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Background and Motivation

Problem: Is there any relationship between the roots of two polynomials f, g and the roots of
their average (f + g)/2?

@ in general, no.

o the classical notion of interlacing and common interlacing polynomials.

o The existence of common interlacing is equivalent to some real-rootedness condition.
o interlacing and real-rootedness are entirely univariate notions.

@ can be viewed as restrictions of multivariate phenomena.

o Two important generalizations of real-rootedness to more than one variable: real stability
and hyperbolicity (isomorpism).



Stability and Hyperbolicity

@ A polynomial f € C[z] is called stable if every root z = (zi, . .. , z,) satisfies Im(z;) <0
for some j.

@ A polynomial f is real stable if it is stable and all of its coefficients are real.
© A univariate polynomial is real stable if and only if it is real rooted.

© A homogeneous f € R[z] is called hyperbolic w.r.t e € R", if f(e) # 0 and for every
x € R” the real function r — f(x + re) has only real roots.

A polynomial f € R[z] is real stable

the (unique) homogenization polynomial w.r.t. the variable zo is hyperbolic w.r.t.
every vector e € R""! such that ey = 0 and ej > 0forall 1 <j < n(Garding89)
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Stable Polynomials

A polynomial f € CJ[z] is called stable provided whenever
Im(z) = (Im(z1),...,Im(z,)) > 0, (Im(z;) > O for all j), f(z1, ... ,2.) #ZO.

Let H¢ denotes the set {z € C" : Im(z;) > 0,1 <j < n}.
f is stable if it has no roots in H¢.

Note that Im(H¢) =: RY, is the positive orthant.

[ is stable if and only if {Im(z) = (Im(z1),...,Im(z:)) : f(z) =0} N (Rx0)" =0
[Jorgens,Theobald, Wolff]. J

Question: Can this idea be generalized?
@ The cone

@ the imaginary projection of a polynomial?



Imaginary Projections of Polynomials

Geometric Notion: Imaginary projections of polynomials

Given a polynomial f € Clz], define Z(f) = {Im(z) : z € V(f)}.

We call Z(f) the imaginary projection of f.

The underlying projection is
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Figure: Imaginary Projections of f(z1,22) = 23 + 23 + 1



Imaginary Projections of Polynomials

Pictures
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Figure: Imaginary Projections of f(z1,22) = 23 — 23 — land f(z1,22) = —22 + 23 — 1



Imaginary Projections of Polynomials

Properties of the Imaginary projection

@ Z(f) is a semialgebraic set as it is the projection of a real algebraic variety.
o It is not always closed.

e Forn > 2, itis always unbounded.

If f is irreducible, then Z(f) is connected since the map (1) is continuous.

o Components of the complement are convex and finite in number [Jorgens, Theobald,
Wolff]

Motivation:

o V(f) = R",z+— (|z1],- . ., |za]), (known as semialgebraic amoeba)

@ The amoeba

A(f) = {(oglzil, ..., log|zl) : z € V(f) N (C*)"},
@ the coamoeba
coA(f) = {(arg(z1), ..., arg(z)) : z € V(f) N (C7)"},
e V(f) — R",z+— Im(z) orz — Re(z)




Imaginary Projections of Polynomials

Conic Stable polynomials

Definition
Let K C R”" be a proper cone. A multivariate polynomial f € C[z] = C|[zy, . ..
K-stable if Z(f) N Int K = @, where Int X is the interior of K.

, Zn] is called

f is stable if and only if Z(f) N (Rx0)" = 0, K is the non-negative orthant.

Examples: PSD stable and Determinantal polynomials

If f € R[Z] on the symmetric matrix variables Z = (z;)uxx is S; -stable, then f is called positive
semidefinite-stable (for short, psd-stable).

@ Psd-stability of f € C(Z) can be viewed as stability w.r.t the Siegel upper half-space

He = {A € C**¢ symmetric : Im(A) = (Im(ay))gx is positive definite}

o The determinantal polynomial f(z) = det(Ao + >_7_, Ajz;) is real stable or the zero
polynomial where A;’s are positive semidefinite d x d-matrices and Ay is a Hermitian

d X d-matrix [Borcea, Brindén].



Imaginary Projections of Polynomials

Relationship

Question: The class of stable polynomials C the class of psd stable polynomials
~~

K

Not all stable polynomials are psd-stable )

o The determinantal polynomial
flz,22,3) = (1 + Z3)2 — Z% =(an+z—2)(zt+zs+2)
is not stable, because (1,2,1) € Z(f) N R,

21

@ In the matrix variables Z = [Z ;2} , the polynomial f(Z) = f(z1, 22, z3) is psd-stable.
2 B

Not all determinantal polynomials are psd-stable J

A non psd-stable determinantal polynomial is the determinant of the spectrahedral

. 21+ 2 ¥4
representation of the open Lorentz cone g(z) = det ( ! . } . § . ) =4-3-3
2 1—23




Connection with hyperbolic polynomials

Imaginary Projections and Hyperbolic polynomials

Definition

Letf € R[z] be homogeneous. Then f is called hyperbolic w.r.t e € R" , if f(e) # 0 and for
every X € R” the real function # — f(x + re) has only real roots.

Definition

If f is hyperbolic w.r.t e € R", we call C(f,e) := {x € R" : f(x +t¢) =0 =1 < 0} the
hyperbolicity cone of f with respect to e.

| \

@ C(f,e) is open and convex (Garding, 1959).
o £ is hyperbolic to every point e in its hyperbolicity cone and C(f,e) = C(f, e ).

Theorem:Jorgens-Theobald

Let f € R[z] be homogeneous. Then the hyperbolicity cones of f coincide with the complement
components of Z(f).




Connection with hyperbolic polynomials

Connection:Hyperbolic Polynomials

A hyperbolic polynomial f w.r.t e is c1(C(f, e))-stable.
The FAE:

@ A hyperbolic polynomial f € R[z] is K-stable
@ f is hyperbolic w.r.t every point in int K
@ Int K C C(f,e) for some hyperbolicity direction e of f.

o The initial form of f, denoted by in(f), is defined as in(f)(z) = f4(0, z),
where fj, is the homogenization of f w.r.t. the variable zo.

Theorem:[Dey, Gardoll, Thoebald]

If a degree d polynomial f = det(Ao + >_7_, zjA;) where A;,j =0, ..., n are Hermitian
matrices, and there exists an e € R" with > 77, Aje; > 0, then

@ in(f) is hyperbolic and
@ every hyperbolicity cone of in(f) is contained in Z(f)°.




Connection with hyperbolic polynomials

Idea of the proof

Since f is of degree d, in(f) = det(3__, Ajz).
The initial form in(f) has exactly the two hyperbolicity cones
Ci={xeR": 7 Ax>0}andCo={x€R" : 377 Ap; < 0} [Mariol9].

Show that C; C Z(f)°. Suppose e € Ci.

For every x € R", we have

f(X —+ te) = det(A() —+ Zijj =+ [ZA]CJ').

=1 =1

@ Since " Aje; = 0, we obtain
j=14%%1

f(X + le) = det(z AjEj) det ((ZAjej)_]/z(Ao + ZAJ'XJ*)(ZAJ'EJ*)_]ﬂ + ﬂ) .
j=1 j=1 j=1 j=1

There cannot be a non-real vector a + ie s.t f(a + ie) = 0.
ec I(f)".



Connection with hyperbolic polynomials

Quadratic Polynomials

Known Classification
Every real quadric in R" is affinely equivalent to a quadric given by one of the three (normal

form) types,

M TLE N E (1<p<rr>1,p>%),
@ LA O<p<rr>1),

<

am > Z -3 7+ (1<p<rr>1,p>7%).

o Letf € R[z] be a quadratic polynomial of the form

f=2Az+bz+c¢ )

withA € sym,,b € R"andc € R.

o Itis well known that a non-degenerate quadratic form f € R[z] is hyperbolic if and only if
A has signature (n — 1, 1) [Garding59]

@ There are two unbounded components in the complement Z(f)° [Jorgens, Theobald].




Connection with hyperbolic polynomials

Homogeneous and non-homogeneous

Homogeneous Non-homogeneous
f=1"Az f=2"Az+b"z+c
fisof type (I) with r = 1 f is of type (II) with p = 1 (sub-case I) and
-A has Lorentzian signature (n — 1, 1) f is of type (II) with p = n — 1 (sub-case II)

I(f) = {y e R" : y'Ay < 0}
() = {{YGR" =YLy S 1hp=1,

{yeR : 35y >ntu{0hp=n

Hyperbolicity cone is Lorentz cone p = 1,no suitable connected components
p=n—1,Int S C C(in(f)) for every full
dimensional cone S.
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Figure: Lorentz cone:(y1, y2,y3) = y% - y% — y% >0

Back to



Connection with hyperbolic polynomials

Spectrahedral Representation:Quadratic Polynomials

Hyperbolicity cones are spectrahedral )

Letn > 3 and f = 2" Az + b"z 4 ¢ € R[z] be quadratic of the form of type (IT) with p = n — 1.
Then there exists a linear form £(z) in z such that —£(z)"~* in(f) has a determinantal
representation. In particular, the closure of each unbounded component of Z(f)° is a
spectrahedral cone.

Computational Algorithm
@ —A has Lorentzian signature.
o Find normal form of in(f) = z" Az, i.e., in(f)(z) = in(g)(Tz) where
°og=331" lz —2+1
e A=LDL" D= Dlag(d]7 ...,dn_1,dy) suchthatd,...,d,—; > 0andd, < 0and

T= Dlag \/T7 EERE IV rl 1V |dn LT

o Let g € C[z] and S € R™*" be an invertible matrix. Then, Z(g(5z)) = S™'Z(g(z)).



Connection with hyperbolic polynomials

Computational Algorithm:continuation

@ Z(g)° has the two unbounded conic components
o These are the open Lorentz cone and its negative.

@ Their closures are exactly the closures of the hyperbolicity cones of the initial form in(g)
of g.

@ Open Lorentz cone has the spectrahedral representation

L(z) := wl : -0,

21 e n—1 Zn

o Note that 722 in(g) = — det(L(z))
o (Tz), provides £(z).

o —detF(z) = ((Tz),)" *in(f)



Certificate to Conic stability

Key Idea: Spectrahedral Representations

The cone K and the conic components of Z(f)° are spectrahedral, conic stability turns
into a problem of spectrahedral containment.

Why? and How? int K C C(in(f))

Usual stability: K non-negative orthant, is the positive semidefiniteness region of the linear
matrix pencil
n
0 >0
X) =D My
j=1

with M, ,-ZO = Ej;, where Ej; is the matrix with a one in position (i,) and zeros elsewhere.
PSD-stability: K is the cone of psd matrices. The matrix pencil is
Mpsd Z Mpsdxtj
ij=1

with symmetric matrix variables X = (x;) and M}'fd Ey + Eji) = L(eie] + eel)



Certificate to Conic stability

Positive maps

Set-Up

Let U(x) = 37, Upy and V(x) = 307, Vx;
The spectrahedra Sy := {x € R" : U(x) = 0}, and Sy := {x € R" : V(x) = 0} are
cones.

LetU = span(Uy, ..., U,) C Herm; (or sym,) and V = span(Vi, ..., V,) C Hermy (or
sym,).
If Uy,..., U, are linearly independent, then the linear mapping ®yv : U — V,

Dy (U;) := Vi, 1 <i < n,is well defined.

A linear map ® : U — V is called positive if ®(U) = 0 for any U € U with U > 0 for
given two linear subspaces «{ C Herm; and V C Herm; (ord C Sy and V C S)).

The d-multiplicity map ®, on the set of all Hermitian d X d block matrices with symmetric
n X n-matrix entries is defined by

d
ij=1"

Al = (P (4y)

The map & is called d-positive if the d-multiplicity map ®, (viewed as a map on a
Hermitian matrix space) is a positive map.

® is called completely positive if ®,4 is a positive map for all d > 1.



Certificate to Conic stability

Spectrahedral Containment

Let Ui,...,U, C Hermy (or, Uy, . .., U, C sym,, respectively) be linearly independent and
Sy # (0. Then for the properties

@ the semidefinite feasibility problem

k
C=(Cy)i,_; =0andV, =Y (Uy)iCyforp=1,....n 3)
ij=1
has a solution with Hermitian (respectively symmetric) matrix C,
Q@ dyy is completely positive,
@ yy is positive,
Q@ Su C Sy (containment problem for spectrahedra),

the implications and equivalences (1) = (2) = (3) <= (4) hold, and if / contains a
positive definite matrix, (1) <= (2).



Certificate to Conic stability

Determinantal polynomials

Main Result
Letf = det(Ao + >7_, Ajzj) with Hermitian matrices Ao, . . ., A, be a degree d determinantal
polynomial such that

@ in(f) is irreducible and

o there exists e € R" with 357 | Aje; > 0.
Let M(x) = 377, M;x; with symmetric [ x [-matrices be a pencil of the cone K. If there exists a
Hermitian block matrix C = (Cy); -, with blocks Cj; of size d x d and

1
C=(Cpijm1 = 0, Vp=1,...,n: cA, = > (M));C; @)

ij=1

for some o € {—1, 1}, then f is K-stable.

Idea:

Deciding whether such a block matrix C exists is a semidefinite feasibility problem. J




Certificate to Conic stability

Borcea-Brindén stability criterion

Revisit: the stability criterion for a determinantal polynomial.
@ View Choi matrix C as a block diagonal matrix C = (C,-;)ﬁi | with diagonal blocks C;; of
size d x d and vanishing non-diagonal blocks Cj; (i # j).
@ such that
A, =Cp forp=1,...,n,

@ stability criterion in main Theorem is satisfied if and only if the matrices A, ..., A, are
positive semidefinite

The determinantal polynomial f(z) = det(Ao + >, Ajz;) is real stable or the zero
polynomial if and only if the matrices Ay, . . ., A, are positive semidefinite. J




Certificate to Conic stability

Example

o Letg(z1,22,23) := 3127 + 322123 + 823 — 8z1z2 — 1623

@ A determinantal representation of g is given by det (42] +2m atdn ), and

21 +4z2  8z1 +4z3

e atz = (0,0,1)”, the matrix polynomial is positive definite.

Let M(x) denote the linear matrix pencil of the psd cone symj .

Then the psd-stability of g follows from the above Theorem

by the Choi matrix

N o = A

oSN w —

oo

A OO
|



Certificate to Conic stability

Open problems

@ Characterization (includes certification)

Closure property:operations which preserve conic stability)

Connection with log-concave (Lorentzian ) polynomials

generalize Hyperbolic programming?



te to Conic stability

Thank You for your attention!



Certificate to Conic stability

Definition

Let f be a degree n polynomial with real roots {«}, and let g be degree n or n — 1 with real
roots { i} (ignoring 3, in the degree n — 1 case). We say that g interlaces f if their roots
alternate, i.e.,

,Bn < ay Sﬁn—l < 61 < ay,

and the largest root belongs to f.

If there is a single g which interlaces a family of polynomials fi, . . ., fi,, we say that they have a
common interlacing. Back to

Let fi,...,fm be degree n polynomials. All of their convex combinations y ;- ff; have real
roots if and only if they have a common interlacing.

e For example, f << g, if the univariate polynomials f(x + re), g(x + re) are in proper
position for all x € R", e € R%,, \ {0}.
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