Sampling from the random cluster model at all temperatures on random graphs **Will Perkins**

joint w/ Tyler Helmuth (Durham) & Matthew Jenssen (Birmingham)

- UIC

Phase transitions and algorithms

When are **phase transitions** barriers to **algorithms**?

Open problem in approximate counting: **#BIS**

barriers to efficient counting and sampling algorithms?

- Are phase transitions for **#BIS-hard problems on random graphs**

Phase transitions and algorithms

cavity method / 2nd moment method

Algorithmic approach helps us prove new probabilistic results

graphs?

- Adapt classical techniques from lattice spin models that complement
- What exactly happens at the **critical temperature** for Potts on random

$$\mu_G^{\text{Potts}}(\sigma) = \frac{e^{\beta M(G,\sigma)}}{Z_G^{\text{Potts}}(q,\beta)}$$

$$Z_G^P$$

where $M(G, \sigma)$ is the number of monochromatic edges.

Inverse temperature $\beta \geq 0$ is the ferromagnetic case.

Potts model

Probability distribution on assignments of q colors to vertices of G:

$$\sum_{\sigma} e^{\beta M(G,\sigma)} = \sum_{\sigma} e^{\beta M(G,\sigma)}$$

Random cluster model

Probability distribution on subsets of edges of G.

$$\mu_G(A) = \frac{q^{c(A)}(e^{\beta} - 1)^{|A|}}{Z_G(q, \beta)} \quad Z_G(q, \beta) = \sum_{A \subseteq E} q^{c(A)}(e^{\beta} - 1)^{|A|}$$

where c(A) is the number of connected components of (V, A).

Two possible ground states: **disordered** $A = \emptyset$, **ordered** A = E.

q > 0 real

- Pick a set of edges according to the random cluster measure
- 2. Determine the connected components

Edwards-Sokal coupling

- Pick a set of edges according to the random cluster measure
- 2. Determine the connected components
- Assign one of the q colors uniformly and independently to each connected component

Edwards-Sokal coupling

Counting and sampling

Approximate counting: Given G, ϵ output a number \hat{Z} so that **FPRAS**

so that $\|\mu_G - \hat{\mu}\| < \epsilon$ in time polynomial in n and $1/\epsilon$.

interpolation, cluster expansion

 $(1 - \epsilon)\hat{Z} \leq Z_G \leq (1 + \epsilon)\hat{Z}$ in time polynomial in n and $1/\epsilon$. FPTAS /

- **Approximate sampling:** Given G, ϵ output a sample σ with distribution $\hat{\mu}$
- Approaches include MCMC, correlation decay method, polynomial

Counting and sampling

. . .

independent set, proper coloring,...

graphs: ferromagnetic lsing, monomer-dimer

For some models approximate counting and sampling is NP-hard for some range of parameters: hard-core, anti-ferromagnetic lsing/Potts,

- For these problems it's generally NP-hard to find a ground state: max
- For some models approximate counting and sampling is tractable for all

Counting and sampling

number of independent sets in a bipartite graph (**#BIS-hard**). ... Defined by Dyer, Goldberg, Greenhill, Jerrum

unknown

- Then there are intermediate problems: as hard as approximating the Ferromagnetic Potts, colorings in bipartite graphs, stable matchings,
- Finding a ground state is tractable but approximate counting/sampling is

Hardness and random graphs

Slow mixing results for Markov chains: slow mixing for Potts known for structured families of graphs (lattices, complete graphs, random graphs)

NP-hardness for anti-ferromagnetic 2-spin systems via reductions (Sly; Sly-Sun; Galanis-Stefankovic-Vigoda); uses phase coexistence results for spin models on random bipartite graphs

#BIS-hardness via reductions (Cai-Galanis-Goldberg-Guo-Jerrum-Stefankovic-Vigoda; Galanis-Stefankovic-Vigoda-Yang) Uses phase coexistence on random graphs

For hard models, random graphs often provide candidate hard instances

But what are the hard instances for #BIS-hard problems?

Thm. For $d \ge 5$, q = q(d) large enough, and all β there is an FPTAS and efficient sampling algorithm for the Potts and random cluster models on random d-regular graphs.

decay of correlations whp.

2. μ_n converges locally to μ_{free} as respectively

- **Thm.** For $d \ge 5$ and q = q(d) large enough, there exists $\beta_c(q, d)$ so that:
- 1. For $\beta \neq \beta_c$ the free energy is analytic and μ_n exhibits exponential

nd
$$\mu_{\text{wire}}$$
 for $\beta < \beta_c$ and $\beta > \beta_c$

3. The relative weights of the ordered and disordered states at $\beta = \beta_c$ converge to given random variables (a function of small cycle counts)

Previous results

 $\beta_c = \log \frac{q-2}{(a-1)^{1-2/d}-1}$ for all d-regular, locally tree-like graphs

bounded-degree graphs

- For **Potts**, a formula for the free energy is known (Bethe formula) and
- (Galanis, Stefankovic, Vigoda, Yang; Dembo-Montanari-Sly-Sun)
- GSVY give a weak form of phase coexistence at β_c (inverse polynomial bound on weights); this is enough to obtain slow mixing of Swendsen-Wang at β_c . They use their results to obtain **#BIS-hardness** for Potts on

Previous results

results for Ising (Dembo-Montanari, Montanari-Mossel-Sly)

Coja-Oghlan-Efthymiou-Jaafari-Kang-Kapetanopoulos,...)

- **Local weak convergence** (pick σ , pick v, look at local neighborhood)
- **Distribution of log Z** via cycle counts / small subgraph conditioning (e.g.

Previous algorithmic results

Goldberg-Stefankovic-Vigoda-Yang)

Low temperature: for Potts when $\beta \gg \beta_c$ (Jenssen-Keevash-P.)

P.-Tetali)

expansion (Helmuth-P.-Regts)

- High temperature (within the uniqueness regime): (Blanca-Galanis-
- Large q R.C. model on \mathbb{Z}^d at all temperatures (Borgs-Chayes-Helmuth-

Based on the algorithmic approach of polymer models and the cluster

Techniques

cluster expansion) to random graphs.

Complication is that we lose some geometry and transitivity

We make up for these with **expansion**.

We use polymer models instead of contour models.

We need to deal with the **non-local random cluster interaction**.

- We aim to apply the lattice techniques (Pirogov-Sinai theory and the

Step 1: almost all or nothing

Use expansion properties to show that for q large, with probability **most**.1 fraction of edges. (Not hard)

Write
$$Z = Z_{dis} + Z_{ord} + Z_{err}$$

Suffices to approximate Z_{dis} and Z_{ord}

 $1 - \exp(-\Theta(n))$ a sample from the RC model consists of at least .9 or at

Polymer models and cluster expansion

objects (polymers) of product of polymer weights

expansion, a power series for log Z, converges

Weights must factorize and decay

- **Rewrite partition function** as a sum over collections of disjoint geometric
- If weights decay fast enough as a function of size, then the cluster

Express disordered configurations in terms of deviations from the empty configuration

Polymers are connected components of occupied edges

 $w(\gamma) = q^{1-|\gamma|} (e^{\beta} - 1)^{|E(\gamma)|}$

Step 2: disordered

configuration

Step 3: ordered

Express ordered configurations in terms of defects from the all-occupied

Define **boundary** by starting with unoccupied edges; inductively add all edges incident to any vertex with at least **5/9-fraction of its edges in boundary**.

Polymers are connected components of the boundary

$$w(\gamma) = q^{c'(\gamma)} (e^{\beta} - 1)^{-|E_u(\gamma)|}$$

For q large, ordered and disordered cluster expansions converge in overlapping range of β .

This gives algorithms at all temperatures.

correlations, large deviation bounds, CLT's...

Consequences

Convergent cluster expansion gives properties like exponential decay of

Prove that for the random cluster model on random d-regular graphs, $\beta_c = \log \frac{q-2}{(q-1)^{1-2/d} - 1}$

for all λ

Make other probabilistic techniques algorithmic

Open questions

- Extend the current results to all $d \geq 3$ (more refined def of ordered polymers)
- Apply the second-moment method / cavity method to the random cluster model
- Give sampling/counting algorithms for hard-core on random bipartite graphs

