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Algorithms

● Langevin algorithm: η white 
Gaussian with variance 2T

● Gradient Flow GF: no η term

variations :
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term

● Stochastic GF: ∇ acts on 
batches of the training set 
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Confidential Customized for Lorem Ipsum LLC Version 1.0

Trivialization is not necessary to find the optimal solution.

In the analysed model, we show that only some local 
minima are relevant for the algorithmic performance.

We can characterize the algorithmic threshold.



● Dynamical Mean Field Theory [Mézard, Parisi, Virasoro ’87; Sompolinsky, 
Crisanti, Sommers ‘88; Georges, Kotliar, Krauth, Rozenberg ’96; Agoritsas, 
Biroli, Urbani, Zamponi ‘18; Mignacco, Krzakala, Urbani, Zdeborová ‘20; 
Krishnamurthy, Can, Schwab ‘20]

characterize the dynamics
● Linear Neural Networks [Bős, Opper ’97; Saxe, McClelland, Ganguli ‘13]

● One-pass SGD [Saad, Solla ’95 ; Saad ’09; Goldt, Advani, Saxe, Krzakala, 
Zdeborová '19; Goldt, Mézard, Krzakala, Zdeborová ‘19]

● SGD in 2-layer networks with diverging hidden layer size [Rotskoff, 
Vanden-Eijnden ’18; Mei, Montanari, Nguyen ’18; Chizat, Bach '18]



characterize the dynamics
● Dynamical Mean Field Theory [Mézard, Parisi, Virasoro ’87; Sompolinsky, 

Crisanti, Sommers ‘88; Georges, Kotliar, Krauth, Rozenberg ’96; Agoritsas, 
Biroli, Urbani, Zamponi ‘18; Mignacco, Krzakala, Urbani, Zdeborová ‘20; 
Krishnamurthy, Can, Schwab ‘20]
➢ disordered systems, recurrent neural networks, inference and optimization problems

➢ GD, SGD, Langevin dynamics

➢ it maps the dynamical equation into an effective dynamical equation with coloured noise 
(whose stochastic process depends on the dynamics itself!)



Spiked Matrix- 
Tensor Model

With:



Spiked Matrix- 
Tensor Model

● Closed expression for DMFT

● Coexistence of many phases 
for Δ2,Δp= O(1)

● In general, many techniques 
can be applied



Spiked Matrix- 
Tensor Model

Call Q(x) = x2/2Δ2 + x
p/pΔp :



    Phase diagram AMP

The 3 phases of the Approximate Message 
Passing AMP phase diagram:

Easy : AMP from random initialization 
finds the optimal solution

Hard : the optimal solution is better than 
random guessing but AMP cannot find it if 
initialized at random

Impossible : the problem is information 
theoretically impossible.



    Phase diagram Langevin algorithm

Extrapolate numerically the threshold from 
DMFT equations.

Langevin algorithm with T=1 in the long 
time limit samples the posterior 
distribution. Bayes optimal.



    Phase diagram gradient flow

Extrapolate numerically the threshold from 
DMFT equations.

Gradient flow has a worse algorithmic 
threshold then Langevin. As expected.



What does the landscape of this 
model look like ?

Kac-Rice to characterize the 
distribution of minima [Ben Arous, 
Mei, Montanari, Nica ‘17;  Ros, Ben 
Arous, Biroli, Cammarota ‘18;  SM, 
Krzakala, Urbani, Zdeborová ‘19]

Complexity: Σ=log[avg # minima]/N
     Trivialization transition
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Stability of threshold states

● Threshold states :

● Stability :

    Phase diagram (so far)



    Phase diagram (final)

Stability of threshold states

● Threshold states :
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Conclusions

● GD can escape positive 
complexity regions,

● role of the stability of the 
threshold states.

New results

● GD in phase retrieval 
[2006.06997]: 
from ɑ=#samples/dimension  
critical O(log N) to O(1)

    Phase diagram (final)



Thank you.
Refs. for this talk 

❖ Marvels and pitfalls of the Langevin algorithm in noisy high-dimensional inference. SSM, Biroli, 
Cammarota, Krzakala, Urbani, Zdeborova. PRX 10, 011057;  

❖ Thresholds of descending algorithms in inference problems. SSM, Zdeborova. J.Stat.Mech., 
2020(3):034004;

❖ Who is afraid of big bad minima? analysis of gradient-flow in spiked matrix-tensor models. SSM, 
Biroli, Cammarota, Krzakala, Urbani, Zdeborova. NeurIPS'19;

❖ Passed&Spurious: Descent algorithms and local minima in spiked matrix-tensor models. SSM, 
Krzakala, Urbani, Zdeborova. ICML'19.  


