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Phase transitions and algorithms

When are phase transitions barriers to algorithms?


Open problem in approximate counting: #BIS


Are phase transitions for #BIS-hard problems on random graphs 
barriers to efficient counting and sampling algorithms?




Phase transitions and algorithms

Adapt classical techniques from lattice spin models that complement 
cavity method / 2nd moment method


Algorithmic approach helps us prove new probabilistic results


What exactly happens at the critical temperature for Potts on random 
graphs?



Potts model
Probability distribution on assignments of q colors to vertices of G:


            


where  is the number of monochromatic edges.  


Inverse temperature  is the ferromagnetic case.

μPotts
G (σ) =

eβ M(G,σ)

ZPotts
G (q, β)

ZPotts
G (q, β) = ∑

σ

eβM(G,σ)

M(G, σ)

β ≥ 0



Random cluster model
Probability distribution on subsets of edges of G.


     


where  is the number of connected components of .


Two possible ground states:  disordered ,  ordered .


 real

μG(A) =
qc(A)(eβ − 1)|A|

ZG(q, β)
ZG(q, β) = ∑

A⊆E

qc(A)(eβ − 1)|A|

c(A) (V, A)

A = ∅ A = E

q > 0



Edwards-Sokal coupling
ZPotts

G (q, β) = ZG(q, β)

1. Pick a set of edges 
according to the random 
cluster measure


2. Determine the connected 
components



Edwards-Sokal coupling
ZPotts

G (q, β) = ZG(q, β)

1. Pick a set of edges 
according to the random 
cluster measure


2. Determine the connected 
components


3. Assign one of the q colors 
uniformly and independently 
to each connected 
component



Counting and sampling

Approximate counting: Given  output a number  so that 
  in time polynomial in n and .  FPTAS / 

FPRAS


Approximate sampling: Given  output a sample  with distribution  
so that  in time polynomial in n and .


Approaches include MCMC, correlation decay method, polynomial 
interpolation, cluster expansion

G, ϵ ̂Z
(1 − ϵ) ̂Z ≤ ZG ≤ (1 + ϵ) ̂Z 1/ϵ

G, ϵ σ ̂μ
∥μG − ̂μ∥ < ϵ 1/ϵ



Counting and sampling

For some models approximate counting and sampling is NP-hard for 
some range of parameters: hard-core, anti-ferromagnetic Ising/Potts, 
…  


For these problems it’s generally NP-hard to find a ground state: max 
independent set, proper coloring,…


For some models approximate counting and sampling is tractable for all 
graphs: ferromagnetic Ising, monomer-dimer



Counting and sampling

Then there are intermediate problems: as hard as approximating the 
number of independent sets in a bipartite graph (#BIS-hard).  
Ferromagnetic Potts, colorings in bipartite graphs, stable matchings, 
… Defined by Dyer, Goldberg, Greenhill, Jerrum


Finding a ground state is tractable but approximate counting/sampling is 
unknown



Hardness and random graphs
Slow mixing results for Markov chains: slow mixing for Potts known for structured 
families of graphs (lattices, complete graphs, random graphs)


NP-hardness for anti-ferromagnetic 2-spin systems via reductions (Sly; Sly-Sun; 
Galanis-Stefankovic-Vigoda); uses phase coexistence results for spin models on 
random bipartite graphs


#BIS-hardness via reductions (Cai-Galanis-Goldberg-Guo-Jerrum-Stefankovic-
Vigoda; Galanis-Stefankovic-Vigoda-Yang) Uses phase coexistence on random 
graphs


For hard models, random graphs often provide candidate hard instances


But what are the hard instances for #BIS-hard problems?



Main results

Thm. For ,  large enough, and all  there is an FPTAS and 
efficient sampling algorithm for the Potts and random cluster models on 
random d-regular graphs.

d ≥ 5 q = q(d) β



Main results
Thm. For  and  large enough, there exists  so that:


1. For  the free energy is analytic and  exhibits exponential 
decay of correlations whp.


2.  converges locally to  and  for  and  
respectively


3. The relative weights of the ordered and disordered states at  
converge to given random variables (a function of small cycle counts)

d ≥ 5 q = q(d) βc(q, d)

β ≠ βc μn

μn μfree μwire β < βc β > βc

β = βc



Previous results

For Potts, a formula for the free energy is known (Bethe formula) and 

 for all d-regular, locally tree-like graphs 

(Galanis, Stefankovic, Vigoda,Yang; Dembo-Montanari-Sly-Sun)  


GSVY give a weak form of phase coexistence at  (inverse polynomial 
bound on weights); this is enough to obtain slow mixing of Swendsen-
Wang at .  They use their results to obtain #BIS-hardness for Potts on 
bounded-degree graphs

βc = log
q − 2

(q − 1)1−2/d − 1

βc

βc



Previous results

Local weak convergence (pick , pick , look at local neighborhood) 
results for Ising (Dembo-Montanari, Montanari-Mossel-Sly)


Distribution of log Z via cycle counts / small subgraph conditioning (e.g 
Coja-Oghlan-Efthymiou-Jaafari-Kang-Kapetanopoulos,… )

σ v



Previous algorithmic results
High temperature (within the uniqueness regime): (Blanca-Galanis-
Goldberg-Stefankovic-Vigoda-Yang)


Low temperature: for Potts when  (Jenssen-Keevash-P.) 


Large q R.C. model on  at all temperatures (Borgs-Chayes-Helmuth-
P.-Tetali)


Based on the algorithmic approach of polymer models and the cluster 
expansion (Helmuth-P.-Regts)

β ≫ βc

ℤd



Techniques

We aim to apply the lattice techniques (Pirogov-Sinai theory and the 
cluster expansion) to random graphs.


Complication is that we lose some geometry and transitivity


We make up for these with expansion.


We use polymer models instead of contour models.


We need to deal with the non-local random cluster interaction.



Step 1: almost all or nothing

Use expansion properties to show that for q large, with probability 
 a sample from the RC model consists of at least .9 or at 

most .1 fraction of edges.  (Not hard)


Write 


Suffices to approximate  and 

1 − exp(−Θ(n))

Z = Zdis + Zord + Zerr

Zdis Zord



Polymer models and cluster expansion

Rewrite partition function as a sum over collections of disjoint geometric 
objects (polymers) of product of polymer weights


If weights decay fast enough as a function of size, then the cluster 
expansion, a power series for log Z, converges


Weights must factorize and decay




Step 2: disordered 
Express disordered configurations in terms of deviations from the empty 
configuration

Polymers are connected components of occupied edges 

w(γ) = q1−|γ|(eβ − 1)|E(γ)|



Step 3: ordered 
Express ordered configurations in terms of defects from the all-occupied 
configuration



Step 3: ordered 

Define boundary by starting with unoccupied edges; inductively add all edges 
incident to any vertex with at least 5/9-fraction of its edges in boundary.  


Polymers are connected components of the boundary



w(γ) = qc′ (γ)(eβ − 1)−|Eu(γ)|



Consequences

For q large, ordered and disordered cluster expansions converge in 
overlapping range of .  


This gives algorithms at all temperatures.


Convergent cluster expansion gives properties like exponential decay of 
correlations, large deviation bounds, CLT’s…

β



Open questions
Prove that for the random cluster model on random d-regular graphs, 




Extend the current results to all  (more refined def of ordered polymers)


Apply the second-moment method / cavity method to the random cluster model 


Give sampling/counting algorithms for hard-core on random bipartite graphs 
for all 


Make other probabilistic techniques algorithmic

βc = log
q − 2

(q − 1)1−2/d − 1

d ≥ 3

λ



Thank you!


