Introduction to the Low-Degree Polynomial
Method

Alex Wein

Courant Institute, New York University

1/31

Part I: Why Low-Degree Polynomials?

2/31

Problems in High-Dimensional Statistics

Example: finding a large clique in a random graph

3/31

Problems in High-Dimensional Statistics

Example: finding a large clique in a random graph

» Detection: distinguish between a random graph and a graph
with a planted clique

3/31

Problems in High-Dimensional Statistics

Example: finding a large clique in a random graph

» Detection: distinguish between a random graph and a graph
with a planted clique

> Recovery: given a graph with a planted clique, find the clique

3/31

Problems in High-Dimensional Statistics

Example: finding a large clique in a random graph

» Detection: distinguish between a random graph and a graph
with a planted clique

> Recovery: given a graph with a planted clique, find the clique

» Optimization: given a random graph (with no planted
clique), find as large a clique as possible

3/31

Problems in High-Dimensional Statistics

Example: finding a large clique in a random graph

» Detection: distinguish between a random graph and a graph
with a planted clique

> Recovery: given a graph with a planted clique, find the clique

» Optimization: given a random graph (with no planted
clique), find as large a clique as possible

Common to have information-computation gaps

3/31

Problems in High-Dimensional Statistics

Example: finding a large clique in a random graph
» Detection: distinguish between a random graph and a graph
with a planted clique

> Recovery: given a graph with a planted clique, find the clique

» Optimization: given a random graph (with no planted
clique), find as large a clique as possible

Common to have information-computation gaps
E.g. planted k-clique (either detection or recovery)

Impossible, Hard , Easy
T L) >
2logn vn k

3/31

Problems in High-Dimensional Statistics

Example: finding a large clique in a random graph
» Detection: distinguish between a random graph and a graph
with a planted clique

> Recovery: given a graph with a planted clique, find the clique

» Optimization: given a random graph (with no planted
clique), find as large a clique as possible

Common to have information-computation gaps
E.g. planted k-clique (either detection or recovery)

Impossible, Hard , Easy
T L) >
2logn vn k

What makes problems easy vs hard?

3/31

The Low-Degree Polynomial Method

A framework for predicting/explaining average-case computational
complexity

4/31

The Low-Degree Polynomial Method

A framework for predicting/explaining average-case computational
complexity

Originated from sum-of-squares literature (for detection)
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16]
[Hopkins, Steurer '17]
[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17]

[Hopkins "18 (PhD thesis)]

4/31

The Low-Degree Polynomial Method

A framework for predicting/explaining average-case computational
complexity

Originated from sum-of-squares literature (for detection)
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16]
[Hopkins, Steurer '17]
[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17]

[Hopkins "18 (PhD thesis)]

Today: self-contained motivation (without SoS)

4/31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

5/31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

» Multivariate polynomial f : RV — RM

5/31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

» Multivariate polynomial f : RV — RM
» Input: e.g. graph Y € {011}(5)

5/31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

» Multivariate polynomial f : RN — RM

» Input: e.g. graph Y € {0, 1}(5)
» Output: e.g. b e {0,1}

5/31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

» Multivariate polynomial f : RN — RM

» Input: e.g. graph Y € {0, 1}(5)
» Output: e.g. be {0,1} or v € R"

5/31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

» Multivariate polynomial f : RV — RM

» Input: e.g. graph Y € {011}(5)
» Output: e.g. be {0,1} or v € R"

» “Low” means O(log n) where n is dimension

5/31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

» Multivariate polynomial f : RV — RM
» Input: e.g. graph Y € {0,1}(5)
» Output: e.g. be {0,1} or v € R”

» “Low” means O(log n) where n is dimension

Examples of low-degree algorithms:

5/31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

» Multivariate polynomial f : RV — RM
» Input: e.g. graph Y € {0,1}@)
» Output: e.g. be {0,1} or v € R”

» “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y € R™"

5/31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

» Multivariate polynomial f : RV — RM

» Input: e.g. graph Y € {011}(5)
» Output: e.g. be {0,1} or v € R"

» “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y € R™"

» Power iteration: Y"1 or Tr(Y") k = O(log n)

5/31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

» Multivariate polynomial f : RV — RM

» Input: e.g. graph Y € {011}(9
» Output: e.g. be {0,1} or v € R"

» “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y € R™"
» Power iteration: Y"1 or Tr(Y") k = O(log n)
» Approximate message passing: v < Y h(v) O(1) rounds

5/31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

» Multivariate polynomial f : RV — RM

» Input: e.g. graph Y € {011}(5)
» Output: e.g. be {0,1} or v € R"

» “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y € R™"
» Power iteration: Y"1 or Tr(Y") k = O(log n)
» Approximate message passing: v < Y h(v) O(1) rounds
» Local algorithms on sparse graphs radius O(1)

5/31

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

» Multivariate polynomial f : RV — RM

» Input: e.g. graph Y € {011}(3)
» Output: e.g. be {0,1} or v € R”

» “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y € R™"
» Power iteration: Y"1 or Tr(Y") k = O(log n)
» Approximate message passing: v < Y h(v) O(1) rounds
» Local algorithms on sparse graphs radius O(1)
» Or any of the above applied to ¥ = g(Y) degg = O(1)

5/31

The Low-Degree Polynomial Method

Claim: low-degree polynomials provide a unified explanation of
information-computation gaps in detection/recovery/optimization

6/31

The Low-Degree Polynomial Method

Claim: low-degree polynomials provide a unified explanation of
information-computation gaps in detection/recovery/optimization

For all of these problems...

6/31

The Low-Degree Polynomial Method

Claim: low-degree polynomials provide a unified explanation of
information-computation gaps in detection/recovery/optimization

For all of these problems...

planted clique, sparse PCA, community detection, tensor PCA, planted
CSPs, spiked Wigner/Wishart, planted submatrix, planted dense
subgraph, p-spin optimization, max independent set

6/31

The Low-Degree Polynomial Method

Claim: low-degree polynomials provide a unified explanation of
information-computation gaps in detection/recovery/optimization

For all of these problems...

planted clique, sparse PCA, community detection, tensor PCA, planted
CSPs, spiked Wigner/Wishart, planted submatrix, planted dense
subgraph, p-spin optimization, max independent set

...it is the case that

6/31

The Low-Degree Polynomial Method

Claim: low-degree polynomials provide a unified explanation of
information-computation gaps in detection/recovery/optimization

For all of these problems...
planted clique, sparse PCA, community detection, tensor PCA, planted
CSPs, spiked Wigner/Wishart, planted submatrix, planted dense
subgraph, p-spin optimization, max independent set
...it is the case that
» the best known poly-time algorithms are low-degree
(spectral /AMP /local)

6/31

The Low-Degree Polynomial Method

Claim: low-degree polynomials provide a unified explanation of
information-computation gaps in detection/recovery/optimization

For all of these problems...
planted clique, sparse PCA, community detection, tensor PCA, planted
CSPs, spiked Wigner/Wishart, planted submatrix, planted dense
subgraph, p-spin optimization, max independent set
...it is the case that
» the best known poly-time algorithms are low-degree
(spectral /AMP /local)

> low-degree polynomials fail in the “hard” regime

6/31

The Low-Degree Polynomial Method

Claim: low-degree polynomials provide a unified explanation of
information-computation gaps in detection/recovery/optimization

For all of these problems...

planted clique, sparse PCA, community detection, tensor PCA, planted
CSPs, spiked Wigner/Wishart, planted submatrix, planted dense
subgraph, p-spin optimization, max independent set

...it is the case that

P the best known poly-time algorithms are low-degree
(spectral /AMP /local)

> low-degree polynomials fail in the “hard” regime
“Low-degree conjecture” (informal): low-degree polynomials are as

powerful as all poly-time algorithms for “natural” high-dimensional
problems [Hopkins '18]

6/31

Overview

This talk: techniques to prove that all low-degree polynomials fail

7/31

Overview

This talk: techniques to prove that all low-degree polynomials fail

» Gives evidence for computational hardness

7/31

Overview

This talk: techniques to prove that all low-degree polynomials fail

» Gives evidence for computational hardness
Settings:

» Detection
[Hopkins, Steurer '17]
[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17]
[Hopkins "18] (PhD thesis)
[Kunisky, W., Bandeira '19] (survey)

» Recovery
[Schramm, W. '20]

» Optimization
[Gamarnik, Jagannath, W. '20]

7/31

Part |l: Detection

8/31

Detection (e.g. [Hopkins, Steurer '17])

Goal: hypothesis test with error probability o(1) between:
> Null model Y ~ Q, e.g. G(n,1/2)
» Planted model Y ~ P, e.g. G(n,1/2) U {random k-clique}

9/31

Detection (e.g. [Hopkins, Steurer '17])

Goal: hypothesis test with error probability o(1) between:
> Null model Y ~ Q, e.g. G(n,1/2)
» Planted model Y ~ P, e.g. G(n,1/2) U {random k-clique}

Look for a degree-D polynomial f : R™" — R that distinguishes P
from Q

9/31

Detection (e.g. [Hopkins, Steurer '17])

Goal: hypothesis test with error probability o(1) between:
> Null model Y ~ Q, e.g. G(n,1/2)
» Planted model Y ~ P, e.g. G(n,1/2) U {random k-clique}

Look for a degree-D polynomial f : R™" — R that distinguishes P
from Q

» f(Y)is “big” when Y ~ P and “small” when Y ~ Q

9/31

Detection (e.g. [Hopkins, Steurer '17])

Goal: hypothesis test with error probability o(1) between:
> Null model Y ~ Q, e.g. G(n,1/2)
» Planted model Y ~ P, e.g. G(n,1/2) U {random k-clique}

Look for a degree-D polynomial f : R™" — R that distinguishes P
from Q

» f(Y)is “big” when Y ~ P and “small” when Y ~ Q

Compute “advantage”:

Ad ma Eyp[f(Y)] mean in P
\% = X
<P fdeg D Eyglf(Y)?] fluctuations in Q

9/31

Detection (e.g. [Hopkins, Steurer '17])

Goal: hypothesis test with error probability o(1) between:
> Null model Y ~ Q, e.g. G(n,1/2)
» Planted model Y ~ P, e.g. G(n,1/2) U {random k-clique}

Look for a degree-D polynomial f : R™" — R that distinguishes P
from Q

» f(Y)is “big” when Y ~ P and “small” when Y ~ Q

Compute “advantage”:

Ad ma Eyp[f(Y)] mean in P
\% = X
<P fdeg D Eyglf(Y)?] fluctuations in Q

B (1) “degree-D polynomial succeed”
| O(1) ‘“degree-D polynomials fail”

9/31

Detection (e.g. [Hopkins, Steurer '17])

Prototypical result (planted clique):

10/31

Detection (e.g. [Hopkins, Steurer '17])

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G(n,1/2),

10/31

Detection (e.g. [Hopkins, Steurer '17])

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G(n,1/2),
» if k =Q(y/n) then Adv<p = w(1) for some D = O(log n)

low-degree polynomials succeed when k = /n

10/31

Detection (e.g. [Hopkins, Steurer '17])

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G(n,1/2),
» if k =Q(y/n) then Adv<p = w(1) for some D = O(log n)

low-degree polynomials succeed when k = /n

> if k = O(n'/27¢) then Adv<p = O(1) for any D = O(log n)
low-degree polynomials fail when k < \/n

10/31

Detection (e.g. [Hopkins, Steurer '17])

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G(n,1/2),
» if k =Q(y/n) then Adv<p = w(1) for some D = O(log n)

low-degree polynomials succeed when k = /n

> if k = O(n'/27¢) then Adv<p = O(1) for any D = O(log n)
low-degree polynomials fail when k < \/n

Sometimes can rule out polynomials of degree D = n’

10/31

Detection (e.g. [Hopkins, Steurer '17])

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G(n,1/2),
» if k =Q(y/n) then Adv<p = w(1) for some D = O(log n)

low-degree polynomials succeed when k = /n

> if k = O(n'/27¢) then Adv<p = O(1) for any D = O(log n)
low-degree polynomials fail when k < \/n

Sometimes can rule out polynomials of degree D = n’

Extended low-degree conjecture [Hopkins '18]:
degree-D polynomials < n®(P)_time algorithms

D=n’ & exp(n®*°(1)) time

10/31

Detection (e.g. [Hopkins, Steurer '17])

Goal: compute Adv<p = _max_ IIEEYNP[’[:E(YY)L]
eg YNQ

11/31

Detection (e.g. [Hopkins, Steurer '17])

Goal: compute Adv<p = _max_ IIEEYNP[€;2/3§2]
eg YNQ

Suppose Q is i.i.d. Unif(+1)

11/31

Detection (e.g. [Hopkins, Steurer '17])
Goal: compute Adv<p := max Ey-e[f(Y)]
© fdesD /By qff(Y)?]
Suppose Q is i.i.d. Unif(+1)
Write f(Y) =Y s5<p fs ¥° Yo =1lies Vi SC[m]

11/31

Detection (e.g. [Hopkins, Steurer '17])
Goal: compute Adv<p := max Ey-e[f(Y)]
© fdesD /By qff(Y)?]
Suppose Q is i.i.d. Unif(+1)
Write f(Y) =Y s5<p fs ¥° Yo =1lies Vi SC[m]

{Ys}sg[m] are orthonormal: IEYNQ[YS YT]=1s_7

11/31

Detection (e.g. [Hopkins, Steurer '17])
Goal: compute Adv<p := max Ey-e[f(Y)]
© fdesD /By qff(Y)?]
Suppose Q is i.i.d. Unif(+1)
Write f(Y) =Y s5<p fs ¥° Yo =1lies Vi SC[m]

{Ys}sg[m] are orthonormal: IEYNQ[YS YT]=1s_7

Numerator: fly
Numerator YIEP[()]

11/31

Detection (e.g. [Hopkins, Steurer '17])
Goal: compute Adv<p := max Ey-e[f(Y)]
© fdeD Ey off(Y)]
Suppose Q is i.i.d. Unif(+1)
Write f(Y) =Y s5<p fs ¥° Yo =1lies Vi SC[m]
{Ys}sg[m] are orthonormal: Ey g[Y°Y '] = 1s_1

N tor: E_[f(Y)] = fs E [Y°
Numerator: E_[f(Y)] %ﬁy%[]

11/31

Detection (e.g. [Hopkins, Steurer '17])
Goal: compute Adv<p := max Ey-e[f(Y)]
© fdeD Ey off(Y)]
Suppose Q is i.i.d. Unif(+1)
Write f(Y) =Y s5<p fs ¥° Yo =1lies Vi SC[m]
{Ys}sg[m] are orthonormal: Ey g[Y°Y '] = 1s_1

N tor: f(Y)]= f Yo] = 7?;
Numerator YIEP[()l g;DSYIEP[]=:(f,c)

11/31

Detection (e.g. [Hopkins, Steurer '17])
Goal: compute Adv<p := max Ey-e[f(Y)]
© fdeD Ey off(Y)]
Suppose Q is i.i.d. Unif(+1)
Write f(Y) =Y s5<p fs ¥° Yo =1lies Vi SC[m]
{Ys}sg[m] are orthonormal: Ey g[Y°Y '] = 1s_1

N tor: f(Y)]= f Yo] = 7?;
Numerator YIEP[()l g;DSYIEP[]=:(f,c)

Denominator: £ [f(Y)?]
Y~Q

11/31

Detection (e.g. [Hopkins, Steurer '17])

Eyp[f(Y)]
fdeg D \/Eyqlf(Y)]
Suppose Q is i.i.d. Unif(+1)
Write f(Y) =Y s5<p fs ¥° Yo =1lies Vi SC[m]
{Ys}sc[m] are orthonormal: Ey g[Y°Y '] = 1s_1

Numerator: E [f =Y fSYE [Yo] = (f.c)
1S|<D

Goal: compute Adv<p =

Denominator: E [f(Y)?] = Z f2 (orthonormality)
y~Q |S|<D

11/31

Detection (e.g. [Hopkins, Steurer '17])

Eyp[f(Y)]
fdeg D \/Eyqlf(Y)]
Suppose Q is i.i.d. Unif(+1)
Write f(Y) =Y s5<p fs ¥° Yo =1lies Vi SC[m]
{Ys}sc[m] are orthonormal: Ey g[Y°Y '] = 1s_1

Numerator: E [f =Y fSYE [Yo] = (f.c)
1S|<D

Goal: compute Adv<p =

Denominator: E [f(Y)?] = Z 2 = ||f|? (orthonormality)
y~Q |S|<D

11/31

Detection (e.g. [Hopkins, Steurer '17])
w _Everlf(Y)]
Fdeg D /By~glf(Y)’]
Suppose Q is i.i.d. Unif(+1)
Write F(Y) = Yi5cpfs¥° Y*:=Tlies Vi SC[m]

Goal: compute Adv<p =

{YS}Sc[m] are orthonormal: IEYNQ[YS YT]=1s_7

Numerator: E [f =Y fSYE [Yo] = (f.c)
1S|<D

Denominator: E [f(Y)?] = Z 2 = ||f|? (orthonormality)
y~Q |S|<D

)Z'\
Adv<p = max < ’AC>
oIl

11/31

Detection (e.g. [Hopkins, Steurer '17])
w _Everlf(Y)]
Fdeg D /By~glf(Y)’]
Suppose Q is i.i.d. Unif(+1)
Write F(Y) = Yi5cpfs¥° Y*:=Tlies Vi SC[m]

Goal: compute Adv<p =

{YS}Sc[m] are orthonormal: IEYNQ[YS YT]=1s_7
N t f(Y) = f YS| = (f
Numerator: E[)] = Z SYE [YS] = (7, ¢)

IS|<D
Denominator: f(Y)] = 2 = |72 th lit
Denominator Y@Q[] Z s =|f]l (orthonormality)
|S|<D
)’c‘
AdVSD — m§x< 7AC>
FoolIf]l

Optimizer: fr=c

11/31

Detection (e.g. [Hopkins, Steurer '17])
w _Everlf(Y)]
Fdeg D /By~glf(Y)’]
Suppose Q is i.i.d. Unif(+1)
Write F(Y) = Yi5cpfs¥° Y*:=Tlies Vi SC[m]

Goal: compute Adv<p =

{YS}Sc[m] are orthonormal: IEYNQ[YS YT]=1s_7
N t f(Y) = f YS| = (f
Numerator: E[)] = Z SYE [YS] = (7, ¢)

S|<D
Denominator: f(Y)] = 2 = |IF)1? th lit
Denominator Y%@[] Z s =|f]l (orthonormality)
|S|<D
)'c\
Advep = m§x< 7AC> _ <C7 C>
- FoAfl el

Optimizer: fr=c

11/31

Detection (e.g. [Hopkins, Steurer '17])
w _Everlf(Y)]
Fdeg D /By~glf(Y)’]
Suppose Q is i.i.d. Unif(+1)
Write F(Y) = Yi5cpfs¥° Y*:=Tlies Vi SC[m]

Goal: compute Adv<p =

{YS}Sc[m] are orthonormal: IEYNQ[YS YT]=1s_7
N t f(Y) = f YS| = (f
Numerator: E[)] = Z SYE [YS] = (7, ¢)

IS|<D
Denominator: E [f(Y)?] = Z 2 = ||f|? (orthonormality)
Denominator: | B
IS|<D
(f.c) _{c.c)
Adv<p = max —% = ||c||
= T <]l

Optimizer: fr=c

11/31

Detection (e.g. [Hopkins, Steurer '17])

w _Everlf(Y)]
fdeg D \/Eyq[f(Y)?]
Suppose Q is i.i.d. Unif(+1)
Write f(Y) =Y s5<p fs ¥° Yo =1lies Vi SC[m]

Goal: compute Adv<p =

{YS}Sc[m] are orthonormal: IEYNQ[YS YT]=1s_7

Numerator: E [f =Y fSYE [Yo] = (f.c)
1S|<D

Denominator: E [f(Y)?] = Z 2 = ||f|? (orthonormality)
y~Q |S|<D

_ o lfa e ?
Adv<p = ma TR = |lc J > <YIEP[YS]>

f IS|<D

Optimizer: f* = ¢

11/31

Detection (e.g. [Hopkins, Steurer '17])

Remarks:

12/31

Detection (e.g. [Hopkins, Steurer '17])

Remarks:

> Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) = S5()

12/31

Detection (e.g. [Hopkins, Steurer '17])

Remarks:
> Best test is likelihood ratio (Neyman-Pearson lemma)
dP

L(Y) = @(Y)

> Best degree-D test (maximizer of Adv<p) is

=150 .= projection of L onto deg-D subspace

12/31

Detection (e.g. [Hopkins, Steurer '17])

Remarks:

> Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) = S5()

> Best degree-D test (maximizer of Adv<p) is
=150 .= projection of L onto deg-D subspace

orthogonal projection w.r.t. (f, g) := Y[Eh[f(Y)g(Y)]

12/31

Detection (e.g. [Hopkins, Steurer '17])

Remarks:

> Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) = S5()

> Best degree-D test (maximizer of Adv<p) is
f* = L=P .= projection of L onto deg-D subspace

orthogonal projection w.r.t. (f, g) := YIEF[f(Y)g(Y)]

“low-degree likelihood ratio”

12/31

Detection (e.g. [Hopkins, Steurer '17])

Remarks:

> Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) = S5()

> Best degree-D test (maximizer of Adv<p) is
f* = L=P .= projection of L onto deg-D subspace

orthogonal projection w.r.t. (f,g) := E [f(Y)g(Y)]

Y~Q
“low-degree likelihood ratio”
> Advep = [[L=P] Il := VA(f, f) = Ylgﬁ[f(YV]

12/31

Detection (e.g. [Hopkins, Steurer '17])

Remarks:

> Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) = S5()

> Best degree-D test (maximizer of Adv<p) is
f* = L=P .= projection of L onto deg-D subspace

orthogonal projection w.r.t. (f, g) := YIEﬁ\[f(Y)g(Y)]

“low-degree likelihood ratio”

> Advep = ILSP|| = VIR = B IF(Y)

(=]

“norm of low-degree likelihood ratio”

12/31

Detection (e.g. [Hopkins, Steurer '17])

Remarks:

> Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) = S5()

» Best degree-D test (maximizer of Adv<p) is
f* = L=P .= projection of L onto deg-D subspace

orthogonal projection w.r.t. (f,g) := E [f(Y)g(Y)]

Y~Q

“low-degree likelihood ratio”
> Advep = LD f = VA = B (YY)
“norm of low-degree likelihood ratio”

Proof: [s= R [L(Y)Y°]= E [Y°] fe= E [YS]IL‘SKD
Y~Q Y~P Y~P -

12/31

Detection (e.g. [Hopkins, Steurer '17])

User-friendly results:

13/31

Detection (e.g. [Hopkins, Steurer '17])

User-friendly results:

» Additive Gaussian model:
P.Y=X4+Z vs Q:Y=Z

13/31

Detection (e.g. [Hopkins, Steurer '17])

User-friendly results:

» Additive Gaussian model:
P.Y=X4+Z vs Q:Y=Z

D
1
2 E nd
AdVSD = = 7d| X’EX/<X,X >

13/31

Detection (e.g. [Hopkins, Steurer '17])

User-friendly results:

» Additive Gaussian model:
P.Y=X4+Z vs Q:Y=Z

D
1
2 E nd
AdVSD = = 7d| X7EX/<X,X >

» Rademacher model Y € {£1}™:
P E[Y|X]=X vs Q:E[Y]=0

13/31

Detection (e.g. [Hopkins, Steurer '17])

User-friendly results:

» Additive Gaussian model:
P.Y=X4+Z vs Q:Y=Z

D
1
2 E nd
AdVSD = = 7d| X7EX/<X,X >

» Rademacher model Y € {£1}™:
P E[Y|X]=X vs Q:E[Y]=0

D

1
E <X, X/>d

AdvZ, <y =
sb = d! x x

d=0

13/31

Detection (e.g. [Hopkins, Steurer '17])

Recap (detection):

14/31

Detection (e.g. [Hopkins, Steurer '17])

Recap (detection):

» Given P, Q, can compute (via linear algebra)

AdV<D — ||L§DH — max EYN]P’[f(Y)]
B fdeg D \/Eyolf(Y)?]

14 /31

Detection (e.g. [Hopkins, Steurer '17])

Recap (detection):

» Given P, Q, can compute (via linear algebra)

Eyp[f(Y
Advep = [L=P) = max —v~#lf(¥)]

fdeg D /Ey.g[f(Y)?]

» Need to know orthogonal polynomials w.r.t. Q
» Possible when Q has independent coordinates

14 /31

Detection (e.g. [Hopkins, Steurer '17])

Recap (detection):

» Given P, Q, can compute (via linear algebra)

AdV<D — ”LSDH — max EYN]P’[f(Y)]
B fdeg D \/Eyolf(Y)?]

» Need to know orthogonal polynomials w.r.t. Q
» Possible when Q has independent coordinates

» To predict computational complexity: for D = log n,

_J w(l) = "easy"
AdV<D_{ O(1) = ‘hard”

14 /31

Detection (e.g. [Hopkins, Steurer '17])

Recap (detection):

» Given P, Q, can compute (via linear algebra)

AdV<D _ ||L§DH — max EYN]P’[f(Y)]
B fdeg D \/Eyolf(Y)?]

» Need to know orthogonal polynomials w.r.t. Q
» Possible when Q has independent coordinates

» To predict computational complexity: for D = log n,

_J w(l) = "easy"
AdV<D_{ O(1) = ‘hard”

» These predictions are “correct” for: planted clique, sparse PCA,
community detection, tensor PCA, spiked Wigner/Wishart, ...
[BHKKMP16,HS17,HKPRSS17,Hop18,BKW19,KWB19,DKWB19]

14/31

Part Ill: Recovery

15/31

Recovery [Schramm, W. '20]

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v; ~ Bernoulli(p)
» Noise: Z i.i.d. A/(0,1)

16/31

Recovery [Schramm, W. '20]

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v; ~ Bernoulli(p)
» Noise: Z i.i.d. A/(0,1)

Detection: distinguish P: Y =X+2Z vs Q: Y =2 w.h.p.
Recovery: given Y ~ P, recover v

16/31

Recovery [Schramm, W. '20]

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v; ~ Bernoulli(p)
» Noise: Z i.i.d. A/(0,1)
Detection: distinguish P: Y =X+2Z vs Q: Y =2 w.h.p.
Recovery: given Y ~ P, recover v

If you can recover then you can detect (poly-time reduction)

16/31

Recovery [Schramm, W. '20]

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v; ~ Bernoulli(p)
» Noise: Z i.i.d. A/(0,1)
Detection: distinguish P: Y =X+2Z vs Q: Y =2 w.h.p.
Recovery: given Y ~ P, recover v

If you can recover then you can detect (poly-time reduction)

» How: run recovery algorithm to get v € {0,1}"; check ¥ Y ¥

16/31

Recovery [Schramm, W. '20]

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v; ~ Bernoulli(p)
» Noise: Z i.i.d. A/(0,1)
Detection: distinguish P: Y =X+2Z vs Q: Y =2 w.h.p.
Recovery: given Y ~ P, recover v
If you can recover then you can detect (poly-time reduction)
» How: run recovery algorithm to get v € {0,1}"; check ¥ Y ¥

So if Adv<p = O(1), this suggests recovery is hard

16/31

Recovery [Schramm, W. '20]

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v; ~ Bernoulli(p)
» Noise: Z i.i.d. A/(0,1)
Detection: distinguish P: Y =X+2Z vs Q: Y =2 w.h.p.
Recovery: given Y ~ P, recover v

If you can recover then you can detect (poly-time reduction)
» How: run recovery algorithm to get v € {0,1}"; check ¥ Y ¥

So if Adv<p = O(1), this suggests recovery is hard

But planted submatrix has a detection-recovery gap

16/31

Recovery [Schramm, W. '20]

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v; ~ Bernoulli(p)
» Noise: Z i.i.d. A/(0,1)
Detection: distinguish P: Y =X+2Z vs Q: Y =2 w.h.p.
Recovery: given Y ~ P, recover v
If you can recover then you can detect (poly-time reduction)
» How: run recovery algorithm to get v € {0,1}"; check ¥ Y ¥
So if Adv<p = O(1), this suggests recovery is hard

But planted submatrix has a detection-recovery gap

How to show hardness of recovery when detection is easy?

16/31

Recovery [Schramm, W. '20]

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v; ~ Bernoulli(p)
» Noise: Z i.i.d. A(0,1)

17/31

Recovery [Schramm, W. '20]

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v; ~ Bernoulli(p)
» Noise: Z i.i.d. A(0,1)

Goal: given Y, estimate v; via polynomial f: R™" — R

17/31

Recovery [Schramm, W. '20]

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v; ~ Bernoulli(p)
» Noise: Z i.i.d. A(0,1)

Goal: given Y, estimate v; via polynomial f : R"*" — R

Low-degree minimum mean squared error:

MMSE<p = min E(f(Y) - »)?
SE<p fgygnD(() v1)

17/31

Recovery [Schramm, W. '20]

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v; ~ Bernoulli(p)
» Noise: Z i.i.d. A(0,1)

Goal: given Y, estimate v; via polynomial f: R™" — R

Low-degree minimum mean squared error:

MMSE<p = min E(f(Y) - »)?
SE<p fgygnD(() v1)

Equivalent to low-degree maximum correlation:

Corr<p = max 7E[f(Y)-v1]
0 i E[F(V)

Fact: MMSE<p = E[v{] — CorrZ

17/31

Recovery [Schramm, W. '20]

E[f(Y) - wv]

For hardness, want upper bound on Corr<p = max
=0 rae 0 JR[F(V)]

18/31

Recovery [Schramm, W. '20]

E[f(Y) - wv]

For hardness, want upper bound on Corr<p = max
=0 rae 0 JR[F(V)]

Same proof as detection?

18/31

Recovery [Schramm, W. '20]

E[f(Y) - wv]

For hardness, want upper bound on Corr<p = max
=0 rae 0 JR[F(V)]

Same proof as detection?

f=Y fY®
IsI<D

18/31

Recovery [Schramm, W. '20]

E[f(Y) - wv]

For hardness, want upper bound on Corr<p = max
=0 rae 0 JR[F(V)]

Same proof as detection?

f=Y fY®
IsI<D

Numerator: E[f(Y) -]

18/31

Recovery [Schramm, W. '20]

E[f(Y) -
For hardness, want upper bound on Corr<p = max M
=07 g0 /RIF(V)

Same proof as detection?

= > fy®
|S|I<D

Numerator: E[f(Y) - Z SE[Y® - v
S|<D

18/31

Recovery [Schramm, W. '20]

For hardness, want upper bound on Corr<p = max
=0 rae 0 JR[F(V)]

Same proof as detection?

= > fy®
IS|<D

Numerator: E[f(Y) - Z SE[Y® - wv]=:(f,¢)

E[f(Y) - wv]

18/31

Recovery [Schramm, W. '20]

For hardness, want upper bound on Corr<p = max
=0 rae 0 JR[F(V)]

Same proof as detection?
= > fy®
|S|<D
Numerator: E[f(Y) - Z SE[Y® - wv]=:(f,¢)
S|<D

Denominator: E[f(Y)?]

E[f(Y) - wv]

18/31

Recovery [Schramm, W. '20]

For hardness, want upper bound on Corr<p = max
=0 rae 0 JR[F(V)]

Same proof as detection?

= > fy®
<

Numerator: E[f(Y) - SE[Y® - wv]=:(f,¢)

Denominator: E[f(Y

K
Z SFrE[Y® - Y]
~

E[f(Y) - wv]

18/31

Recovery [Schramm, W. '20]

For hardness, want upper bound on Corr<p = max
=0 rae 0 JR[F(V)]

Same proof as detection?

= > fy®
<

Numerator: E[f(Y) - SE[Y® - wv]=:(f,¢)

Denominator: E[f(Y

Z
S|<D
Z S E[YS .- YT =fTMf
~

E[f(Y) - wv]

18/31

Recovery [Schramm, W. '20]

For hardness, want upper bound on Corr<p = max
=0 rae 0 JR[F(V)]

Same proof as detection?

Numerator: E[f(Y) - fSE[Y® - w] = (f,c)

I
'AM -
. il
O
[y

Denominator: E[f(Y)?] = Asz?r E[Y®-YT]=fTMf
ST
F
Corr<p = max <A’ <)

E[f(Y) - wv]

18/31

Recovery [Schramm, W. '20]

For hardness, want upper bound on Corr<p = max
=0 rae 0 JR[F(V)]

Same proof as detection?

Numerator: E[f(Y) - fSE[Y® - w] = (f,c)

I
'AM -
. il
O
[y

Denominator: E[f(Y)?] = Asz?r E[Y®-YT]=fTMf
S, T
Corr<p = max <f’ 9 _ c"M-1c

E[f(Y) - wv]

18/31

Recovery [Schramm, W. '20]

E[f(Y) -
For hardness, want upper bound on Corr<p = max M
= a0 JR[F(Y)7]

19/31

Recovery [Schramm, W. '20]
E[f(Y) -
For hardness, want upper bound on Corr<p = max M
= a0 JR[F(Y)7]

Trick: bound denominator via Jensen’s inequality on “signal” X

2
BIF(YV] = BEIFX + 27 > B (E(X + 2))

19/31

Recovery [Schramm, W. '20]

E[f(Y) -
For hardness, want upper bound on Corr<p = max M
= a0 JR[F(Y)7]

Trick: bound denominator via Jensen’s inequality on “signal” X

2
BIF(YV] = BEIFX + 27 > B (E(X + 2))

Why is this tight?

19/31

Recovery [Schramm, W. '20]
For hardness, want upper bound on Corr«p = max
i 7 o /E[F(V)

Trick: bound denominator via Jensen’s inequality on “signal” X

2
BIF(YV] = BEIFX + 27 > B (E(X + 2))

Why is this tight? In hard regime, f depends mostly on Z

E[f(Y) - wi]

19/31

Recovery [Schramm, W. '20]

For hardness, want upper bound on Corr<p = max
- f deg D E[f(Y)Z]

Trick: bound denominator via Jensen’s inequality on “signal” X

2
BIF(YV] = BEIFX + 27 > B (E(X + 2))

Why is this tight? In hard regime, f depends mostly on Z

This simplifies expression enough to find a closed form:

E[f(Y) - wi]

19/31

Recovery [Schramm, W. '20]

For hardness, want upper bound on Corr<p = max
- f deg D E[f(Y)Z]

Trick: bound denominator via Jensen’s inequality on “signal” X

2
BIF(YV] = BEIFX + 27 > B (E(X + 2))

Why is this tight? In hard regime, f depends mostly on Z

This simplifies expression enough to find a closed form:

(f,c)
Corr<p < max =
Fo M

where M is upper triangular

E[f(Y) - wi]

19/31

Recovery [Schramm, W. '20]
For hardness, want upper bound on Corr«p = max
i 7 o /E[F(V)

Trick: bound denominator via Jensen’s inequality on “signal” X

2
BIF(YV] = BEIFX + 27 > B (E(X + 2))

Why is this tight? In hard regime, f depends mostly on Z

This simplifies expression enough to find a closed form:

f,c
Corr<p < max {f, A> =|lc"M7Y
f

M

where M is upper triangular (can invert)

E[f(Y) - wi]

19/31

Recovery [Schramm, W. '20]

End result:

20/31

Recovery [Schramm, W. '20]

End result:

Theorem [Schramm, W. "20]
Additive Gaussian model Y = X + 7
Scalar value to recover: x

20/31

Recovery [Schramm, W. '20]

End result:

Theorem [Schramm, W. "20]
Additive Gaussian model Y = X + 7
Scalar value to recover: x

2 2
CorrZp < Z KS
|S|<D

where kg is the joint cumulant of {x} U{Y; : i € S}

20/31

Recovery [Schramm, W. '20]

End result:

Theorem [Schramm, W. "20]
Additive Gaussian model Y = X + 7
Scalar value to recover: x

2 2
CorrZp < Z K
|S|<D

where kg is the joint cumulant of {x} U{Y; : i € S}

Corollary (tight bounds for planted submatrix recovery)

20/31

Recovery [Schramm, W. '20]

End result:

Theorem [Schramm, W. "20]
Additive Gaussian model Y = X + 7
Scalar value to recover: x

2 2
CorrZp < Z K
|S|<D

where kg is the joint cumulant of {x} U{Y; : i € S}

Corollary (tight bounds for planted submatrix recovery)

> if A < min{l, ﬁ} then MMSE_ o) =~ p(1 — p)

low-degree polynomials have trivial MSE in the "hard” regime

20/31

Recovery [Schramm, W. '20]

End result:

Theorem [Schramm, W. "20]
Additive Gaussian model Y = X + 7
Scalar value to recover: x

2 2
CorrZp < Z K
|S|<D

where kg is the joint cumulant of {x} U{Y; : i € S}

Corollary (tight bounds for planted submatrix recovery)
> if A < min{l, ﬁ} then MMSE_ o) =~ p(1 — p)

low-degree polynomials have trivial MSE in the "hard” regime

> if A>> min{l, %ﬁ} then MMSE < o (10g n) = 0(p)

low-degree polynomials succeed in the “easy” regime

20/31

Part IV: Optimization

21/31

Optimization [Gamarnik, Jagannath, W. '20]

Example (spherical spin glass): for Y € R jid. A/(0,1),

1
max — (Y, v®*
Ivlj=1 ﬁ< >

22/31

Optimization [Gamarnik, Jagannath, W. '20]

Example (spherical spin glass): for Y € R"™"<"*" jjd. N/(0,1),
max i(Y v
vi=tv/n"

Optimum value: OPT = ||m”ax1 H(v) = ©(1) [aBC13]

22/31

Optimization [Gamarnik, Jagannath, W. '20]

Example (spherical spin glass): for Y € R"™"<"*" jjd. N/(0,1),

1
max — (Y, v®*
Ivli=1 ﬁ< /
Optimum value: OPT = ||m”ax1 H(v) = ©(1) [aBC13]

Best known algorithms achieve value ALG < OPT [Subag'18, EMS'20]

22/31

Optimization [Gamarnik, Jagannath, W. '20]

Example (spherical spin glass): for Y € R jjd. N(0,1),
max i(Y, v
Ivi=1 v/n

Optimum value: OPT = llr\1/1”a:x1 H(v) = ©(1) [aBC13]

Best known algorithms achieve value ALG < OPT [Subag'18, EMS'20]

Result: no low-degree polynomial can achieve value OPT — ¢

22/31

Optimization [Gamarnik, Jagannath, W. '20]

Example (spherical spin glass): for Y € R"™"<"*" jjd. N/(0,1),

1
max — (Y, v®*
Ivlj=1 ﬁ< >
Optimum value: OPT = ||m”ax1 H(v) = ©(1) [aBC13]
Best known algorithms achieve value ALG < OPT [Subag'18, EMS'20]

Result: no low-degree polynomial can achieve value OPT — ¢

Theorem [Gamarnik, Jagannath, W. '20]
For some € > 0, no f : R"*™"x" — R" of degree polylog(n)
achieves both of the following with probability 1 — exp(—n®(1)):

22/31

Optimization [Gamarnik, Jagannath, W. '20]

Example (spherical spin glass): for Y € R"™"<"*" jjd. N/(0,1),

1
max — (Y, v®*
Ivlj=1 ﬁ< >
Optimum value: OPT = ||m”ax1 H(v) = ©(1) [aBC13]
Best known algorithms achieve value ALG < OPT [Subag'18, EMS'20]

Result: no low-degree polynomial can achieve value OPT — ¢

Theorem [Gamarnik, Jagannath, W. '20]
For some € > 0, no f : R"*™"x" — R" of degree polylog(n)
achieves both of the following with probability 1 — exp(—n®(1)):

» Objective: H(f(Y)) > OPT —¢

22/31

Optimization [Gamarnik, Jagannath, W. '20]

Example (spherical spin glass): for Y € R"™"<"*" jjd. N/(0,1),

1
max — (Y, v®*
Ivlj=1 ﬁ< >
Optimum value: OPT = ||m”ax H(v) = ©(1) [aBC13]
v||=1
Best known algorithms achieve value ALG < OPT [Subag'18, EMS'20]
Result: no low-degree polynomial can achieve value OPT — ¢

Theorem [Gamarnik, Jagannath, W. '20]
For some € > 0, no f : R"*™"x" — R" of degree polylog(n)
achieves both of the following with probability 1 — exp(—n®(1)):

» Objective: H(f(Y)) > OPT —¢
» Normalization: ||[f(Y)| ~ 1

22/31

Optimization [Gamarnik, Jagannath, W. '20]
Example (max independent set): given sparse graph G(n,d/n),

max |S| s.t. S independent
SClnl

23/31

Optimization [Gamarnik, Jagannath, W. '20]
Example (max independent set): given sparse graph G(n,d/n),
max |S| s.t. S independent
SCln]

oPT = 284

n

23/31

Optimization [Gamarnik, Jagannath, W. '20]
Example (max independent set): given sparse graph G(n,d/n),

max |S| s.t. S independent
SClnl

23/31

Optimization [Gamarnik, Jagannath, W. '20]
Example (max independent set): given sparse graph G(n,d/n),
max |S| s.t. S independent
SCln]
log d
n

d
Result: no low-degree polynomial can achieve (1 + %)bidn

ALG =

23/31

Optimization [Gamarnik, Jagannath, W. '20]
Example (max independent set): given sparse graph G(n,d/n),

max |S| s.t. S independent
SClnl

log d log d
PT = ALG =
O 7 7"
Result: no low-degree polynomial can achieve (1 + %)bgdn

Theorem [Gamarnik, Jagannath, W. '20]
No polynomial f : {0, 1}(;) — R" of degree polylog(n) achieves
both of the following with probability 1 — exp(—n(1):

23/31

Optimization [Gamarnik, Jagannath, W. '20]
Example (max independent set): given sparse graph G(n,d/n),

max |S| s.t. S independent
SClnl

log d log d
PT = ALG =
O 7 7"
Result: no low-degree polynomial can achieve (1 + %)bidn

Theorem [Gamarnik, Jagannath, W. '20]
No polynomial f : {0, 1}(;) — R" of degree polylog(n) achieves
both of the following with probability 1 — exp(—n(1):

> fi(Y)e[0,1/3]U[2/3,1] for most i

23/31

Optimization [Gamarnik, Jagannath, W. '20]
Example (max independent set): given sparse graph G(n,d/n),

max |S| s.t. S independent
SClnl

log d log d
PT = ALG =
O 7 7"
Result: no low-degree polynomial can achieve (1 + %)bidn

Theorem [Gamarnik, Jagannath, W. '20]
No polynomial f : {0, 1}(;) — R" of degree polylog(n) achieves
both of the following with probability 1 — exp(—n(1):

» fi(Y)e€[0,1/3]U[2/3,1] for most i

> {i: fi(Y) € [2/3,1]} is a near-indep set of size (1 + %)bsdn

23/31

Optimization [Gamarnik, Jagannath, W. '20]

Example (max independent set): given sparse graph G(n,d/n),

max |S| s.t. S independent
SClnl

log d log d
PT = ALG =
O 7 7"
Result: no low-degree polynomial can achieve (1 + %)bidn

Theorem [Gamarnik, Jagannath, W. '20]
No polynomial f : {0, 1}(;) — R" of degree polylog(n) achieves
both of the following with probability 1 — exp(—n(1):

» fi(Y)e€[0,1/3]U[2/3,1] for most i

> {i: fi(Y) € [2/3,1]} is a near-indep set of size (1 + %)bsdn

Forthcoming: improve 1 + % —1+4e¢€ (optimal)

23/31

Optimization [Gamarnik, Jagannath, W. '20]

How to prove failure of low-degree polynomials for optimization?

24/31

Optimization [Gamarnik, Jagannath, W. '20]

How to prove failure of low-degree polynomials for optimization?

Same proof as before?

24/31

Optimization [Gamarnik, Jagannath, W. '20]

How to prove failure of low-degree polynomials for optimization?

Same proof as before?

max EH(f(Y)) = max E
fdeg D fdeg D

1

\/E<Y7 FY)™)

24/31

Optimization [Gamarnik, Jagannath, W. '20]

How to prove failure of low-degree polynomials for optimization?

Same proof as before?

max EH(f(Y)) = max E
fdeg D fdeg D

No! High-degree in f

1

\/E<Y7 F(Y)™)

24/31

Optimization [Gamarnik, Jagannath, W. '20]

How to prove failure of low-degree polynomials for optimization?

Same proof as before?

max EH(f(Y)) = max E
fdeg D fdeg D

No! High-degree in f

1

\/E<Y7 F(Y)™)

Instead, use 2 ingredients:

24/31

Optimization [Gamarnik, Jagannath, W. '20]

How to prove failure of low-degree polynomials for optimization?

Same proof as before?

max EH(f(Y)) = max E
fdeg D fdeg D

No! High-degree in f

1

\/E<Y7 FY)™)

Instead, use 2 ingredients:

> Stability of low-degree polynomials

24/31

Optimization [Gamarnik, Jagannath, W. '20]

How to prove failure of low-degree polynomials for optimization?

Same proof as before?
1
EH(f(Y)) = E—

12 B H) =

\/E<Y, F(Y)™)

fdeg D
No! High-degree in f

Instead, use 2 ingredients:
> Stability of low-degree polynomials
» Overlap gap property (OGP)
[Gamarnik, Sudan "13]

[Chen, Gamarnik, Panchenko, Rahman '17]
[Gamarnik, Jagannath '19]

24/31

Optimization [Gamarnik, Jagannath, W. '20]

“Low-degree polynomials are stable”

25/31

Optimization [Gamarnik, Jagannath, W. '20]

“Low-degree polynomials are stable”

Y ~ i.i.d. Bernoulli(p)

25/31

Optimization [Gamarnik, Jagannath, W. '20]

“Low-degree polynomials are stable”
Y ~ i.i.d. Bernoulli(p)
Interpolation path: Y@ y@) y@ ... y(»-1) y(m)

25/31

Optimization [Gamarnik, Jagannath, W. '20]

“Low-degree polynomials are stable”

Y ~ i.i.d. Bernoulli(p)

Interpolation path: Y(© y@) y@ ... y(m-1) y(m)
f:{0,1}™ — R" degree D

25/31

Optimization [Gamarnik, Jagannath, W. '20]

“Low-degree polynomials are stable”

Y ~ i.i.d. Bernoulli(p)

Interpolation path: Y(© y@) y@ ... y(m-1) y(m)
f:{0,1}™ — R" degree D

Definition: Index i is “c-bad” if

(Y @) —F(YE=D))2 > E IF (V)12

25/31

Optimization [Gamarnik, Jagannath, W. '20]

“Low-degree polynomials are stable”

Y ~ i.i.d. Bernoulli(p)

Interpolation path: Y(© y@) y@ ... y(m-1) y(m)
f:{0,1}™ — R" degree D

Definition: Index i is “c-bad” if

(Y @) —F(YE=D))2 > E IF (V)12

Theorem

Pr [fc-bad i] > p*P/c
y(©) . y(m)

25/31

Optimization [Gamarnik, Jagannath, W. '20]

“Low-degree polynomials are stable”

Y ~ i.i.d. Bernoulli(p)

Interpolation path: Y(© y@) y@ ... y(m-1) y(m)
f:{0,1}™ — R" degree D

Definition: Index i is “c-bad” if

(Y @) —F(YE=D))2 > E IF (V)12

Theorem

Pr [fc-bad i] > p*P/c
y(©) . y(m)

With non-trivial probability (over path), f's output is “smooth”

25/31

Optimization [Gamarnik, Jagannath, W. '20]

Overlap gap property (OGP): with high probability,
Y ~ G(n,d/n) has no occurrence of

26/31

Optimization [Gamarnik, Jagannath, W. '20]

Overlap gap property (OGP): with high probability,
Y ~ G(n,d/n) has no occurrence of

» S, T independent sets

26/31

Optimization [Gamarnik, Jagannath, W. '20]

Overlap gap property (OGP): with high probability,

Y ~ G(n,d/n) has no occurrence of

» S, T independent sets

> [SLIT| =~ (1+ J5)@

26/31

Optimization [Gamarnik, Jagannath, W. '20]

Overlap gap property (OGP): with high probability,

Y ~ G(n,d/n) has no occurrence of

» S, T independent sets
> [SLIT| =~ (1+ J5)@
> SNT|=o

26/31

Optimization [Gamarnik, Jagannath, W. '20]

Overlap gap property (OGP): with high probability,

Y ~ G(n,d/n) has no occurrence of

» S, T independent sets
> [SLIT| =~ (1+ J5)@
> SNT|=o

Proof: first moment method [Gamarnik, Sudan '13]

26/31

Optimization [Gamarnik, Jagannath, W. '20]

Ensemble OGP: with high probability, Vi, on the interpolation

path
y© y@) y@ ... ylm1) y(m)

there is no occurrence of

> S independent set in Y())

» T independent set in YU)
s 1

> [S|ITI~ (1 +)0

> SNT|=o

27/31

Optimization [Gamarnik, Jagannath, W. '20]

Proof that low-degree polynomials fail:

28/31

Optimization [Gamarnik, Jagannath, W. '20]

Proof that low-degree polynomials fail:

Suppose f(Y) outputs independent sets of size (1 + %)(D

28/31

Optimization [Gamarnik, Jagannath, W. '20]

Proof that low-degree polynomials fail:

Suppose f(Y) outputs independent sets of size (1 + %)(D

y©) y(@) y@ ... ylm-1) y(m)

28/31

Optimization [Gamarnik, Jagannath, W. '20]

Proof that low-degree polynomials fail:

Suppose f(Y) outputs independent sets of size (1 + %)(D

y©) y(@) y@ ... ylm-1) y(m)

Separation: f(Y(©) and f(Y(™) are “far apart”

28/31

Optimization [Gamarnik, Jagannath, W. '20]

Proof that low-degree polynomials fail:

Suppose f(Y) outputs independent sets of size (1 + %)@

y©) y(@) y@ ... ylm-1) y(m)

Separation: f(Y(©) and f(Y(™) are “far apart”
Stability: with probability > n=P, there are no big “jumps”
F(Y(®) — £(y (D)

28/31

Optimization [Gamarnik, Jagannath, W. '20]
Proof that low-degree polynomials fail:

Suppose f(Y) outputs independent sets of size (1 + %)(D

y©) y(@) y@ ... ylm-1) y(m)

Separation: f(Y(©) and f(Y(™) are “far apart”

Stability: with probability > n=P, there are no big “jumps”
- F(Y(D) — (YD)
Contradicts OGP

28/31

Future Directions?

29/31

Future Directions?

» (Detection) bound Adv<p when Q is not a product measure
» E.g. random regular graphs

29/31

Future Directions?

» (Detection) bound Adv<p when Q is not a product measure
» E.g. random regular graphs

» (Recovery) bound MMSE<p when not “signal + noise”
» E.g. sparse regression, phase retrieval

29/31

Future Directions?

» (Detection) bound Adv<p when Q is not a product measure
» E.g. random regular graphs

» (Recovery) bound MMSE<p when not “signal + noise”
» E.g. sparse regression, phase retrieval

» (Recovery) precise value of MMSE<p
» Matching AMP?

29/31

Future Directions?

» (Detection) bound Adv<p when Q is not a product measure
» E.g. random regular graphs

» (Recovery) bound MMSE<p when not “signal + noise”
» E.g. sparse regression, phase retrieval

» (Recovery) precise value of MMSE<p
» Matching AMP?

» (Optimization) prove tight results for new settings
» E.g. p-spin optimization

29/31

Future Directions?

» (Detection) bound Adv<p when Q is not a product measure
» E.g. random regular graphs

» (Recovery) bound MMSE<p when not “signal + noise”
» E.g. sparse regression, phase retrieval

» (Recovery) precise value of MMSE<p
» Matching AMP?

» (Optimization) prove tight results for new settings
» E.g. p-spin optimization

» Implications for other algorithms?
» E.g. convex programming, MCMC

29/31

References

» Detection (survey article)
Notes on Computational Hardness of Hypothesis Testing:
Predictions using the Low-Degree Likelihood Ratio
Kunisky, W., Bandeira
arXiv:1907.11636

» Recovery
Computational Barriers to Estimation from Low-Degree
Polynomials
Schramm, W.
arXiv:2008.02269

» Optimization
Low-Degree Hardness of Random Optimization Problems
Gamarnik, Jagannath, W.
arXiv:2004.12063

30/31

(extra scratch paper)

31/31

