
Introduction to the Low-Degree Polynomial
Method

Alex Wein
Courant Institute, New York University

1 / 31

Part I: Why Low-Degree Polynomials?

2 / 31

Problems in High-Dimensional Statistics

Example: finding a large clique in a random graph

3 / 31

Problems in High-Dimensional Statistics

Example: finding a large clique in a random graph

I Detection: distinguish between a random graph and a graph
with a planted clique

3 / 31

Problems in High-Dimensional Statistics

Example: finding a large clique in a random graph

I Detection: distinguish between a random graph and a graph
with a planted clique

I Recovery: given a graph with a planted clique, find the clique

3 / 31

Problems in High-Dimensional Statistics

Example: finding a large clique in a random graph

I Detection: distinguish between a random graph and a graph
with a planted clique

I Recovery: given a graph with a planted clique, find the clique

I Optimization: given a random graph (with no planted
clique), find as large a clique as possible

3 / 31

Problems in High-Dimensional Statistics

Example: finding a large clique in a random graph

I Detection: distinguish between a random graph and a graph
with a planted clique

I Recovery: given a graph with a planted clique, find the clique

I Optimization: given a random graph (with no planted
clique), find as large a clique as possible

Common to have information-computation gaps

3 / 31

Problems in High-Dimensional Statistics

Example: finding a large clique in a random graph

I Detection: distinguish between a random graph and a graph
with a planted clique

I Recovery: given a graph with a planted clique, find the clique

I Optimization: given a random graph (with no planted
clique), find as large a clique as possible

Common to have information-computation gaps

E.g. planted k-clique (either detection or recovery)

3 / 31

Problems in High-Dimensional Statistics

Example: finding a large clique in a random graph

I Detection: distinguish between a random graph and a graph
with a planted clique

I Recovery: given a graph with a planted clique, find the clique

I Optimization: given a random graph (with no planted
clique), find as large a clique as possible

Common to have information-computation gaps

E.g. planted k-clique (either detection or recovery)

What makes problems easy vs hard?

3 / 31

The Low-Degree Polynomial Method

A framework for predicting/explaining average-case computational
complexity

Originated from sum-of-squares literature (for detection)

[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16]

[Hopkins, Steurer ’17]

[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17]

[Hopkins ’18 (PhD thesis)]

Today: self-contained motivation (without SoS)

4 / 31

The Low-Degree Polynomial Method

A framework for predicting/explaining average-case computational
complexity

Originated from sum-of-squares literature (for detection)

[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16]

[Hopkins, Steurer ’17]

[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17]

[Hopkins ’18 (PhD thesis)]

Today: self-contained motivation (without SoS)

4 / 31

The Low-Degree Polynomial Method

A framework for predicting/explaining average-case computational
complexity

Originated from sum-of-squares literature (for detection)

[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16]

[Hopkins, Steurer ’17]

[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17]

[Hopkins ’18 (PhD thesis)]

Today: self-contained motivation (without SoS)

4 / 31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: e.g. b ∈ {0, 1} or v ∈ Rn

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: e.g. b ∈ {0, 1} or v ∈ Rn

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: e.g. b ∈ {0, 1} or v ∈ Rn

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: e.g. b ∈ {0, 1}

or v ∈ Rn

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: e.g. b ∈ {0, 1} or v ∈ Rn

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: e.g. b ∈ {0, 1} or v ∈ Rn

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: e.g. b ∈ {0, 1} or v ∈ Rn

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms:

input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: e.g. b ∈ {0, 1} or v ∈ Rn

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: e.g. b ∈ {0, 1} or v ∈ Rn

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: e.g. b ∈ {0, 1} or v ∈ Rn

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: e.g. b ∈ {0, 1} or v ∈ Rn

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: e.g. b ∈ {0, 1} or v ∈ Rn

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 31

The Low-Degree Polynomial Method

Claim: low-degree polynomials provide a unified explanation of
information-computation gaps in detection/recovery/optimization

For all of these problems...
planted clique, sparse PCA, community detection, tensor PCA, planted

CSPs, spiked Wigner/Wishart, planted submatrix, planted dense

subgraph, p-spin optimization, max independent set

...it is the case that

I the best known poly-time algorithms are low-degree
(spectral/AMP/local)

I low-degree polynomials fail in the “hard” regime

“Low-degree conjecture” (informal): low-degree polynomials are as
powerful as all poly-time algorithms for “natural” high-dimensional
problems [Hopkins ’18]

6 / 31

The Low-Degree Polynomial Method

Claim: low-degree polynomials provide a unified explanation of
information-computation gaps in detection/recovery/optimization

For all of these problems...

planted clique, sparse PCA, community detection, tensor PCA, planted

CSPs, spiked Wigner/Wishart, planted submatrix, planted dense

subgraph, p-spin optimization, max independent set

...it is the case that

I the best known poly-time algorithms are low-degree
(spectral/AMP/local)

I low-degree polynomials fail in the “hard” regime

“Low-degree conjecture” (informal): low-degree polynomials are as
powerful as all poly-time algorithms for “natural” high-dimensional
problems [Hopkins ’18]

6 / 31

The Low-Degree Polynomial Method

Claim: low-degree polynomials provide a unified explanation of
information-computation gaps in detection/recovery/optimization

For all of these problems...
planted clique, sparse PCA, community detection, tensor PCA, planted

CSPs, spiked Wigner/Wishart, planted submatrix, planted dense

subgraph, p-spin optimization, max independent set

...it is the case that

I the best known poly-time algorithms are low-degree
(spectral/AMP/local)

I low-degree polynomials fail in the “hard” regime

“Low-degree conjecture” (informal): low-degree polynomials are as
powerful as all poly-time algorithms for “natural” high-dimensional
problems [Hopkins ’18]

6 / 31

The Low-Degree Polynomial Method

Claim: low-degree polynomials provide a unified explanation of
information-computation gaps in detection/recovery/optimization

For all of these problems...
planted clique, sparse PCA, community detection, tensor PCA, planted

CSPs, spiked Wigner/Wishart, planted submatrix, planted dense

subgraph, p-spin optimization, max independent set

...it is the case that

I the best known poly-time algorithms are low-degree
(spectral/AMP/local)

I low-degree polynomials fail in the “hard” regime

“Low-degree conjecture” (informal): low-degree polynomials are as
powerful as all poly-time algorithms for “natural” high-dimensional
problems [Hopkins ’18]

6 / 31

The Low-Degree Polynomial Method

Claim: low-degree polynomials provide a unified explanation of
information-computation gaps in detection/recovery/optimization

For all of these problems...
planted clique, sparse PCA, community detection, tensor PCA, planted

CSPs, spiked Wigner/Wishart, planted submatrix, planted dense

subgraph, p-spin optimization, max independent set

...it is the case that

I the best known poly-time algorithms are low-degree
(spectral/AMP/local)

I low-degree polynomials fail in the “hard” regime

“Low-degree conjecture” (informal): low-degree polynomials are as
powerful as all poly-time algorithms for “natural” high-dimensional
problems [Hopkins ’18]

6 / 31

The Low-Degree Polynomial Method

Claim: low-degree polynomials provide a unified explanation of
information-computation gaps in detection/recovery/optimization

For all of these problems...
planted clique, sparse PCA, community detection, tensor PCA, planted

CSPs, spiked Wigner/Wishart, planted submatrix, planted dense

subgraph, p-spin optimization, max independent set

...it is the case that

I the best known poly-time algorithms are low-degree
(spectral/AMP/local)

I low-degree polynomials fail in the “hard” regime

“Low-degree conjecture” (informal): low-degree polynomials are as
powerful as all poly-time algorithms for “natural” high-dimensional
problems [Hopkins ’18]

6 / 31

The Low-Degree Polynomial Method

Claim: low-degree polynomials provide a unified explanation of
information-computation gaps in detection/recovery/optimization

For all of these problems...
planted clique, sparse PCA, community detection, tensor PCA, planted

CSPs, spiked Wigner/Wishart, planted submatrix, planted dense

subgraph, p-spin optimization, max independent set

...it is the case that

I the best known poly-time algorithms are low-degree
(spectral/AMP/local)

I low-degree polynomials fail in the “hard” regime

“Low-degree conjecture” (informal): low-degree polynomials are as
powerful as all poly-time algorithms for “natural” high-dimensional
problems [Hopkins ’18]

6 / 31

Overview

This talk: techniques to prove that all low-degree polynomials fail

I Gives evidence for computational hardness

Settings:

I Detection
[Hopkins, Steurer ’17]

[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17]

[Hopkins ’18] (PhD thesis)

[Kunisky, W., Bandeira ’19] (survey)

I Recovery
[Schramm, W. ’20]

I Optimization
[Gamarnik, Jagannath, W. ’20]

7 / 31

Overview

This talk: techniques to prove that all low-degree polynomials fail

I Gives evidence for computational hardness

Settings:

I Detection
[Hopkins, Steurer ’17]

[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17]

[Hopkins ’18] (PhD thesis)

[Kunisky, W., Bandeira ’19] (survey)

I Recovery
[Schramm, W. ’20]

I Optimization
[Gamarnik, Jagannath, W. ’20]

7 / 31

Overview

This talk: techniques to prove that all low-degree polynomials fail

I Gives evidence for computational hardness

Settings:

I Detection
[Hopkins, Steurer ’17]

[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17]

[Hopkins ’18] (PhD thesis)

[Kunisky, W., Bandeira ’19] (survey)

I Recovery
[Schramm, W. ’20]

I Optimization
[Gamarnik, Jagannath, W. ’20]

7 / 31

Part II: Detection

8 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Goal: hypothesis test with error probability o(1) between:

I Null model Y ∼ Qn e.g. G (n, 1/2)

I Planted model Y ∼ Pn e.g. G (n, 1/2) ∪ {random k-clique}

Look for a degree-D polynomial f : Rn×n → R that distinguishes P
from Q
I f (Y) is “big” when Y ∼ P and “small” when Y ∼ Q

Compute “advantage”:

Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

mean in P
fluctuations in Q

=

{
ω(1) “degree-D polynomial succeed”
O(1) “degree-D polynomials fail”

9 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Goal: hypothesis test with error probability o(1) between:

I Null model Y ∼ Qn e.g. G (n, 1/2)

I Planted model Y ∼ Pn e.g. G (n, 1/2) ∪ {random k-clique}

Look for a degree-D polynomial f : Rn×n → R that distinguishes P
from Q

I f (Y) is “big” when Y ∼ P and “small” when Y ∼ Q

Compute “advantage”:

Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

mean in P
fluctuations in Q

=

{
ω(1) “degree-D polynomial succeed”
O(1) “degree-D polynomials fail”

9 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Goal: hypothesis test with error probability o(1) between:

I Null model Y ∼ Qn e.g. G (n, 1/2)

I Planted model Y ∼ Pn e.g. G (n, 1/2) ∪ {random k-clique}

Look for a degree-D polynomial f : Rn×n → R that distinguishes P
from Q
I f (Y) is “big” when Y ∼ P and “small” when Y ∼ Q

Compute “advantage”:

Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

mean in P
fluctuations in Q

=

{
ω(1) “degree-D polynomial succeed”
O(1) “degree-D polynomials fail”

9 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Goal: hypothesis test with error probability o(1) between:

I Null model Y ∼ Qn e.g. G (n, 1/2)

I Planted model Y ∼ Pn e.g. G (n, 1/2) ∪ {random k-clique}

Look for a degree-D polynomial f : Rn×n → R that distinguishes P
from Q
I f (Y) is “big” when Y ∼ P and “small” when Y ∼ Q

Compute “advantage”:

Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

mean in P
fluctuations in Q

=

{
ω(1) “degree-D polynomial succeed”
O(1) “degree-D polynomials fail”

9 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Goal: hypothesis test with error probability o(1) between:

I Null model Y ∼ Qn e.g. G (n, 1/2)

I Planted model Y ∼ Pn e.g. G (n, 1/2) ∪ {random k-clique}

Look for a degree-D polynomial f : Rn×n → R that distinguishes P
from Q
I f (Y) is “big” when Y ∼ P and “small” when Y ∼ Q

Compute “advantage”:

Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

mean in P
fluctuations in Q

=

{
ω(1) “degree-D polynomial succeed”
O(1) “degree-D polynomials fail”

9 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G (n, 1/2),

I if k = Ω(
√
n) then Adv≤D = ω(1) for some D = O(log n)

low-degree polynomials succeed when k &
√
n

I if k = O(n1/2−ε) then Adv≤D = O(1) for any D = O(log n)
low-degree polynomials fail when k �

√
n

Sometimes can rule out polynomials of degree D = nδ

Extended low-degree conjecture [Hopkins ’18]:

degree-D polynomials ⇔ nΘ̃(D)-time algorithms

D = nδ ⇔ exp(nδ±o(1)) time

10 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G (n, 1/2),

I if k = Ω(
√
n) then Adv≤D = ω(1) for some D = O(log n)

low-degree polynomials succeed when k &
√
n

I if k = O(n1/2−ε) then Adv≤D = O(1) for any D = O(log n)
low-degree polynomials fail when k �

√
n

Sometimes can rule out polynomials of degree D = nδ

Extended low-degree conjecture [Hopkins ’18]:

degree-D polynomials ⇔ nΘ̃(D)-time algorithms

D = nδ ⇔ exp(nδ±o(1)) time

10 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G (n, 1/2),

I if k = Ω(
√
n) then Adv≤D = ω(1) for some D = O(log n)

low-degree polynomials succeed when k &
√
n

I if k = O(n1/2−ε) then Adv≤D = O(1) for any D = O(log n)
low-degree polynomials fail when k �

√
n

Sometimes can rule out polynomials of degree D = nδ

Extended low-degree conjecture [Hopkins ’18]:

degree-D polynomials ⇔ nΘ̃(D)-time algorithms

D = nδ ⇔ exp(nδ±o(1)) time

10 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G (n, 1/2),

I if k = Ω(
√
n) then Adv≤D = ω(1) for some D = O(log n)

low-degree polynomials succeed when k &
√
n

I if k = O(n1/2−ε) then Adv≤D = O(1) for any D = O(log n)
low-degree polynomials fail when k �

√
n

Sometimes can rule out polynomials of degree D = nδ

Extended low-degree conjecture [Hopkins ’18]:

degree-D polynomials ⇔ nΘ̃(D)-time algorithms

D = nδ ⇔ exp(nδ±o(1)) time

10 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G (n, 1/2),

I if k = Ω(
√
n) then Adv≤D = ω(1) for some D = O(log n)

low-degree polynomials succeed when k &
√
n

I if k = O(n1/2−ε) then Adv≤D = O(1) for any D = O(log n)
low-degree polynomials fail when k �

√
n

Sometimes can rule out polynomials of degree D = nδ

Extended low-degree conjecture [Hopkins ’18]:

degree-D polynomials ⇔ nΘ̃(D)-time algorithms

D = nδ ⇔ exp(nδ±o(1)) time

10 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G (n, 1/2),

I if k = Ω(
√
n) then Adv≤D = ω(1) for some D = O(log n)

low-degree polynomials succeed when k &
√
n

I if k = O(n1/2−ε) then Adv≤D = O(1) for any D = O(log n)
low-degree polynomials fail when k �

√
n

Sometimes can rule out polynomials of degree D = nδ

Extended low-degree conjecture [Hopkins ’18]:

degree-D polynomials ⇔ nΘ̃(D)-time algorithms

D = nδ ⇔ exp(nδ±o(1)) time

10 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)]

=
∑
|S |≤D

f̂S E
Y∼P

[Y S]

=: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2]

=
∑
|S |≤D

f̂ 2
S

= ‖f̂ ‖2

(orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

11 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)]

=
∑
|S |≤D

f̂S E
Y∼P

[Y S]

=: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2]

=
∑
|S |≤D

f̂ 2
S

= ‖f̂ ‖2

(orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

11 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)]

=
∑
|S |≤D

f̂S E
Y∼P

[Y S]

=: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2]

=
∑
|S |≤D

f̂ 2
S

= ‖f̂ ‖2

(orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

11 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)]

=
∑
|S |≤D

f̂S E
Y∼P

[Y S]

=: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2]

=
∑
|S |≤D

f̂ 2
S

= ‖f̂ ‖2

(orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

11 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)]

=
∑
|S |≤D

f̂S E
Y∼P

[Y S]

=: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2]

=
∑
|S |≤D

f̂ 2
S

= ‖f̂ ‖2

(orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

11 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)] =
∑
|S |≤D

f̂S E
Y∼P

[Y S]

=: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2]

=
∑
|S |≤D

f̂ 2
S

= ‖f̂ ‖2

(orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

11 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)] =
∑
|S |≤D

f̂S E
Y∼P

[Y S] =: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2]

=
∑
|S |≤D

f̂ 2
S

= ‖f̂ ‖2

(orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

11 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)] =
∑
|S |≤D

f̂S E
Y∼P

[Y S] =: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2]

=
∑
|S |≤D

f̂ 2
S

= ‖f̂ ‖2

(orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

11 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)] =
∑
|S |≤D

f̂S E
Y∼P

[Y S] =: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2] =
∑
|S |≤D

f̂ 2
S

= ‖f̂ ‖2

(orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

11 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)] =
∑
|S |≤D

f̂S E
Y∼P

[Y S] =: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2] =
∑
|S |≤D

f̂ 2
S = ‖f̂ ‖2 (orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

11 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)] =
∑
|S |≤D

f̂S E
Y∼P

[Y S] =: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2] =
∑
|S |≤D

f̂ 2
S = ‖f̂ ‖2 (orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

11 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)] =
∑
|S |≤D

f̂S E
Y∼P

[Y S] =: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2] =
∑
|S |≤D

f̂ 2
S = ‖f̂ ‖2 (orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

11 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)] =
∑
|S |≤D

f̂S E
Y∼P

[Y S] =: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2] =
∑
|S |≤D

f̂ 2
S = ‖f̂ ‖2 (orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

11 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)] =
∑
|S |≤D

f̂S E
Y∼P

[Y S] =: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2] =
∑
|S |≤D

f̂ 2
S = ‖f̂ ‖2 (orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

11 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)] =
∑
|S |≤D

f̂S E
Y∼P

[Y S] =: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2] =
∑
|S |≤D

f̂ 2
S = ‖f̂ ‖2 (orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖ =

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

11 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Remarks:

I Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) =
dP
dQ

(Y)

I Best degree-D test (maximizer of Adv≤D) is

f ∗ = L≤D := projection of L onto deg-D subspace

orthogonal projection w.r.t. 〈f , g〉 := E
Y∼Q

[f (Y)g(Y)]

“low-degree likelihood ratio”

I Adv≤D = ‖L≤D‖ ‖f ‖ :=
√
〈f , f 〉 = E

Y∼Q
[f (Y)2]

“norm of low-degree likelihood ratio”

Proof: L̂S = E
Y∼Q

[L(Y)Y S] = E
Y∼P

[Y S] f̂ ∗S = E
Y∼P

[Y S]1|S |≤D

12 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Remarks:

I Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) =
dP
dQ

(Y)

I Best degree-D test (maximizer of Adv≤D) is

f ∗ = L≤D := projection of L onto deg-D subspace

orthogonal projection w.r.t. 〈f , g〉 := E
Y∼Q

[f (Y)g(Y)]

“low-degree likelihood ratio”

I Adv≤D = ‖L≤D‖ ‖f ‖ :=
√
〈f , f 〉 = E

Y∼Q
[f (Y)2]

“norm of low-degree likelihood ratio”

Proof: L̂S = E
Y∼Q

[L(Y)Y S] = E
Y∼P

[Y S] f̂ ∗S = E
Y∼P

[Y S]1|S |≤D

12 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Remarks:

I Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) =
dP
dQ

(Y)

I Best degree-D test (maximizer of Adv≤D) is

f ∗ = L≤D := projection of L onto deg-D subspace

orthogonal projection w.r.t. 〈f , g〉 := E
Y∼Q

[f (Y)g(Y)]

“low-degree likelihood ratio”

I Adv≤D = ‖L≤D‖ ‖f ‖ :=
√
〈f , f 〉 = E

Y∼Q
[f (Y)2]

“norm of low-degree likelihood ratio”

Proof: L̂S = E
Y∼Q

[L(Y)Y S] = E
Y∼P

[Y S] f̂ ∗S = E
Y∼P

[Y S]1|S |≤D

12 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Remarks:

I Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) =
dP
dQ

(Y)

I Best degree-D test (maximizer of Adv≤D) is

f ∗ = L≤D := projection of L onto deg-D subspace

orthogonal projection w.r.t. 〈f , g〉 := E
Y∼Q

[f (Y)g(Y)]

“low-degree likelihood ratio”

I Adv≤D = ‖L≤D‖ ‖f ‖ :=
√
〈f , f 〉 = E

Y∼Q
[f (Y)2]

“norm of low-degree likelihood ratio”

Proof: L̂S = E
Y∼Q

[L(Y)Y S] = E
Y∼P

[Y S] f̂ ∗S = E
Y∼P

[Y S]1|S |≤D

12 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Remarks:

I Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) =
dP
dQ

(Y)

I Best degree-D test (maximizer of Adv≤D) is

f ∗ = L≤D := projection of L onto deg-D subspace

orthogonal projection w.r.t. 〈f , g〉 := E
Y∼Q

[f (Y)g(Y)]

“low-degree likelihood ratio”

I Adv≤D = ‖L≤D‖ ‖f ‖ :=
√
〈f , f 〉 = E

Y∼Q
[f (Y)2]

“norm of low-degree likelihood ratio”

Proof: L̂S = E
Y∼Q

[L(Y)Y S] = E
Y∼P

[Y S] f̂ ∗S = E
Y∼P

[Y S]1|S |≤D

12 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Remarks:

I Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) =
dP
dQ

(Y)

I Best degree-D test (maximizer of Adv≤D) is

f ∗ = L≤D := projection of L onto deg-D subspace

orthogonal projection w.r.t. 〈f , g〉 := E
Y∼Q

[f (Y)g(Y)]

“low-degree likelihood ratio”

I Adv≤D = ‖L≤D‖ ‖f ‖ :=
√
〈f , f 〉 = E

Y∼Q
[f (Y)2]

“norm of low-degree likelihood ratio”

Proof: L̂S = E
Y∼Q

[L(Y)Y S] = E
Y∼P

[Y S] f̂ ∗S = E
Y∼P

[Y S]1|S |≤D

12 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Remarks:

I Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) =
dP
dQ

(Y)

I Best degree-D test (maximizer of Adv≤D) is

f ∗ = L≤D := projection of L onto deg-D subspace

orthogonal projection w.r.t. 〈f , g〉 := E
Y∼Q

[f (Y)g(Y)]

“low-degree likelihood ratio”

I Adv≤D = ‖L≤D‖ ‖f ‖ :=
√
〈f , f 〉 = E

Y∼Q
[f (Y)2]

“norm of low-degree likelihood ratio”

Proof: L̂S = E
Y∼Q

[L(Y)Y S] = E
Y∼P

[Y S] f̂ ∗S = E
Y∼P

[Y S]1|S |≤D

12 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Remarks:

I Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) =
dP
dQ

(Y)

I Best degree-D test (maximizer of Adv≤D) is

f ∗ = L≤D := projection of L onto deg-D subspace

orthogonal projection w.r.t. 〈f , g〉 := E
Y∼Q

[f (Y)g(Y)]

“low-degree likelihood ratio”

I Adv≤D = ‖L≤D‖ ‖f ‖ :=
√
〈f , f 〉 = E

Y∼Q
[f (Y)2]

“norm of low-degree likelihood ratio”

Proof: L̂S = E
Y∼Q

[L(Y)Y S] = E
Y∼P

[Y S] f̂ ∗S = E
Y∼P

[Y S]1|S |≤D

12 / 31

Detection (e.g. [Hopkins, Steurer ’17])

User-friendly results:

I Additive Gaussian model:
P : Y = X + Z vs Q : Y = Z

Adv2
≤D =

D∑
d=0

1

d!
E

X ,X ′
〈X ,X ′〉d

I Rademacher model Y ∈ {±1}m:
P : E[Y |X] = X vs Q : E[Y] = 0

Adv2
≤D ≤

D∑
d=0

1

d!
E

X ,X ′
〈X ,X ′〉d

13 / 31

Detection (e.g. [Hopkins, Steurer ’17])

User-friendly results:

I Additive Gaussian model:
P : Y = X + Z vs Q : Y = Z

Adv2
≤D =

D∑
d=0

1

d!
E

X ,X ′
〈X ,X ′〉d

I Rademacher model Y ∈ {±1}m:
P : E[Y |X] = X vs Q : E[Y] = 0

Adv2
≤D ≤

D∑
d=0

1

d!
E

X ,X ′
〈X ,X ′〉d

13 / 31

Detection (e.g. [Hopkins, Steurer ’17])

User-friendly results:

I Additive Gaussian model:
P : Y = X + Z vs Q : Y = Z

Adv2
≤D =

D∑
d=0

1

d!
E

X ,X ′
〈X ,X ′〉d

I Rademacher model Y ∈ {±1}m:
P : E[Y |X] = X vs Q : E[Y] = 0

Adv2
≤D ≤

D∑
d=0

1

d!
E

X ,X ′
〈X ,X ′〉d

13 / 31

Detection (e.g. [Hopkins, Steurer ’17])

User-friendly results:

I Additive Gaussian model:
P : Y = X + Z vs Q : Y = Z

Adv2
≤D =

D∑
d=0

1

d!
E

X ,X ′
〈X ,X ′〉d

I Rademacher model Y ∈ {±1}m:
P : E[Y |X] = X vs Q : E[Y] = 0

Adv2
≤D ≤

D∑
d=0

1

d!
E

X ,X ′
〈X ,X ′〉d

13 / 31

Detection (e.g. [Hopkins, Steurer ’17])

User-friendly results:

I Additive Gaussian model:
P : Y = X + Z vs Q : Y = Z

Adv2
≤D =

D∑
d=0

1

d!
E

X ,X ′
〈X ,X ′〉d

I Rademacher model Y ∈ {±1}m:
P : E[Y |X] = X vs Q : E[Y] = 0

Adv2
≤D ≤

D∑
d=0

1

d!
E

X ,X ′
〈X ,X ′〉d

13 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Recap (detection):

I Given P,Q, can compute (via linear algebra)

Adv≤D = ‖L≤D‖ = max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

I Need to know orthogonal polynomials w.r.t. Q
I Possible when Q has independent coordinates

I To predict computational complexity: for D ≈ log n,

Adv≤D =

{
ω(1) ⇒ “easy”
O(1) ⇒ “hard”

I These predictions are “correct” for: planted clique, sparse PCA,

community detection, tensor PCA, spiked Wigner/Wishart, ...

[BHKKMP16,HS17,HKPRSS17,Hop18,BKW19,KWB19,DKWB19]

14 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Recap (detection):

I Given P,Q, can compute (via linear algebra)

Adv≤D = ‖L≤D‖ = max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

I Need to know orthogonal polynomials w.r.t. Q
I Possible when Q has independent coordinates

I To predict computational complexity: for D ≈ log n,

Adv≤D =

{
ω(1) ⇒ “easy”
O(1) ⇒ “hard”

I These predictions are “correct” for: planted clique, sparse PCA,

community detection, tensor PCA, spiked Wigner/Wishart, ...

[BHKKMP16,HS17,HKPRSS17,Hop18,BKW19,KWB19,DKWB19]

14 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Recap (detection):

I Given P,Q, can compute (via linear algebra)

Adv≤D = ‖L≤D‖ = max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

I Need to know orthogonal polynomials w.r.t. Q
I Possible when Q has independent coordinates

I To predict computational complexity: for D ≈ log n,

Adv≤D =

{
ω(1) ⇒ “easy”
O(1) ⇒ “hard”

I These predictions are “correct” for: planted clique, sparse PCA,

community detection, tensor PCA, spiked Wigner/Wishart, ...

[BHKKMP16,HS17,HKPRSS17,Hop18,BKW19,KWB19,DKWB19]

14 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Recap (detection):

I Given P,Q, can compute (via linear algebra)

Adv≤D = ‖L≤D‖ = max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

I Need to know orthogonal polynomials w.r.t. Q
I Possible when Q has independent coordinates

I To predict computational complexity: for D ≈ log n,

Adv≤D =

{
ω(1) ⇒ “easy”
O(1) ⇒ “hard”

I These predictions are “correct” for: planted clique, sparse PCA,

community detection, tensor PCA, spiked Wigner/Wishart, ...

[BHKKMP16,HS17,HKPRSS17,Hop18,BKW19,KWB19,DKWB19]

14 / 31

Detection (e.g. [Hopkins, Steurer ’17])

Recap (detection):

I Given P,Q, can compute (via linear algebra)

Adv≤D = ‖L≤D‖ = max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

I Need to know orthogonal polynomials w.r.t. Q
I Possible when Q has independent coordinates

I To predict computational complexity: for D ≈ log n,

Adv≤D =

{
ω(1) ⇒ “easy”
O(1) ⇒ “hard”

I These predictions are “correct” for: planted clique, sparse PCA,

community detection, tensor PCA, spiked Wigner/Wishart, ...

[BHKKMP16,HS17,HKPRSS17,Hop18,BKW19,KWB19,DKWB19]

14 / 31

Part III: Recovery

15 / 31

Recovery [Schramm, W. ’20]

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> λ > 0 vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Detection: distinguish P : Y = X + Z vs Q : Y = Z w.h.p.
Recovery: given Y ∼ P, recover v

If you can recover then you can detect (poly-time reduction)

I How: run recovery algorithm to get v̂ ∈ {0, 1}n; check v̂>Y v̂

So if Adv≤D = O(1), this suggests recovery is hard

But planted submatrix has a detection-recovery gap

How to show hardness of recovery when detection is easy?

16 / 31

Recovery [Schramm, W. ’20]

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> λ > 0 vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Detection: distinguish P : Y = X + Z vs Q : Y = Z w.h.p.
Recovery: given Y ∼ P, recover v

If you can recover then you can detect (poly-time reduction)

I How: run recovery algorithm to get v̂ ∈ {0, 1}n; check v̂>Y v̂

So if Adv≤D = O(1), this suggests recovery is hard

But planted submatrix has a detection-recovery gap

How to show hardness of recovery when detection is easy?

16 / 31

Recovery [Schramm, W. ’20]

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> λ > 0 vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Detection: distinguish P : Y = X + Z vs Q : Y = Z w.h.p.
Recovery: given Y ∼ P, recover v

If you can recover then you can detect (poly-time reduction)

I How: run recovery algorithm to get v̂ ∈ {0, 1}n; check v̂>Y v̂

So if Adv≤D = O(1), this suggests recovery is hard

But planted submatrix has a detection-recovery gap

How to show hardness of recovery when detection is easy?

16 / 31

Recovery [Schramm, W. ’20]

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> λ > 0 vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Detection: distinguish P : Y = X + Z vs Q : Y = Z w.h.p.
Recovery: given Y ∼ P, recover v

If you can recover then you can detect (poly-time reduction)

I How: run recovery algorithm to get v̂ ∈ {0, 1}n; check v̂>Y v̂

So if Adv≤D = O(1), this suggests recovery is hard

But planted submatrix has a detection-recovery gap

How to show hardness of recovery when detection is easy?

16 / 31

Recovery [Schramm, W. ’20]

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> λ > 0 vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Detection: distinguish P : Y = X + Z vs Q : Y = Z w.h.p.
Recovery: given Y ∼ P, recover v

If you can recover then you can detect (poly-time reduction)

I How: run recovery algorithm to get v̂ ∈ {0, 1}n; check v̂>Y v̂

So if Adv≤D = O(1), this suggests recovery is hard

But planted submatrix has a detection-recovery gap

How to show hardness of recovery when detection is easy?

16 / 31

Recovery [Schramm, W. ’20]

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> λ > 0 vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Detection: distinguish P : Y = X + Z vs Q : Y = Z w.h.p.
Recovery: given Y ∼ P, recover v

If you can recover then you can detect (poly-time reduction)

I How: run recovery algorithm to get v̂ ∈ {0, 1}n; check v̂>Y v̂

So if Adv≤D = O(1), this suggests recovery is hard

But planted submatrix has a detection-recovery gap

How to show hardness of recovery when detection is easy?

16 / 31

Recovery [Schramm, W. ’20]

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> λ > 0 vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Detection: distinguish P : Y = X + Z vs Q : Y = Z w.h.p.
Recovery: given Y ∼ P, recover v

If you can recover then you can detect (poly-time reduction)

I How: run recovery algorithm to get v̂ ∈ {0, 1}n; check v̂>Y v̂

So if Adv≤D = O(1), this suggests recovery is hard

But planted submatrix has a detection-recovery gap

How to show hardness of recovery when detection is easy?

16 / 31

Recovery [Schramm, W. ’20]

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> λ > 0 vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Goal: given Y , estimate v1 via polynomial f : Rn×n → R

Low-degree minimum mean squared error:

MMSE≤D = min
f deg D

E(f (Y)− v1)2

Equivalent to low-degree maximum correlation:

Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Fact: MMSE≤D = E[v2
1]− Corr2

≤D

17 / 31

Recovery [Schramm, W. ’20]

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> λ > 0 vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Goal: given Y , estimate v1 via polynomial f : Rn×n → R

Low-degree minimum mean squared error:

MMSE≤D = min
f deg D

E(f (Y)− v1)2

Equivalent to low-degree maximum correlation:

Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Fact: MMSE≤D = E[v2
1]− Corr2

≤D

17 / 31

Recovery [Schramm, W. ’20]

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> λ > 0 vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Goal: given Y , estimate v1 via polynomial f : Rn×n → R

Low-degree minimum mean squared error:

MMSE≤D = min
f deg D

E(f (Y)− v1)2

Equivalent to low-degree maximum correlation:

Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Fact: MMSE≤D = E[v2
1]− Corr2

≤D

17 / 31

Recovery [Schramm, W. ’20]

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> λ > 0 vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Goal: given Y , estimate v1 via polynomial f : Rn×n → R

Low-degree minimum mean squared error:

MMSE≤D = min
f deg D

E(f (Y)− v1)2

Equivalent to low-degree maximum correlation:

Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Fact: MMSE≤D = E[v2
1]− Corr2

≤D

17 / 31

Recovery [Schramm, W. ’20]

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Same proof as detection?

f =
∑
|S|≤D

f̂SY
S

Numerator: E[f (Y) · v1]

=
∑
|S|≤D

f̂S E[Y S · v1]

=: 〈f̂ , c〉

Denominator: E[f (Y)2]

=
∑
S ,T

f̂S f̂T E[Y S · Y T]

= f̂ >Mf̂

Corr≤D = max
f̂

〈f̂ , c〉√
f̂ >Mf̂

=
√
c>M−1c

18 / 31

Recovery [Schramm, W. ’20]

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Same proof as detection?

f =
∑
|S|≤D

f̂SY
S

Numerator: E[f (Y) · v1]

=
∑
|S|≤D

f̂S E[Y S · v1]

=: 〈f̂ , c〉

Denominator: E[f (Y)2]

=
∑
S ,T

f̂S f̂T E[Y S · Y T]

= f̂ >Mf̂

Corr≤D = max
f̂

〈f̂ , c〉√
f̂ >Mf̂

=
√
c>M−1c

18 / 31

Recovery [Schramm, W. ’20]

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Same proof as detection?

f =
∑
|S|≤D

f̂SY
S

Numerator: E[f (Y) · v1]

=
∑
|S|≤D

f̂S E[Y S · v1]

=: 〈f̂ , c〉

Denominator: E[f (Y)2]

=
∑
S ,T

f̂S f̂T E[Y S · Y T]

= f̂ >Mf̂

Corr≤D = max
f̂

〈f̂ , c〉√
f̂ >Mf̂

=
√
c>M−1c

18 / 31

Recovery [Schramm, W. ’20]

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Same proof as detection?

f =
∑
|S|≤D

f̂SY
S

Numerator: E[f (Y) · v1]

=
∑
|S|≤D

f̂S E[Y S · v1]

=: 〈f̂ , c〉

Denominator: E[f (Y)2]

=
∑
S ,T

f̂S f̂T E[Y S · Y T]

= f̂ >Mf̂

Corr≤D = max
f̂

〈f̂ , c〉√
f̂ >Mf̂

=
√
c>M−1c

18 / 31

Recovery [Schramm, W. ’20]

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Same proof as detection?

f =
∑
|S|≤D

f̂SY
S

Numerator: E[f (Y) · v1] =
∑
|S|≤D

f̂S E[Y S · v1]

=: 〈f̂ , c〉

Denominator: E[f (Y)2]

=
∑
S ,T

f̂S f̂T E[Y S · Y T]

= f̂ >Mf̂

Corr≤D = max
f̂

〈f̂ , c〉√
f̂ >Mf̂

=
√
c>M−1c

18 / 31

Recovery [Schramm, W. ’20]

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Same proof as detection?

f =
∑
|S|≤D

f̂SY
S

Numerator: E[f (Y) · v1] =
∑
|S|≤D

f̂S E[Y S · v1] =: 〈f̂ , c〉

Denominator: E[f (Y)2]

=
∑
S ,T

f̂S f̂T E[Y S · Y T]

= f̂ >Mf̂

Corr≤D = max
f̂

〈f̂ , c〉√
f̂ >Mf̂

=
√
c>M−1c

18 / 31

Recovery [Schramm, W. ’20]

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Same proof as detection?

f =
∑
|S|≤D

f̂SY
S

Numerator: E[f (Y) · v1] =
∑
|S|≤D

f̂S E[Y S · v1] =: 〈f̂ , c〉

Denominator: E[f (Y)2]

=
∑
S ,T

f̂S f̂T E[Y S · Y T]

= f̂ >Mf̂

Corr≤D = max
f̂

〈f̂ , c〉√
f̂ >Mf̂

=
√
c>M−1c

18 / 31

Recovery [Schramm, W. ’20]

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Same proof as detection?

f =
∑
|S|≤D

f̂SY
S

Numerator: E[f (Y) · v1] =
∑
|S|≤D

f̂S E[Y S · v1] =: 〈f̂ , c〉

Denominator: E[f (Y)2] =
∑
S ,T

f̂S f̂T E[Y S · Y T]

= f̂ >Mf̂

Corr≤D = max
f̂

〈f̂ , c〉√
f̂ >Mf̂

=
√
c>M−1c

18 / 31

Recovery [Schramm, W. ’20]

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Same proof as detection?

f =
∑
|S|≤D

f̂SY
S

Numerator: E[f (Y) · v1] =
∑
|S|≤D

f̂S E[Y S · v1] =: 〈f̂ , c〉

Denominator: E[f (Y)2] =
∑
S ,T

f̂S f̂T E[Y S · Y T] = f̂ >Mf̂

Corr≤D = max
f̂

〈f̂ , c〉√
f̂ >Mf̂

=
√
c>M−1c

18 / 31

Recovery [Schramm, W. ’20]

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Same proof as detection?

f =
∑
|S|≤D

f̂SY
S

Numerator: E[f (Y) · v1] =
∑
|S|≤D

f̂S E[Y S · v1] =: 〈f̂ , c〉

Denominator: E[f (Y)2] =
∑
S ,T

f̂S f̂T E[Y S · Y T] = f̂ >Mf̂

Corr≤D = max
f̂

〈f̂ , c〉√
f̂ >Mf̂

=
√
c>M−1c

18 / 31

Recovery [Schramm, W. ’20]

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Same proof as detection?

f =
∑
|S|≤D

f̂SY
S

Numerator: E[f (Y) · v1] =
∑
|S|≤D

f̂S E[Y S · v1] =: 〈f̂ , c〉

Denominator: E[f (Y)2] =
∑
S ,T

f̂S f̂T E[Y S · Y T] = f̂ >Mf̂

Corr≤D = max
f̂

〈f̂ , c〉√
f̂ >Mf̂

=
√
c>M−1c

18 / 31

Recovery [Schramm, W. ’20]

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Trick: bound denominator via Jensen’s inequality on “signal” X

E[f (Y)2] = E
Z
E
X

[f (X + Z)2] ≥ E
Z

(
E
X
f (X + Z)

)2

Why is this tight?

In hard regime, f depends mostly on Z

This simplifies expression enough to find a closed form:

Corr≤D ≤ max
f̂

〈f̂ , c〉
‖Mf̂ ‖

= ‖c>M−1‖

where M is upper triangular

(can invert)

19 / 31

Recovery [Schramm, W. ’20]

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Trick: bound denominator via Jensen’s inequality on “signal” X

E[f (Y)2] = E
Z
E
X

[f (X + Z)2] ≥ E
Z

(
E
X
f (X + Z)

)2

Why is this tight?

In hard regime, f depends mostly on Z

This simplifies expression enough to find a closed form:

Corr≤D ≤ max
f̂

〈f̂ , c〉
‖Mf̂ ‖

= ‖c>M−1‖

where M is upper triangular

(can invert)

19 / 31

Recovery [Schramm, W. ’20]

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Trick: bound denominator via Jensen’s inequality on “signal” X

E[f (Y)2] = E
Z
E
X

[f (X + Z)2] ≥ E
Z

(
E
X
f (X + Z)

)2

Why is this tight?

In hard regime, f depends mostly on Z

This simplifies expression enough to find a closed form:

Corr≤D ≤ max
f̂

〈f̂ , c〉
‖Mf̂ ‖

= ‖c>M−1‖

where M is upper triangular

(can invert)

19 / 31

Recovery [Schramm, W. ’20]

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Trick: bound denominator via Jensen’s inequality on “signal” X

E[f (Y)2] = E
Z
E
X

[f (X + Z)2] ≥ E
Z

(
E
X
f (X + Z)

)2

Why is this tight? In hard regime, f depends mostly on Z

This simplifies expression enough to find a closed form:

Corr≤D ≤ max
f̂

〈f̂ , c〉
‖Mf̂ ‖

= ‖c>M−1‖

where M is upper triangular

(can invert)

19 / 31

Recovery [Schramm, W. ’20]

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Trick: bound denominator via Jensen’s inequality on “signal” X

E[f (Y)2] = E
Z
E
X

[f (X + Z)2] ≥ E
Z

(
E
X
f (X + Z)

)2

Why is this tight? In hard regime, f depends mostly on Z

This simplifies expression enough to find a closed form:

Corr≤D ≤ max
f̂

〈f̂ , c〉
‖Mf̂ ‖

= ‖c>M−1‖

where M is upper triangular

(can invert)

19 / 31

Recovery [Schramm, W. ’20]

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Trick: bound denominator via Jensen’s inequality on “signal” X

E[f (Y)2] = E
Z
E
X

[f (X + Z)2] ≥ E
Z

(
E
X
f (X + Z)

)2

Why is this tight? In hard regime, f depends mostly on Z

This simplifies expression enough to find a closed form:

Corr≤D ≤ max
f̂

〈f̂ , c〉
‖Mf̂ ‖

= ‖c>M−1‖

where M is upper triangular

(can invert)

19 / 31

Recovery [Schramm, W. ’20]

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Trick: bound denominator via Jensen’s inequality on “signal” X

E[f (Y)2] = E
Z
E
X

[f (X + Z)2] ≥ E
Z

(
E
X
f (X + Z)

)2

Why is this tight? In hard regime, f depends mostly on Z

This simplifies expression enough to find a closed form:

Corr≤D ≤ max
f̂

〈f̂ , c〉
‖Mf̂ ‖

= ‖c>M−1‖

where M is upper triangular (can invert)

19 / 31

Recovery [Schramm, W. ’20]

End result:

Theorem [Schramm, W. ’20]

Additive Gaussian model Y = X + Z
Scalar value to recover: x

Corr2
≤D ≤

∑
|S |≤D

κ2
S

where κS is the joint cumulant of {x} ∪ {Yi : i ∈ S}

Corollary (tight bounds for planted submatrix recovery)

I if λ� min{1, 1
ρ
√
n
} then MMSE≤nΩ(1) ≈ ρ(1− ρ)

low-degree polynomials have trivial MSE in the “hard” regime

I if λ� min{1, 1
ρ
√
n
} then MMSE≤O(log n) = o(ρ)

low-degree polynomials succeed in the “easy” regime

20 / 31

Recovery [Schramm, W. ’20]

End result:

Theorem [Schramm, W. ’20]

Additive Gaussian model Y = X + Z
Scalar value to recover: x

Corr2
≤D ≤

∑
|S |≤D

κ2
S

where κS is the joint cumulant of {x} ∪ {Yi : i ∈ S}

Corollary (tight bounds for planted submatrix recovery)

I if λ� min{1, 1
ρ
√
n
} then MMSE≤nΩ(1) ≈ ρ(1− ρ)

low-degree polynomials have trivial MSE in the “hard” regime

I if λ� min{1, 1
ρ
√
n
} then MMSE≤O(log n) = o(ρ)

low-degree polynomials succeed in the “easy” regime

20 / 31

Recovery [Schramm, W. ’20]

End result:

Theorem [Schramm, W. ’20]

Additive Gaussian model Y = X + Z
Scalar value to recover: x

Corr2
≤D ≤

∑
|S |≤D

κ2
S

where κS is the joint cumulant of {x} ∪ {Yi : i ∈ S}

Corollary (tight bounds for planted submatrix recovery)

I if λ� min{1, 1
ρ
√
n
} then MMSE≤nΩ(1) ≈ ρ(1− ρ)

low-degree polynomials have trivial MSE in the “hard” regime

I if λ� min{1, 1
ρ
√
n
} then MMSE≤O(log n) = o(ρ)

low-degree polynomials succeed in the “easy” regime

20 / 31

Recovery [Schramm, W. ’20]

End result:

Theorem [Schramm, W. ’20]

Additive Gaussian model Y = X + Z
Scalar value to recover: x

Corr2
≤D ≤

∑
|S |≤D

κ2
S

where κS is the joint cumulant of {x} ∪ {Yi : i ∈ S}

Corollary (tight bounds for planted submatrix recovery)

I if λ� min{1, 1
ρ
√
n
} then MMSE≤nΩ(1) ≈ ρ(1− ρ)

low-degree polynomials have trivial MSE in the “hard” regime

I if λ� min{1, 1
ρ
√
n
} then MMSE≤O(log n) = o(ρ)

low-degree polynomials succeed in the “easy” regime

20 / 31

Recovery [Schramm, W. ’20]

End result:

Theorem [Schramm, W. ’20]

Additive Gaussian model Y = X + Z
Scalar value to recover: x

Corr2
≤D ≤

∑
|S |≤D

κ2
S

where κS is the joint cumulant of {x} ∪ {Yi : i ∈ S}

Corollary (tight bounds for planted submatrix recovery)

I if λ� min{1, 1
ρ
√
n
} then MMSE≤nΩ(1) ≈ ρ(1− ρ)

low-degree polynomials have trivial MSE in the “hard” regime

I if λ� min{1, 1
ρ
√
n
} then MMSE≤O(log n) = o(ρ)

low-degree polynomials succeed in the “easy” regime

20 / 31

Recovery [Schramm, W. ’20]

End result:

Theorem [Schramm, W. ’20]

Additive Gaussian model Y = X + Z
Scalar value to recover: x

Corr2
≤D ≤

∑
|S |≤D

κ2
S

where κS is the joint cumulant of {x} ∪ {Yi : i ∈ S}

Corollary (tight bounds for planted submatrix recovery)

I if λ� min{1, 1
ρ
√
n
} then MMSE≤nΩ(1) ≈ ρ(1− ρ)

low-degree polynomials have trivial MSE in the “hard” regime

I if λ� min{1, 1
ρ
√
n
} then MMSE≤O(log n) = o(ρ)

low-degree polynomials succeed in the “easy” regime

20 / 31

Part IV: Optimization

21 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Example (spherical spin glass): for Y ∈ Rn×n×n×n i.i.d. N (0, 1),

max
‖v‖=1

1√
n
〈Y , v⊗4〉

Optimum value: OPT = max
‖v‖=1

H(v) = Θ(1) [ABC’13]

Best known algorithms achieve value ALG < OPT [Subag’18, EMS’20]

Result: no low-degree polynomial can achieve value OPT− ε

Theorem [Gamarnik, Jagannath, W. ’20]

For some ε > 0, no f : Rn×n×n×n → Rn of degree polylog(n)
achieves both of the following with probability 1− exp(−nΩ(1)):

I Objective: H(f (Y)) ≥ OPT− ε
I Normalization: ‖f (Y)‖ ≈ 1

22 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Example (spherical spin glass): for Y ∈ Rn×n×n×n i.i.d. N (0, 1),

max
‖v‖=1

1√
n
〈Y , v⊗4〉

Optimum value: OPT = max
‖v‖=1

H(v) = Θ(1) [ABC’13]

Best known algorithms achieve value ALG < OPT [Subag’18, EMS’20]

Result: no low-degree polynomial can achieve value OPT− ε

Theorem [Gamarnik, Jagannath, W. ’20]

For some ε > 0, no f : Rn×n×n×n → Rn of degree polylog(n)
achieves both of the following with probability 1− exp(−nΩ(1)):

I Objective: H(f (Y)) ≥ OPT− ε
I Normalization: ‖f (Y)‖ ≈ 1

22 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Example (spherical spin glass): for Y ∈ Rn×n×n×n i.i.d. N (0, 1),

max
‖v‖=1

1√
n
〈Y , v⊗4〉

Optimum value: OPT = max
‖v‖=1

H(v) = Θ(1) [ABC’13]

Best known algorithms achieve value ALG < OPT [Subag’18, EMS’20]

Result: no low-degree polynomial can achieve value OPT− ε

Theorem [Gamarnik, Jagannath, W. ’20]

For some ε > 0, no f : Rn×n×n×n → Rn of degree polylog(n)
achieves both of the following with probability 1− exp(−nΩ(1)):

I Objective: H(f (Y)) ≥ OPT− ε
I Normalization: ‖f (Y)‖ ≈ 1

22 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Example (spherical spin glass): for Y ∈ Rn×n×n×n i.i.d. N (0, 1),

max
‖v‖=1

1√
n
〈Y , v⊗4〉

Optimum value: OPT = max
‖v‖=1

H(v) = Θ(1) [ABC’13]

Best known algorithms achieve value ALG < OPT [Subag’18, EMS’20]

Result: no low-degree polynomial can achieve value OPT− ε

Theorem [Gamarnik, Jagannath, W. ’20]

For some ε > 0, no f : Rn×n×n×n → Rn of degree polylog(n)
achieves both of the following with probability 1− exp(−nΩ(1)):

I Objective: H(f (Y)) ≥ OPT− ε
I Normalization: ‖f (Y)‖ ≈ 1

22 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Example (spherical spin glass): for Y ∈ Rn×n×n×n i.i.d. N (0, 1),

max
‖v‖=1

1√
n
〈Y , v⊗4〉

Optimum value: OPT = max
‖v‖=1

H(v) = Θ(1) [ABC’13]

Best known algorithms achieve value ALG < OPT [Subag’18, EMS’20]

Result: no low-degree polynomial can achieve value OPT− ε

Theorem [Gamarnik, Jagannath, W. ’20]

For some ε > 0, no f : Rn×n×n×n → Rn of degree polylog(n)
achieves both of the following with probability 1− exp(−nΩ(1)):

I Objective: H(f (Y)) ≥ OPT− ε
I Normalization: ‖f (Y)‖ ≈ 1

22 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Example (spherical spin glass): for Y ∈ Rn×n×n×n i.i.d. N (0, 1),

max
‖v‖=1

1√
n
〈Y , v⊗4〉

Optimum value: OPT = max
‖v‖=1

H(v) = Θ(1) [ABC’13]

Best known algorithms achieve value ALG < OPT [Subag’18, EMS’20]

Result: no low-degree polynomial can achieve value OPT− ε

Theorem [Gamarnik, Jagannath, W. ’20]

For some ε > 0, no f : Rn×n×n×n → Rn of degree polylog(n)
achieves both of the following with probability 1− exp(−nΩ(1)):

I Objective: H(f (Y)) ≥ OPT− ε

I Normalization: ‖f (Y)‖ ≈ 1

22 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Example (spherical spin glass): for Y ∈ Rn×n×n×n i.i.d. N (0, 1),

max
‖v‖=1

1√
n
〈Y , v⊗4〉

Optimum value: OPT = max
‖v‖=1

H(v) = Θ(1) [ABC’13]

Best known algorithms achieve value ALG < OPT [Subag’18, EMS’20]

Result: no low-degree polynomial can achieve value OPT− ε

Theorem [Gamarnik, Jagannath, W. ’20]

For some ε > 0, no f : Rn×n×n×n → Rn of degree polylog(n)
achieves both of the following with probability 1− exp(−nΩ(1)):

I Objective: H(f (Y)) ≥ OPT− ε
I Normalization: ‖f (Y)‖ ≈ 1

22 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Example (max independent set): given sparse graph G (n, d/n),

max
S⊆[n]

|S | s.t. S independent

OPT = 2
log d

d
n ALG =

log d

d
n

Result: no low-degree polynomial can achieve (1 + 1√
2

) log d
d n

Theorem [Gamarnik, Jagannath, W. ’20]

No polynomial f : {0, 1}(
n
2) → Rn of degree polylog(n) achieves

both of the following with probability 1− exp(−nΩ(1)):

I fi (Y) ∈ [0, 1/3] ∪ [2/3, 1] for most i

I {i : fi (Y) ∈ [2/3, 1]} is a near-indep set of size (1 + 1√
2

) log d
d n

Forthcoming: improve 1 + 1√
2
→ 1 + ε (optimal)

23 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Example (max independent set): given sparse graph G (n, d/n),

max
S⊆[n]

|S | s.t. S independent

OPT = 2
log d

d
n

ALG =
log d

d
n

Result: no low-degree polynomial can achieve (1 + 1√
2

) log d
d n

Theorem [Gamarnik, Jagannath, W. ’20]

No polynomial f : {0, 1}(
n
2) → Rn of degree polylog(n) achieves

both of the following with probability 1− exp(−nΩ(1)):

I fi (Y) ∈ [0, 1/3] ∪ [2/3, 1] for most i

I {i : fi (Y) ∈ [2/3, 1]} is a near-indep set of size (1 + 1√
2

) log d
d n

Forthcoming: improve 1 + 1√
2
→ 1 + ε (optimal)

23 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Example (max independent set): given sparse graph G (n, d/n),

max
S⊆[n]

|S | s.t. S independent

OPT = 2
log d

d
n ALG =

log d

d
n

Result: no low-degree polynomial can achieve (1 + 1√
2

) log d
d n

Theorem [Gamarnik, Jagannath, W. ’20]

No polynomial f : {0, 1}(
n
2) → Rn of degree polylog(n) achieves

both of the following with probability 1− exp(−nΩ(1)):

I fi (Y) ∈ [0, 1/3] ∪ [2/3, 1] for most i

I {i : fi (Y) ∈ [2/3, 1]} is a near-indep set of size (1 + 1√
2

) log d
d n

Forthcoming: improve 1 + 1√
2
→ 1 + ε (optimal)

23 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Example (max independent set): given sparse graph G (n, d/n),

max
S⊆[n]

|S | s.t. S independent

OPT = 2
log d

d
n ALG =

log d

d
n

Result: no low-degree polynomial can achieve (1 + 1√
2

) log d
d n

Theorem [Gamarnik, Jagannath, W. ’20]

No polynomial f : {0, 1}(
n
2) → Rn of degree polylog(n) achieves

both of the following with probability 1− exp(−nΩ(1)):

I fi (Y) ∈ [0, 1/3] ∪ [2/3, 1] for most i

I {i : fi (Y) ∈ [2/3, 1]} is a near-indep set of size (1 + 1√
2

) log d
d n

Forthcoming: improve 1 + 1√
2
→ 1 + ε (optimal)

23 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Example (max independent set): given sparse graph G (n, d/n),

max
S⊆[n]

|S | s.t. S independent

OPT = 2
log d

d
n ALG =

log d

d
n

Result: no low-degree polynomial can achieve (1 + 1√
2

) log d
d n

Theorem [Gamarnik, Jagannath, W. ’20]

No polynomial f : {0, 1}(
n
2) → Rn of degree polylog(n) achieves

both of the following with probability 1− exp(−nΩ(1)):

I fi (Y) ∈ [0, 1/3] ∪ [2/3, 1] for most i

I {i : fi (Y) ∈ [2/3, 1]} is a near-indep set of size (1 + 1√
2

) log d
d n

Forthcoming: improve 1 + 1√
2
→ 1 + ε (optimal)

23 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Example (max independent set): given sparse graph G (n, d/n),

max
S⊆[n]

|S | s.t. S independent

OPT = 2
log d

d
n ALG =

log d

d
n

Result: no low-degree polynomial can achieve (1 + 1√
2

) log d
d n

Theorem [Gamarnik, Jagannath, W. ’20]

No polynomial f : {0, 1}(
n
2) → Rn of degree polylog(n) achieves

both of the following with probability 1− exp(−nΩ(1)):

I fi (Y) ∈ [0, 1/3] ∪ [2/3, 1] for most i

I {i : fi (Y) ∈ [2/3, 1]} is a near-indep set of size (1 + 1√
2

) log d
d n

Forthcoming: improve 1 + 1√
2
→ 1 + ε (optimal)

23 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Example (max independent set): given sparse graph G (n, d/n),

max
S⊆[n]

|S | s.t. S independent

OPT = 2
log d

d
n ALG =

log d

d
n

Result: no low-degree polynomial can achieve (1 + 1√
2

) log d
d n

Theorem [Gamarnik, Jagannath, W. ’20]

No polynomial f : {0, 1}(
n
2) → Rn of degree polylog(n) achieves

both of the following with probability 1− exp(−nΩ(1)):

I fi (Y) ∈ [0, 1/3] ∪ [2/3, 1] for most i

I {i : fi (Y) ∈ [2/3, 1]} is a near-indep set of size (1 + 1√
2

) log d
d n

Forthcoming: improve 1 + 1√
2
→ 1 + ε (optimal)

23 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Example (max independent set): given sparse graph G (n, d/n),

max
S⊆[n]

|S | s.t. S independent

OPT = 2
log d

d
n ALG =

log d

d
n

Result: no low-degree polynomial can achieve (1 + 1√
2

) log d
d n

Theorem [Gamarnik, Jagannath, W. ’20]

No polynomial f : {0, 1}(
n
2) → Rn of degree polylog(n) achieves

both of the following with probability 1− exp(−nΩ(1)):

I fi (Y) ∈ [0, 1/3] ∪ [2/3, 1] for most i

I {i : fi (Y) ∈ [2/3, 1]} is a near-indep set of size (1 + 1√
2

) log d
d n

Forthcoming: improve 1 + 1√
2
→ 1 + ε (optimal)

23 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

How to prove failure of low-degree polynomials for optimization?

Same proof as before?

max
f deg D

EH(f (Y)) = max
f deg D

E
1√
n
〈Y , f (Y)⊗4〉

No! High-degree in f̂

Instead, use 2 ingredients:

I Stability of low-degree polynomials

I Overlap gap property (OGP)
[Gamarnik, Sudan ’13]

[Chen, Gamarnik, Panchenko, Rahman ’17]

[Gamarnik, Jagannath ’19]

24 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

How to prove failure of low-degree polynomials for optimization?

Same proof as before?

max
f deg D

EH(f (Y)) = max
f deg D

E
1√
n
〈Y , f (Y)⊗4〉

No! High-degree in f̂

Instead, use 2 ingredients:

I Stability of low-degree polynomials

I Overlap gap property (OGP)
[Gamarnik, Sudan ’13]

[Chen, Gamarnik, Panchenko, Rahman ’17]

[Gamarnik, Jagannath ’19]

24 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

How to prove failure of low-degree polynomials for optimization?

Same proof as before?

max
f deg D

EH(f (Y)) = max
f deg D

E
1√
n
〈Y , f (Y)⊗4〉

No! High-degree in f̂

Instead, use 2 ingredients:

I Stability of low-degree polynomials

I Overlap gap property (OGP)
[Gamarnik, Sudan ’13]

[Chen, Gamarnik, Panchenko, Rahman ’17]

[Gamarnik, Jagannath ’19]

24 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

How to prove failure of low-degree polynomials for optimization?

Same proof as before?

max
f deg D

EH(f (Y)) = max
f deg D

E
1√
n
〈Y , f (Y)⊗4〉

No! High-degree in f̂

Instead, use 2 ingredients:

I Stability of low-degree polynomials

I Overlap gap property (OGP)
[Gamarnik, Sudan ’13]

[Chen, Gamarnik, Panchenko, Rahman ’17]

[Gamarnik, Jagannath ’19]

24 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

How to prove failure of low-degree polynomials for optimization?

Same proof as before?

max
f deg D

EH(f (Y)) = max
f deg D

E
1√
n
〈Y , f (Y)⊗4〉

No! High-degree in f̂

Instead, use 2 ingredients:

I Stability of low-degree polynomials

I Overlap gap property (OGP)
[Gamarnik, Sudan ’13]

[Chen, Gamarnik, Panchenko, Rahman ’17]

[Gamarnik, Jagannath ’19]

24 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

How to prove failure of low-degree polynomials for optimization?

Same proof as before?

max
f deg D

EH(f (Y)) = max
f deg D

E
1√
n
〈Y , f (Y)⊗4〉

No! High-degree in f̂

Instead, use 2 ingredients:

I Stability of low-degree polynomials

I Overlap gap property (OGP)
[Gamarnik, Sudan ’13]

[Chen, Gamarnik, Panchenko, Rahman ’17]

[Gamarnik, Jagannath ’19]

24 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

How to prove failure of low-degree polynomials for optimization?

Same proof as before?

max
f deg D

EH(f (Y)) = max
f deg D

E
1√
n
〈Y , f (Y)⊗4〉

No! High-degree in f̂

Instead, use 2 ingredients:

I Stability of low-degree polynomials

I Overlap gap property (OGP)
[Gamarnik, Sudan ’13]

[Chen, Gamarnik, Panchenko, Rahman ’17]

[Gamarnik, Jagannath ’19]

24 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

“Low-degree polynomials are stable”

Y ∼ i.i.d. Bernoulli(p)

Interpolation path: Y (0) Y (1) Y (2) · · · Y (m−1) Y (m)

f : {0, 1}m → Rn degree D

Definition: Index i is “c-bad” if

‖f (Y (i))− f (Y (i−1))‖2 > c E
Y
‖f (Y)‖2

Theorem
Pr

Y (0),...,Y (m)
[@ c-bad i] ≥ p4D/c

With non-trivial probability (over path), f ’s output is “smooth”

25 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

“Low-degree polynomials are stable”

Y ∼ i.i.d. Bernoulli(p)

Interpolation path: Y (0) Y (1) Y (2) · · · Y (m−1) Y (m)

f : {0, 1}m → Rn degree D

Definition: Index i is “c-bad” if

‖f (Y (i))− f (Y (i−1))‖2 > c E
Y
‖f (Y)‖2

Theorem
Pr

Y (0),...,Y (m)
[@ c-bad i] ≥ p4D/c

With non-trivial probability (over path), f ’s output is “smooth”

25 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

“Low-degree polynomials are stable”

Y ∼ i.i.d. Bernoulli(p)

Interpolation path: Y (0) Y (1) Y (2) · · · Y (m−1) Y (m)

f : {0, 1}m → Rn degree D

Definition: Index i is “c-bad” if

‖f (Y (i))− f (Y (i−1))‖2 > c E
Y
‖f (Y)‖2

Theorem
Pr

Y (0),...,Y (m)
[@ c-bad i] ≥ p4D/c

With non-trivial probability (over path), f ’s output is “smooth”

25 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

“Low-degree polynomials are stable”

Y ∼ i.i.d. Bernoulli(p)

Interpolation path: Y (0) Y (1) Y (2) · · · Y (m−1) Y (m)

f : {0, 1}m → Rn degree D

Definition: Index i is “c-bad” if

‖f (Y (i))− f (Y (i−1))‖2 > c E
Y
‖f (Y)‖2

Theorem
Pr

Y (0),...,Y (m)
[@ c-bad i] ≥ p4D/c

With non-trivial probability (over path), f ’s output is “smooth”

25 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

“Low-degree polynomials are stable”

Y ∼ i.i.d. Bernoulli(p)

Interpolation path: Y (0) Y (1) Y (2) · · · Y (m−1) Y (m)

f : {0, 1}m → Rn degree D

Definition: Index i is “c-bad” if

‖f (Y (i))− f (Y (i−1))‖2 > c E
Y
‖f (Y)‖2

Theorem
Pr

Y (0),...,Y (m)
[@ c-bad i] ≥ p4D/c

With non-trivial probability (over path), f ’s output is “smooth”

25 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

“Low-degree polynomials are stable”

Y ∼ i.i.d. Bernoulli(p)

Interpolation path: Y (0) Y (1) Y (2) · · · Y (m−1) Y (m)

f : {0, 1}m → Rn degree D

Definition: Index i is “c-bad” if

‖f (Y (i))− f (Y (i−1))‖2 > c E
Y
‖f (Y)‖2

Theorem
Pr

Y (0),...,Y (m)
[@ c-bad i] ≥ p4D/c

With non-trivial probability (over path), f ’s output is “smooth”

25 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

“Low-degree polynomials are stable”

Y ∼ i.i.d. Bernoulli(p)

Interpolation path: Y (0) Y (1) Y (2) · · · Y (m−1) Y (m)

f : {0, 1}m → Rn degree D

Definition: Index i is “c-bad” if

‖f (Y (i))− f (Y (i−1))‖2 > c E
Y
‖f (Y)‖2

Theorem
Pr

Y (0),...,Y (m)
[@ c-bad i] ≥ p4D/c

With non-trivial probability (over path), f ’s output is “smooth”

25 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Overlap gap property (OGP): with high probability,
Y ∼ G (n, d/n) has no occurrence of

I S ,T independent sets

I |S |, |T | ≈ (1 + 1√
2

)Φ

I |S ∩ T | ≈ Φ

Proof: first moment method [Gamarnik, Sudan ’13]

26 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Overlap gap property (OGP): with high probability,
Y ∼ G (n, d/n) has no occurrence of

I S ,T independent sets

I |S |, |T | ≈ (1 + 1√
2

)Φ

I |S ∩ T | ≈ Φ

Proof: first moment method [Gamarnik, Sudan ’13]

26 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Overlap gap property (OGP): with high probability,
Y ∼ G (n, d/n) has no occurrence of

I S ,T independent sets

I |S |, |T | ≈ (1 + 1√
2

)Φ

I |S ∩ T | ≈ Φ

Proof: first moment method [Gamarnik, Sudan ’13]

26 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Overlap gap property (OGP): with high probability,
Y ∼ G (n, d/n) has no occurrence of

I S ,T independent sets

I |S |, |T | ≈ (1 + 1√
2

)Φ

I |S ∩ T | ≈ Φ

Proof: first moment method [Gamarnik, Sudan ’13]

26 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Overlap gap property (OGP): with high probability,
Y ∼ G (n, d/n) has no occurrence of

I S ,T independent sets

I |S |, |T | ≈ (1 + 1√
2

)Φ

I |S ∩ T | ≈ Φ

Proof: first moment method [Gamarnik, Sudan ’13]

26 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Ensemble OGP: with high probability, ∀i , j on the interpolation
path

Y (0) Y (1) Y (2) · · · Y (m−1) Y (m)

there is no occurrence of

I S independent set in Y (i)

I T independent set in Y (j)

I |S |, |T | ≈ (1 + 1√
2

)Φ

I |S ∩ T | ≈ Φ

27 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Proof that low-degree polynomials fail:

Suppose f (Y) outputs independent sets of size (1 + 1√
2

)Φ

Y (0) Y (1) Y (2) · · · Y (m−1) Y (m)

Separation: f (Y (0)) and f (Y (m)) are “far apart”

Stability: with probability & n−D , there are no big “jumps”

f (Y (i))→ f (Y (i+1))

Contradicts OGP

28 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Proof that low-degree polynomials fail:

Suppose f (Y) outputs independent sets of size (1 + 1√
2

)Φ

Y (0) Y (1) Y (2) · · · Y (m−1) Y (m)

Separation: f (Y (0)) and f (Y (m)) are “far apart”

Stability: with probability & n−D , there are no big “jumps”

f (Y (i))→ f (Y (i+1))

Contradicts OGP

28 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Proof that low-degree polynomials fail:

Suppose f (Y) outputs independent sets of size (1 + 1√
2

)Φ

Y (0) Y (1) Y (2) · · · Y (m−1) Y (m)

Separation: f (Y (0)) and f (Y (m)) are “far apart”

Stability: with probability & n−D , there are no big “jumps”

f (Y (i))→ f (Y (i+1))

Contradicts OGP

28 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Proof that low-degree polynomials fail:

Suppose f (Y) outputs independent sets of size (1 + 1√
2

)Φ

Y (0) Y (1) Y (2) · · · Y (m−1) Y (m)

Separation: f (Y (0)) and f (Y (m)) are “far apart”

Stability: with probability & n−D , there are no big “jumps”

f (Y (i))→ f (Y (i+1))

Contradicts OGP

28 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Proof that low-degree polynomials fail:

Suppose f (Y) outputs independent sets of size (1 + 1√
2

)Φ

Y (0) Y (1) Y (2) · · · Y (m−1) Y (m)

Separation: f (Y (0)) and f (Y (m)) are “far apart”

Stability: with probability & n−D , there are no big “jumps”

f (Y (i))→ f (Y (i+1))

Contradicts OGP

28 / 31

Optimization [Gamarnik, Jagannath, W. ’20]

Proof that low-degree polynomials fail:

Suppose f (Y) outputs independent sets of size (1 + 1√
2

)Φ

Y (0) Y (1) Y (2) · · · Y (m−1) Y (m)

Separation: f (Y (0)) and f (Y (m)) are “far apart”

Stability: with probability & n−D , there are no big “jumps”

f (Y (i))→ f (Y (i+1))

Contradicts OGP
28 / 31

Future Directions?

I (Detection) bound Adv≤D when Q is not a product measure
I E.g. random regular graphs

I (Recovery) bound MMSE≤D when not “signal + noise”
I E.g. sparse regression, phase retrieval

I (Recovery) precise value of MMSE≤D
I Matching AMP?

I (Optimization) prove tight results for new settings
I E.g. p-spin optimization

I Implications for other algorithms?
I E.g. convex programming, MCMC

29 / 31

Future Directions?

I (Detection) bound Adv≤D when Q is not a product measure
I E.g. random regular graphs

I (Recovery) bound MMSE≤D when not “signal + noise”
I E.g. sparse regression, phase retrieval

I (Recovery) precise value of MMSE≤D
I Matching AMP?

I (Optimization) prove tight results for new settings
I E.g. p-spin optimization

I Implications for other algorithms?
I E.g. convex programming, MCMC

29 / 31

Future Directions?

I (Detection) bound Adv≤D when Q is not a product measure
I E.g. random regular graphs

I (Recovery) bound MMSE≤D when not “signal + noise”
I E.g. sparse regression, phase retrieval

I (Recovery) precise value of MMSE≤D
I Matching AMP?

I (Optimization) prove tight results for new settings
I E.g. p-spin optimization

I Implications for other algorithms?
I E.g. convex programming, MCMC

29 / 31

Future Directions?

I (Detection) bound Adv≤D when Q is not a product measure
I E.g. random regular graphs

I (Recovery) bound MMSE≤D when not “signal + noise”
I E.g. sparse regression, phase retrieval

I (Recovery) precise value of MMSE≤D
I Matching AMP?

I (Optimization) prove tight results for new settings
I E.g. p-spin optimization

I Implications for other algorithms?
I E.g. convex programming, MCMC

29 / 31

Future Directions?

I (Detection) bound Adv≤D when Q is not a product measure
I E.g. random regular graphs

I (Recovery) bound MMSE≤D when not “signal + noise”
I E.g. sparse regression, phase retrieval

I (Recovery) precise value of MMSE≤D
I Matching AMP?

I (Optimization) prove tight results for new settings
I E.g. p-spin optimization

I Implications for other algorithms?
I E.g. convex programming, MCMC

29 / 31

Future Directions?

I (Detection) bound Adv≤D when Q is not a product measure
I E.g. random regular graphs

I (Recovery) bound MMSE≤D when not “signal + noise”
I E.g. sparse regression, phase retrieval

I (Recovery) precise value of MMSE≤D
I Matching AMP?

I (Optimization) prove tight results for new settings
I E.g. p-spin optimization

I Implications for other algorithms?
I E.g. convex programming, MCMC

29 / 31

References

I Detection (survey article)
Notes on Computational Hardness of Hypothesis Testing:
Predictions using the Low-Degree Likelihood Ratio

Kunisky, W., Bandeira

arXiv:1907.11636

I Recovery
Computational Barriers to Estimation from Low-Degree
Polynomials

Schramm, W.

arXiv:2008.02269

I Optimization
Low-Degree Hardness of Random Optimization Problems
Gamarnik, Jagannath, W.

arXiv:2004.12063

30 / 31

(extra scratch paper)

31 / 31

