
ural language data is actually better than language-
learning with regular expressions. This might be be-
cause the extra diversity helps the model figure out
the relevant axes of variation and avoid overfitting to
individual strings. Allowing the model to do its own
inference is also better than providing ground-truth
natural language descriptions, suggesting that it is
actually better at generalizing from the relevant con-
cepts than our human annotators (who occasionally
write things like I have no idea for the inferred rule).
Unsurprisingly, with ground truth REs (which unlike
the human data are always correct) we can do better
than any of the models that have to do inference.
Coupling our inference procedure with an oracle RE
evaluator, we essentially recover the synthesis-based
approach of Devlin et al. (2017). Our findings are
consistent with theirs: when a complete and accu-
rate execution engine is available, there is no reason
not to use it. But we can get almost 90% of the way
there with an execution model learned from scratch.
Some examples of model behavior are shown in Fig-
ure 6; more may be found in Appendix D.

6 Policy Search

The previous two sections examined supervised set-
tings where the learning signal comes from few ex-

amples but is readily accessible. In this section, we
move to a set of reinforcement learning problems,
where the learning signal is instead sparse and time-
consuming to obtain. We evaluate on a collection of
2-D treasure hunting tasks. These tasks require the
agent to discover a rule that determines the location
of buried treasure in a large collection of environ-
ments of the kind shown in Figure 7. To recover
the treasure, the agent must navigate (while avoid-
ing water) to its goal location, then perform a DIG
action. At this point the episode ends; if the treasure
is located in the agent’s current position, it receives
a reward, otherwise it does not. In every task, the
treasure has consistently been buried at a fixed posi-
tion relative to some landmark (like the heart in Fig-
ure 7). Both the offset and the identity of the target
landmark are unknown to the agent, and the location
landmark itself varies across maps. Indeed, there
is nothing about the agent’s observations or action
space to suggest that landmarks and offsets are even
the relevant axis of variation across tasks, but this
structure is made clear in the natural language an-
notations. The high-level structure of these tasks is
similar to one used by Hermer-Vazquez et al. (2001)
to study concept learning in humans.

The interaction between language and learning in
these tasks is rather different than in the supervised
settings. In the supervised case, language served
mostly as a guard against overfitting, and could

Figure 7: Example treasure hunting task: the agent is
placed in a random environment and must collect a re-
ward that has been hidden at a consistent offset with re-
spect to some landmark. At language-learning time, nat-
ural language instructions and expert policies are addi-
tionally provided. The agent must both learn primitive
navigation skills, like avoiding water, as well as the high-
level structure of the reward functions for this domain.
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Language modeling and representation

cheap    [MASK]    delicious    [SEP]    green    definitely    go    back

and I’ll

transformer

[Devlin et al. “BERT: Pre-training of Deep Bidirectional  
Transformers for Language Understanding”]



equipped to think critically about automated decisionmaking technology and its limitations.

Research Background and Goals This proposal, like the rest of my group’s research, sits at the inter-
section of natural language processing and other machine learning application areas. My previous research
contributions include core problems in NLP (including the architectures underlying state-of-the-art syntac-
tic parsers [74, 46] and text generation systems [68]) as well as computer vision (visual question answering
[4], vision-and-language navigation [33]), reinforcement learning (language-conditional RL for discrete and
continuous control [5, 21]) and representation learning [3]. The current proposal synthesizes and extends
these two research directions—bringing together insights from my previous work in NLP and grounded lan-
guage learning, and applying them to fundamental problems like visual recognition and object manipulation.

2 Research Plan

Query Prediction

The color of a banana is [?]. green
The capital of [?] is Dhaka. Bangladesh
I can use a [?] to chop a carrot. knife
I can use a [?] to mince a carrot. knife
I can use a [?] to scrub a carrot. brush
Plates are found in the [?] room. dining
If I drop a glass, it will [?]. explode

Figure 3: Predictions from the BERT masked lan-
guage model [23] on sentence completion tasks. The
right column shows the word judged to be the most
probable replacement for the [?] token in the query.
While not perfect, these predictions capture world
knowledge, perceptual features, actions, and social
conventions.

This proposal focuses on the use of language as a source of
explicit task supervision and background knowledge for task
representation. Why language? Given a small number of la-
beled datasets of images, it is difficult to infer from these anno-
tations alone other labelings or groupings will be meaningful
to humans. Given an open-ended environment, it is even more
difficult to determine what actions in that environment achieve
human-meaningful goals. However, advances in representa-
tion learning for language processing have made clear that rich
information about natural categories and features can be recov-
ered from word co-occurrence statistics in text. For example,
prior work on image classification [34] found that representa-
tions of class names derived from word co-occurrence statis-
tics improved classifier generalization, and even enable zero-
shot recognition of new classes [51]. Generalizing beyond these experiments, I hypothesize that language
can play three distinct roles in shaping and interpreting representations of visual categories and other tasks:

1. As a source of task representations. The fact that shark and fish occur near similar words in text
corpora (like water and fin) is a signal that the features used for recognizing them are similar. In
compositional or multi-step tasks, knowing that chopping a carrot is more similar to mincing a carrot
than scrubbing one (Fig. 3) is a signal that chopping and mincing involve similar sequences of actions.

2. As a prior over tasks. Given the two examples in Fig. 1a, a learner can deduce that relevant features
for classification are more likely to involve shape or function than color because definitions of other
tools more often refer to functional properties than perceptual ones.

3. As a means of explanation. A learner capable of announcing that it is going to wash a knife before
doing so can be more carefully monitored or interrupted if the situation is unsafe.

While language is by no means the only source of such representational information—for example,
current work in meta-learning has made effective use of hand-engineered task distributions and structured
ontologies [78]—it might be the most accessible such source, given the availability of large sources of
language data describing nearly every subject of human interest.

3
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[Devlin et al. “BERT: Pre-training of Deep Bidirectional  
Transformers for Language Understanding”]



The string-valued MDP
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in a dark room 
with a door

you can hear 
something 
breathing

open the door
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walk toward it
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transition fn

reward fn



Text adventure games

Observation: West of House You are standing
in an open field west of a white house, with a
boarded front door. There is a small mailbox
here.

Action: Open mailbox

Observation: Opening the small mailbox reveals
a leaflet.

Action: Read leaflet
Observation: (Taken) "WELCOME TO ZORK!
ZORK is a game of adventure, danger, and low
cunning. In it you will explore some of the most
amazing territory ever seen by mortals. No com-
puter should be without one!"

Action: Go north
Observation: North of House You are facing
the north side of a white house. There is no door
here, and all the windows are boarded up. To the
north a narrow path winds through the trees.

Figure 1: Excerpt from Zork1.

Overcoming bottlenecks is not as simple as se-
lecting the correct action from the bottleneck
state. Most bottlenecks have long-range depen-
dencies that must first be satisfied: Zork1 for
instance features a bottleneck in which the agent
must pass through the unlit Cellar where a mon-
ster known as a Grue lurks, ready to eat unsus-
pecting players who enter without a light source.
To pass this bottleneck the player must have pre-
viously acquired and lit the latern. Other bottle-
necks don’t rely on inventory items and instead
require the player to have satisfied an external
condition such as visiting the reservoir control
to drain water from a submerged room before
being able to visit it. In both cases, the actions
that fulfill dependencies of the bottleneck, e.g.
acquiring the lantern or draining the room, are
not rewarded by the game. Thus agents must
correctly satisfy all latent dependencies, most of
which are unrewarded, then take the right action
from the correct location to overcome such bot-
tlenecks. Consequently, most existing agents—
regardless of whether they use a reduced action
space [31, 27] or the full space [15, 3]—have
failed to consistently clear these bottlenecks.

To better understand how to design algorithms that pass these bottlenecks, we first need to gain a
sense for what they are. We observe that quests in text games—and any such sequential decision
making problem requiring long term dependencies—can be modeled in the form of a dependency
graph. These dependency graphs are directed acyclic graphs (DAGs) where the vertices indicate either
rewards that can be collected or dependencies that must be met to progress. In text-adventure games
the dependencies are of two types: items that must be collected for future use, and locations that must
be visited. An example of such a graph for the game of Zork1 can found in Fig. 2. More formally,
bottleneck states are vertices in the dependency graph that, when the graph is laid out topographically,
are (a) the only state on a level, and (b) there is another state at a higher level with non-zero reward.
Bottlenecks can be mathematically expressed as follows: let D = hV, Ei be the directed acyclic
dependency graph for a particular game where each vertex is tuple v = hsl, si, r(s)i containing
information on some state s such that sl are location dependencies, si are inventory dependencies,
and r(s) is the reward associated with the state. There is a directed edge e 2 E between any two
vertices such that the originating state meets the requirements sl and si of the terminating vertex.
D can be topologically sorted into levels L = {l1, ..., ln} where each level represents a set of game
states that are not dependant on each other. We formulate the set of all bottleneck states in the game:

B = {b : (|li| = 1, b 2 li, V ) ^ (9s 2 lj s.t. (j > i ^ r(s) 6= 0))} (1)

This reads as the set of all states that that belong to a level with only one vertex and that there exists
some state with a non-zero reward that depends on it. Intuitively, regardless of the path taken to get
to a bottleneck state, any agent must pass it in order to continue collecting future rewards. Behind
House is an example of a bottleneck state as seen in Fig. 2. The branching factor before and after this
state is high but it is the only state through which one can enter the Kitchen through the window.

In this paper, we introduce Q*BERT, a deep reinforcement learning agent that plays text games
by building a knowledge graph of the world and answering questions about it. Knowledge graph
state representations have been shown to alleviate other challenges associated with text games such
as partial-observability [5, 28, 3, 6, 1, 21]. We introduce the Jericho-QA dataset, for question-
answering in text-game-like environments, and show that our novel question-answering-based graph
construction procedure improves sample efficiency but not asymptotic performance. In order to
improve performance and pass through bottlenecks, we extend Q*BERT with a novel exploration
strategy that uses intrinsic motivation based on the knowledge graph to alleviate the sparse, deceptive
reward problem. Our exploration strategy first detects bottlenecks and then modularly chains policies
that go from one bottleneck to another. We call this combined system MC!Q*BERT. These two

2

[Ammanabrolu et al. 2020]



From language to the real world
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Luketina et al., 
A survey of reinforcement learning  

informed by natural language
https://arxiv.org/abs/1906.03926

Agent Environment

Action

State, Reward

Task-dependent

Language-assisted
Key Opens a door of the same color as

the key.

Skull They come in two varieties, rolling

skulls and bouncing skulls ... you must

jump over rolling skulls and walk under

bouncing skulls.

Language-conditional
Go down the ladder and walk right im-

mediately to avoid falling o↵ the conveyor

belt, jump to the yellow rope and again

to the platform on the right.

Task-independent

[...] having the correct key can open the lock [...]
[...] known lock and key device was discovered [...]

[...] unless the correct key is inserted [...]

vkey vskull vladder vrope

Pre-training

Pre-trained

Figure 1: Illustration of different roles and types of natural language information in reinforcement learning. We differentiate between
language-conditional setting in which language is a part of the task formulation (e.g. natural language instructions that specify
the goal or reward), and language-assisted setting where language information is not necessary to solve the task but can assists
learning (e.g. by providing information about the environment dynamics). The language information itself can be task-dependent,
i.e. specific to the task such as tutorials or instructions, or task-independent, for instance, conveying general priors about the world
through pre-trained language representations.

necessary (§3.1) and where language can optionally be used
to facilitate learning (§3.2). In the former category we review
instruction following, induction of reward from language, and
environments with text in the action or observation space, all
of which have language in the problem formulation itself. In
the latter, we review work that uses language to facilitate RL
by transfer from domain-specific textual resources, or as a
means of representing policies.

We conclude by identifying what we believe are the most
important challenges for integrating natural language in RL
(§4). Inspired by gaps in the existing literature, we advocate
the development of new research environments utilizing do-
main knowledge in natural language, as well as a wider use of
NLP methods such as pre-trained language models and parsers
to inform RL agents about the structure of the world.

2 Background

2.1 Reinforcement and Imitation Learning

Reinforcement Learning [Sutton and Barto, 2018] is a frame-
work that enables agents to reason about sequential decision
making as an optimization process. Problems are formulated
as Markov Decision Processes (MDPs), tuples hS,A, T,R, �i
where S is the set of states, A the set of actions, T the transi-
tion probability function T : S⇥A⇥S ! [0, 1], R the reward
function R : S ⇥ A ⇥ S ! R, and � 2 [0, 1) is a discount
factor, typically set by either the environment or the agent de-
signer. Given this setup, the goal of the optimization process is
to find a policy ⇡(a|s) = p(A = a|S = s) that maximizes the
expected discounted cumulative return

P1
k=0 �

krk+1. This
framework is also used in Imitation Learning (IL), a setting in
which the rewards are not observed, but the learning algorithm
has access to a set of trajectories under optimal or sub-optimal
policies. IL methods can then find approximations of the op-
timal policy, which can be used as a form of initialization,
auxiliary objective, or for value estimation.

Since their inception, RL algorithms have been success-
ful in applications such as continuous control [White and
Sofge, 1992], dialogue systems [Singh et al., 2002], and board

games [Tesauro, 1995]. Recent improvements in function ap-
proximation and pattern recognition made possible by deep
learning have allowed RL to scale to problems with high di-
mensional input spaces such as video games [Torrado et al.,
2018] and complex planning problems such as Go [Silver
et al., 2017]. Nonetheless, these methods remain sample in-
efficient, requiring millions or billions of interactions, and
often generalize poorly to tasks only slightly different from
those seen during training. This severely limits the use of
RL for real-world tasks. See [Sutton and Barto, 2018] for a
comprehensive introduction to RL and to [Arulkumaran et al.,
2017] and [Osa et al., 2018] for reviews on recent algorithmic
developments.

2.2 Transfer from Natural Language

NLP has seen a recent surge of models that transfer syntactic
and semantic knowledge to various downstream tasks. Cur-
rent NLP systems commonly employ deep learning models
and embed (sequences of) words using dense vector rep-
resentations. These vector representations are often pre-
trained from large textual corpora and fine-tuned for a given
task. Common techniques learn individual word representa-
tions from co-occurrence statistics [Deerwester et al., 1990;
Mikolov et al., 2013] or contextual word-representations us-
ing (pseudo) language model objectives [Peters et al., 2018a;
Devlin et al., 2018]. Both classes of models are motivated by
Firth’s distributional hypothesis (“You shall know a word by
the company it keeps”) [Firth, 1957], which suggests that the
learned vector representation of a word like ‘scorpion’ should
be similar to ‘spider’ if the corresponding words appear in
similar contexts, e.g., if they can both be found around other
words like ‘venomous’ or ‘exoskeleton’.

Such (contextual) word representations can transfer knowl-
edge to downstream tasks that have to deal with language
as, for example, in [Socher et al., 2013; Frome et al., 2013;
Howard and Ruder, 2018; Peters et al., 2018b; Goldberg, 2019;
Tenney et al., 2019], to name just a few. For instance, con-
sider a text classification problem where we are tasked with
assigning a document containing the word ‘scorpion’ to the


