MOPO: Model-based Offline Policy
Optimization

Tengyu Ma
Stanford University

Joint work with Tianhe Yu, Garrett Thomas, Lantao Yu,
Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn



Sample-Efficiency Challenge i RL

Trials and errors:

~—Try-the-currentstrategy-and-collet feedbacks
> Use the feedbacks to improve the strategy

How to reduce the amount of trials (samples)?
> Model-based RL

> Offline RL, imitation learning

> Meta, multi-task, lifelong, continual RL
> Hierarchical RL

> ...




Offline (Batch) Reinforcement Learning

> Given: B = a collection of trajectories sampled from some policy
(under the true dynamics T™)
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> Reward r(s;, a;) € R (assumed to be known wlog)

> Goal: learn a policy m that maximizes the expected return
n*(ﬂ): — IESO~DSO [T(So, aO) + T(Sl, al) + T(Sz, aZ) T ”.]

» Offline: interactions with the real environment are not allowed!



The Distribution Shift Issue

> Learning with the batch B only guarantees accurate predictions on the
batch data distribution

> E.g., Q-learning on B over-estimates the Q-function outside the support
of the batch

> Reward = -1 if not reaching the goal
> VV* = — distance to goal

» Learned value function
» Correcton B

» Wrong outside B

learned value function

E

Figure from [Learning Self-Correctable Policies and Value Functions from
Demonstrations with Negative Sampling . Luo-Xu-M. 19]



R Common Idea: Strong Pessimism/Conservatism

> Stay inside the support of the batch data distribution
> only visit those (s, @) that you are certain about

A partial list of prior or concurrent work
> BCQ [Fujimoto et al.’19]

> BEAR [Kumar et al.’19]
> BRAC [Wu et al./19]

> VINS [Luo et al.’19]

> CQL [Kumar et al.’20]
> ...

Q: Can we risk leaving the support of the batch data in exchange for
higher return?



Simplification; Offline Multi-Arm Bandit

» Can only pull your arm once!

\,
yelps i~

Restaurant 1

Restaurant 2

Restaurant 3

Restaurant 4

1 reviews
4.7 stars

10 reviews
4.65 stars

100 reviews
4.4 stars

10K reviews
4.3 stars

> “Strong conservatism”: only considering restaurants with prob. > 2% in

the batch data

» Choice = Restaurant 4



Milder Conservatism: Trading off Return with Risk

yelp'k
Restaurant 1 Restaurant 2 Restaurant 3 Restaurant 4
1 reviews 10 reviews 100 reviews 10K reviews
4.7 stars 4.65 stars 4.4 stars 4.3 stars
Confidence interval (error bar = 1/+/n):
[3.7,5.7] [4.33, 4.94] [4.3, 4.5] [4.29, 4.31]

max lower-confidence(a)
d



Back to Offline Reinforcement Learning

Step 1: build uncertainty quantification of return
n*(n) € [f(m) + e(n)]

Step 2: maximize the lower confidence bound
max 1(m) — e(m)
T



Step 1: Uncertainty Quantification (U(Q) For the Return

> A model-based approach
> UQ for the learned dynamics — UQ for the return

> Learn a dynamical model T on the batch data which is assumed to
deterministic (for now)

> Calibrated model: assume error estimator u(-,+) for T satisfying
1T (s,a) — T*(s,a)|| < u(s,a)

> Assume the value function VT is c-Lipschitz

Theorem: Let 7j(1) be the return on the learned dynamics, then
n*(w) € [f(m) £ e(n)]

where e() =+ By )7 [u(s, @)]




Unified Approach for Stochastic Dynamics

> Assume V&I € ¢ - F where c € R

> Assume error estimator u(:,-) for learned (stochastic) dynamics T sat.
dg:(T(S, a), T*(s, a)) < u(s,a)

where d# is integral probability metric (IPM) between two dist. w.r.t F.

d]:(P~Q) .= Sup
fer

E [f(X)]- E [f(Y)]‘

> If VT is L-Lipschitz, then d = the Wasserstein distance (and #,-
distance if dynamics is deterministic)

> If V=T is bounded, then dr = TV-distance.

> 1If V™1 is in some kernel space, then d# = maximum mean discrepancy
(MMD).




Lemma: under the assumption above, we have

n*(m) € /() £ e(m)]
fore(m) = Eag)~nrld - uls,a)] with A = 1%/




Proof Sketch

telescoping sum

> n*(m) —1(m) /

— V[E(s,a)~n,’f‘ [[Es’fvT(s,a) [Vn'T (s)]— [Es’~T*(s,a) [V”;T* (S’)]]

Def. of IPM



Lemma: under the assumption above, we have

n*(m) € /() £ e(m)]
fore(m) = Eag)~nrld - uls,a)] with A = 1%/

MOPO: Model-based Policy Opt. with Reward Penalty

Step 2: Optimize 7)(m) — e(1) = E(5 g)~r 717 (s,a) — 4 - u(s, a)]
A. Define a MDP M with the learned dynamics T and penalized reward
F(s,a) = r(s,a) —1-u(s,a)

B. Find the optimal policy of M with off-the-shelf RL algo.

> Implementation of UQ: use ensemble as a heuristic for u(s, a)




Characterizing the Tradeoif hetween the Gain and Risk of
Leaving Batch Data Support

Theorem: Let €() = E(g 4)~ #[u(s, a)] which captures the risk. The
policy 77 found by MOPO satisfies:

n*(#t) = sgp{n* (m) — 24 - e(m)}

=~ 0 bc. no dist. shift
Two ends of the spectrum: ¢ NO dIst. 5hi

> Taking T = 72, then n*(#) = n*(n?) — 22e(n?) ~ n*(=?)

> Takingm = ™, thenn™(t) = n*(n™) — 2Ae(m™)

depends on how far T* is
from the batch data dist.




Evaluation on D4RL dataset

>[Fu et al.20’] D4RL:

Datasets for deep data-driven reinforcement learning

Dataset type | Environment Batch Batch MOPO (ours) MBPO SAC | BEAR | BRAC-v
Mean Max
random halfcheetah -303.2 -0.1 3679.8 £ 70.7 3533.0 & 201.8 | 3502.0 2885.6 3207.3
random hopper 299.26 365.9 412.8 + 30.7 126.6 4+ 173.9 347.7 289.5 370.5
random walker2d 0.9 57.3 596.3 + 121.8 395.9 £ 371.7 192.0 307.6 239
medium halfcheetah 3953.0 4410.7 4706.9 £ 61.1 3230.0 £ 2543.6 -808.6 | 4508.7 5365.3
medium hopper 1021.7 32543 840.9 £ 99.3 137.8 4= 87.5 5.7 15279 1030.0
medium walker2d 498.4 3752.7 645.5 £ 464.8 582.6 £ 348.8 44.2 1526.7 3734.3
mixed halfcheetah 2300.6 4834.2 6418.3 £ 474 | 5598.4 4 1285.1 -581.3 | 42113 5413.8
mixed hopper 470.5 1377.9 2988.7 + 186.3 1599.2 + 969.6 93.3 802.7 53
mixed walker2d 358.4 1956.5 1963.5 4= 383.8 1021.8 £ 585.8 87.8 495.3 44.5
med-expert halfcheetah 8074.9 12940.2 | 6913.5 £ 2793.0 929.6 £+ 903.2 -55.7 | 61325 53424
med-expert hopper 1850.5 3760.5 1663.5 & 1375.6 | 1803.6 4= 1102.4 329 109.8 5.1
med-expert walker2d 1062.3 5408.6 2527.1 £ 879.8 351.7 £ 170.6 -5.1 1193.6 3058.0




Out-of-distribution Qffline RL Tasks

> Situations where the agent has to take the risk of leaving the support of
the batch data to achieve high reward

Batch data ' Learned policy

! ?
X - e - \ # ) - W > X - \i

t=0 t=100 : t=50 t=100
% % t=50 5 % % =50 %
> ant-angle

> batch: ant runs forward
> Task: ant is supposed to run to the direction with degree 30

> cheetah-jump:
> batch: cheetah runs forward

> Task: cheetah is supposed to jump



Out-of-distribution Qffline RL Tasks

> Situations where the agent has to take the risk of leaving the support of
the batch data to achieve high reward

Batch data
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Environment ‘ Batch | Batch | MOPO (ours) ’ MBPO | SAC ‘ BRAC-p | BRAC-v
Mean Max

halfcheetah-jump | -1022.6 | 1808.6 | 4016.64144 | 2971441262 | -3588.2+1436 168460 | 1069.94232
866.7 | 23119 | 2256.0+288 13.6-£66 966.4+778 | 16582416 | 1806.7+265




Summary

This talk:

> MOPO: offline model-based RL with a reward penalty from uncertainty
qguantification

Open questions:
> Tighter uncertainty quantification?

> Less conservative than optimizing lower confidence bound?

Ads of RL work by my group:

> Model-based vs model-free through the lens of expressivity:
> On the Expressivity of Neural Networks for Deep Reinforcement Learning. ICLM 2020

> Addressing distribution shift in meta-RL:
> Model-based Adversarial Meta-Reinforcement Learning. to appear at NeuRIP’20



