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Background and Motivation

Problem: Is there any relationship between the roots of two polynomials f , g and the roots of
their average (f + g)/2?

in general, no.

the classical notion of interlacing and common interlacing polynomials. here

The existence of common interlacing is equivalent to some real-rootedness condition.

interlacing and real-rootedness are entirely univariate notions.

can be viewed as restrictions of multivariate phenomena.

Two important generalizations of real-rootedness to more than one variable: real stability
and hyperbolicity (isomorpism).
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Stability and Hyperbolicity

1 A polynomial f ∈ C[z] is called stable if every root z = (z1, . . . , zn) satisfies Im(zj) ≤ 0
for some j.

2 A polynomial f is real stable if it is stable and all of its coefficients are real.

3 A univariate polynomial is real stable if and only if it is real rooted.

4 A homogeneous f ∈ R[z] is called hyperbolic w.r.t e ∈ Rn, if f (e) 6= 0 and for every
x ∈ Rn the real function t→ f (x + te) has only real roots.

A polynomial f ∈ R[z] is real stable
m

the (unique) homogenization polynomial w.r.t. the variable z0 is hyperbolic w.r.t.
every vector e ∈ Rn+1 such that e0 = 0 and ej > 0 for all 1 ≤ j ≤ n (Gårding89)
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Stable Polynomials

A polynomial f ∈ C[z] is called stable provided whenever
Im(z) = (Im(z1), . . . , Im(zn)) > 0, (Im(zj) > 0 for all j), f (z1, . . . , zn) 6= 0.

LetHn
C denotes the set {z ∈ Cn : Im(zj) > 0, 1 ≤ j ≤ n}.

f is stable if it has no roots inHn
C.

Note that Im(Hn
C) =: Rn

>0 is the positive orthant.

f is stable if and only if {Im(z) = (Im(z1), . . . , Im(zn)) : f (z) = 0} ∩ (R>0)
n = ∅

[Jörgens,Theobald, Wolff].

Question: Can this idea be generalized?
1 The cone
2 the imaginary projection of a polynomial?
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Imaginary Projections of Polynomials

Geometric Notion: Imaginary projections of polynomials

Definition

Given a polynomial f ∈ C[z], define I(f ) = {Im(z) : z ∈ V(f )}.

We call I(f ) the imaginary projection of f .

The underlying projection is

Im : R2n → Rn, (x1, . . . , xn, y1, . . . , yn) 7→ (y1, . . . , yn), for zj = xj + iyj (1)

Figure: Imaginary Projections of f (z1, z2) = z2
1 + z2

2 + 1
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Imaginary Projections of Polynomials

Pictures

Figure: Imaginary Projections of f (z1, z2) = z2
1 − z2

2 − 1 and f (z1, z2) = −z2
1 + z2

2 − 1
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Imaginary Projections of Polynomials

Properties of the Imaginary projection

I(f ) is a semialgebraic set as it is the projection of a real algebraic variety.

It is not always closed.

For n ≥ 2, it is always unbounded.

If f is irreducible, then I(f ) is connected since the map (1) is continuous.

Components of the complement are convex and finite in number [Jörgens, Theobald,
Wolff]

Motivation:

V(f )→ Rn, z 7→ (|z1|, . . . , |zn|), (known as semialgebraic amoeba)

Definition

The amoeba
A(f ) = {(log |z1|, . . . , log |zn|) : z ∈ V(f ) ∩ (C∗)n},

the coamoeba
coA(f ) = {(arg(z1), . . . , arg(zn)) : z ∈ V(f ) ∩ (C∗)n},
V(f )→ Rn, z 7→ Im(z) or z 7→ Re(z)
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Imaginary Projections of Polynomials

Conic Stable polynomials

Definition

Let K ⊆ Rn be a proper cone. A multivariate polynomial f ∈ C[z] = C[z1, . . . , zn] is called
K-stable if I(f ) ∩ Int K = ∅, where Int K is the interior of K.

f is stable if and only if I(f ) ∩ (R>0)
n = ∅, K is the non-negative orthant.

Examples: PSD stable and Determinantal polynomials

If f ∈ R[Z] on the symmetric matrix variables Z = (zij)n×n is S+
n -stable, then f is called positive

semidefinite-stable (for short, psd-stable).

Psd-stability of f ∈ C(Z) can be viewed as stability w.r.t the Siegel upper half-space

Hg = {A ∈ Cg×g symmetric : Im(A) = (Im(aij))g×g is positive definite}

The determinantal polynomial f (z) = det(A0 +
∑n

j=1 Ajzj) is real stable or the zero
polynomial where Aj’s are positive semidefinite d × d-matrices and A0 is a Hermitian
d × d-matrix [Borcea, Brändén].
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Imaginary Projections of Polynomials

Relationship

Question: The class of stable polynomials ⊆︸︷︷︸
?

the class of psd stable polynomials

Not all stable polynomials are psd-stable

The determinantal polynomial

f (z1, z2, z3) = (z1 + z3)
2 − z2

2 = (z1 + z3 − z2)(z1 + z3 + z2)

is not stable, because (1, 2, 1) ∈ I(f ) ∩ R3
>0.

In the matrix variables Z =

[
z1 z2

z2 z3

]
, the polynomial f (Z) = f (z1, z2, z3) is psd-stable.

Not all determinantal polynomials are psd-stable

Example

A non psd-stable determinantal polynomial is the determinant of the spectrahedral

representation of the open Lorentz cone g(z) = det

(
z1 + z3 z2

z2 z1 − z3

)
= z2

1 − z2
2 − z2

3.
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Connection with hyperbolic polynomials

Imaginary Projections and Hyperbolic polynomials

Definition

Let f ∈ R[z] be homogeneous. Then f is called hyperbolic w.r.t e ∈ Rn , if f (e) 6= 0 and for
every x ∈ Rn the real function t 7→ f (x + te) has only real roots.

Definition

If f is hyperbolic w.r.t e ∈ Rn, we call C(f , e) := {x ∈ Rn : f (x + te) = 0⇒ t < 0} the
hyperbolicity cone of f with respect to e.

C(f , e) is open and convex (Gårding, 1959).

f is hyperbolic to every point e
′

in its hyperbolicity cone and C(f , e) = C(f , e
′
).

Theorem:Jörgens-Theobald

Let f ∈ R[z] be homogeneous. Then the hyperbolicity cones of f coincide with the complement
components of I(f ).
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Connection with hyperbolic polynomials

Connection:Hyperbolic Polynomials

A hyperbolic polynomial f w.r.t e is cl(C(f , e))-stable.
The FAE:

1 A hyperbolic polynomial f ∈ R[z] is K-stable
2 f is hyperbolic w.r.t every point in int K
3 Int K ⊆ C(f , e) for some hyperbolicity direction e of f .

The initial form of f , denoted by in(f ), is defined as in(f )(z) = fh(0, z),
where fh is the homogenization of f w.r.t. the variable z0.

Theorem:[Dey, Gardoll, Thoebald]

If a degree d polynomial f = det(A0 +
∑n

j=1 zjAj) where Aj, j = 0, . . . , n are Hermitian
matrices, and there exists an e ∈ Rn with

∑n
j=1 Ajej > 0, then

1 in(f ) is hyperbolic and
2 every hyperbolicity cone of in(f ) is contained in I(f )c.
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Connection with hyperbolic polynomials

Idea of the proof

Since f is of degree d, in(f ) = det(
∑n

j=1 Ajzj).

The initial form in(f ) has exactly the two hyperbolicity cones
C1 = {x ∈ Rn :

∑n
j=1 Ajxj � 0} and C2 = {x ∈ Rn :

∑n
j=1 Ajxj ≺ 0} [Mario19].

Show that C1 ⊆ I(f )c. Suppose e ∈ C1.

For every x ∈ Rn, we have

f (x + te) = det(A0 +

n∑
j=1

Ajxj + t
n∑

j=1

Ajej).

Since
∑n

j=1 Ajej � 0, we obtain

f (x + te) = det(

n∑
j=1

Ajej) det
(

(

n∑
j=1

Ajej)
−1/2(A0 +

n∑
j=1

Ajxj)(

n∑
j=1

Ajej)
−1/2 + tI

)
.

There cannot be a non-real vector a + ie s.t f (a + ie) = 0.

e ∈ I(f )c.
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Connection with hyperbolic polynomials

Quadratic Polynomials

Known Classification

Every real quadric in Rn is affinely equivalent to a quadric given by one of the three (normal
form) types,

(I)
∑p

j=1 z2
j −

∑r
j=p+1 z2

j (1 ≤ p ≤ r, r ≥ 1, p ≥ r
2 ) ,

(II)
∑p

j=1 z2
j −

∑r
j=p+1 z2

j + 1 (0 ≤ p ≤ r, r ≥ 1) ,

(III)
∑p

j=1 z2
j −

∑r
j=p+1 z2

j + zr+1 (1 ≤ p ≤ r, r ≥ 1, p ≥ r
2 ) .

Let f ∈ R[z] be a quadratic polynomial of the form

f = zT Az + bT z + c (2)

with A ∈ symn, b ∈ Rn and c ∈ R.

It is well known that a non-degenerate quadratic form f ∈ R[z] is hyperbolic if and only if
A has signature (n− 1, 1) [Gårding59]

There are two unbounded components in the complement I(f )c [Jörgens, Theobald].
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Connection with hyperbolic polynomials

Homogeneous and non-homogeneous

Homogeneous Non-homogeneous

f = zT Az f = zT Az + bT z + c

f is of type (I) with r = 1 f is of type (II) with p = 1 (sub-case I) and
-A has Lorentzian signature (n− 1, 1) f is of type (II) with p = n− 1 (sub-case II)

I(f ) = {y ∈ Rn : yT Ay < 0}

I(f ) =

{
{y ∈ Rn : y2

1 −
∑r

j=2 y2
j ≤ 1}, p = 1 ,

{y ∈ Rn :
∑n−1

j=1 y2
j > y2

n} ∪ {0}, p = n− 1 .

Hyperbolicity cone is Lorentz cone here p = 1,no suitable connected components
p = n− 1, Int S ⊂ C(in(f )) for every full

dimensional cone S.
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Connection with hyperbolic polynomials

Figure: Lorentz cone:(y1, y2, y3) = y2
3 − y2

1 − y2
2 > 0

Back to there
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Connection with hyperbolic polynomials

Spectrahedral Representation:Quadratic Polynomials

Hyperbolicity cones are spectrahedral

Theorem

Let n ≥ 3 and f = zT Az + bT z + c ∈ R[z] be quadratic of the form of type (II) with p = n− 1.
Then there exists a linear form `(z) in z such that −`(z)n−2 in(f ) has a determinantal
representation. In particular, the closure of each unbounded component of I(f )c is a
spectrahedral cone.

Computational Algorithm
−A has Lorentzian signature.

Find normal form of in(f ) = zT Az, i.e., in(f )(z) = in(g)(Tz) where
g =

∑n−1
j=1 z2

j − z2
n + 1

A = LDLT , D = Diag(d1, . . . , dn−1, dn) such that d1, . . . , dn−1 > 0 and dn < 0 and
T = Diag(

√
d1, . . . ,

√
dn−1,

√
|dn|).LT .

Let g ∈ C[z] and S ∈ Rn×n be an invertible matrix. Then, I(g(Sz)) = S−1I(g(z)).
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Connection with hyperbolic polynomials

Computational Algorithm:continuation

I(g)c has the two unbounded conic components

These are the open Lorentz cone and its negative.

Their closures are exactly the closures of the hyperbolicity cones of the initial form in(g)
of g.

Open Lorentz cone has the spectrahedral representation

L(z) :=


z1

znI
...

zn−1

z1 · · · zn−1 zn

 � 0 ,

Note that zn−2
n in(g) = −det(L(z))

(Tz)n provides `(z).

− det F(z) = ((Tz)n)
n−2 in(f )
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Certificate to Conic stability

Key Idea: Spectrahedral Representations

The cone K and the conic components of I(f )c are spectrahedral, conic stability turns
into a problem of spectrahedral containment.

Why? and How? int K ⊆ C(in(f ))

Usual stability: K non-negative orthant, is the positive semidefiniteness region of the linear
matrix pencil

M≥0(x) =
n∑

j=1

M≥0
j xj

with M≥0
j = Ejj, where Eij is the matrix with a one in position (i, j) and zeros elsewhere.

PSD-stability: K is the cone of psd matrices. The matrix pencil is

Mpsd(X) =
n∑

i,j=1

Mpsd
ij xij

with symmetric matrix variables X = (xij) and Mpsd
ij = 1

2 (Eij + Eji) = 1
2 (eieT

j + ejeT
i )
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Certificate to Conic stability

Positive maps

Set-Up
Let U(x) =

∑n
j=1 Ujxj and V(x) =

∑n
j=1 Vjxj

The spectrahedra SU := {x ∈ Rn : U(x) � 0}, and SV := {x ∈ Rn : V(x) � 0} are
cones.

Let U = span(U1, . . . ,Un) ⊆ Hermk (or symk) and V = span(V1, . . . ,Vn) ⊆ Hermk (or
syml).

If U1, . . . ,Un are linearly independent, then the linear mapping ΦUV : U → V ,
ΦUV(Ui) := Vi, 1 ≤ i ≤ n, is well defined.

A linear map Φ : U → V is called positive if Φ(U) � 0 for any U ∈ U with U � 0 for
given two linear subspaces U ⊆ Hermk and V ⊆ Herml (or U ⊆ Sk and V ⊆ Sl).

The d-multiplicity map Φd on the set of all Hermitian d× d block matrices with symmetric
n× n-matrix entries is defined by

(Aij)
d
i,j=1 7→

(
Φ (Aij)

)d
i,j=1

.

The map Φ is called d-positive if the d-multiplicity map Φd (viewed as a map on a
Hermitian matrix space) is a positive map.

Φ is called completely positive if Φd is a positive map for all d ≥ 1.
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Certificate to Conic stability

Spectrahedral Containment

Let U1, . . . ,Un ⊂ Hermk (or, U1, . . . ,Un ⊂ symk, respectively) be linearly independent and
SU 6= ∅. Then for the properties

1 the semidefinite feasibility problem

C = (Cij)
k
i,j=1 � 0 and Vp =

k∑
i,j=1

(Up)ijCij for p = 1, . . . , n (3)

has a solution with Hermitian (respectively symmetric) matrix C,
2 ΦUV is completely positive,
3 ΦUV is positive,
4 SU ⊆ SV (containment problem for spectrahedra),

the implications and equivalences (1) =⇒ (2) =⇒ (3)⇐⇒ (4) hold, and if U contains a
positive definite matrix, (1)⇐⇒ (2).
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Certificate to Conic stability

Determinantal polynomials

Main Result

Let f = det(A0 +
∑n

j=1 Ajzj) with Hermitian matrices A0, . . . ,An be a degree d determinantal
polynomial such that

in(f ) is irreducible and

there exists e ∈ Rn with
∑n

j=1 Ajej � 0.

Let M(x) =
∑n

j=1 Mjxj with symmetric l× l-matrices be a pencil of the cone K. If there exists a
Hermitian block matrix C = (Cij)

l
i,j=1 with blocks Cij of size d × d and

C = (Cij)
l
i,j=1 � 0, ∀p = 1, . . . , n : σAp =

l∑
i,j=1

(Mp)ijCij (4)

for some σ ∈ {−1, 1}, then f is K-stable.

Idea:

Ah(x) = (I · · · I)(M(x) ∗ C)

I
...
I


Deciding whether such a block matrix C exists is a semidefinite feasibility problem.
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Certificate to Conic stability

Borcea-Brändén stability criterion

Revisit: the stability criterion for a determinantal polynomial.

View Choi matrix C as a block diagonal matrix C = (Cij)
l
i=1 with diagonal blocks Cii of

size d × d and vanishing non-diagonal blocks Cij (i 6= j).

such that
Ap = Cpp for p = 1, . . . , n,

stability criterion in main Theorem is satisfied if and only if the matrices A1, . . . ,An are
positive semidefinite

The determinantal polynomial f (z) = det(A0 +
∑n

j=1 Ajzj) is real stable or the zero
polynomial if and only if the matrices A1, . . . ,An are positive semidefinite.
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Certificate to Conic stability

Example

Let g(z1, z2, z3) := 31z2
1 + 32z1z3 + 8z2

3 − 8z1z2 − 16z2
2.

A determinantal representation of g is given by det
(

4z1 + 2z3 z1 + 4z2

z1 + 4z2 8z1 + 4z3

)
, and

at z = (0, 0, 1)T , the matrix polynomial is positive definite.

Let M(x) denote the linear matrix pencil of the psd cone sym+
2 .

Then the psd-stability of g follows from the above Theorem

by the Choi matrix

C =


4 1 0 2
1 8 2 0
0 2 2 0
2 0 0 4

 � 0.

23 / 25



Certificate to Conic stability

Open problems

Characterization (includes certification)

Closure property:operations which preserve conic stability)

Connection with log-concave (Lorentzian ) polynomials

generalize Hyperbolic programming?
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Certificate to Conic stability

Thank You for your attention!
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Certificate to Conic stability

Definition

Let f be a degree n polynomial with real roots {αi}, and let g be degree n or n− 1 with real
roots {βi} (ignoring βn in the degree n− 1 case). We say that g interlaces f if their roots
alternate, i.e.,

βn ≤ αn ≤ βn−1 ≤ . . . β1 ≤ α1,

and the largest root belongs to f .

If there is a single g which interlaces a family of polynomials f1, . . . , fm, we say that they have a
common interlacing. Back to there

Theorem

Let f1, . . . , fm be degree n polynomials. All of their convex combinations
∑m

i=1 µifi have real
roots if and only if they have a common interlacing.

For example, f << g, if the univariate polynomials f (x + te), g(x + te) are in proper
position for all x ∈ Rn, e ∈ Rn

≥0 \ {0}.
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