Primal-Dual Methods for Real-Time System
Optimization

Andrey Bernstein
National Renewable Energy Laboratory
Theory of Reinforcement Learning Boot Camp, Sep 4 2020




Acknowledgments

Adithya Devraj Sean Meyn

UF[FLORIDA



Real-Time System Optimization

Consider a system described at time t by

> x(t) € R" is a vector of controllable inputs

> y(t) € R™ collects the system outputs

» h.(:) : R"” — R™ is a time-varying map representing the
algebraic system model



Example: Power Systems

» Power system » x(t) — power injections of
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Real-Time System Optimization

The desired behaviour of the system is defined via:

fe(y)

min +
XGX(t)7y:ht(X)

» X(t) is a convex set of engineering constraints

> f,: R™ — R is a convex function representing performance
goals



Example: Optimal Power Flow

(OPF)

» Power system » Optimize generation cost

and customer satisfaction
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Model-Based Feedforward Optimization

The desired behaviour of the system is defined via:

i fi 1
xeX(g],;n:ht(x) t(y) ( )

1. Obtain system model h; and its Jacobian Jp,.
2. Solve (1). E.g., projected-gradient method:

(D) :pron(t){x(k) _ a(Jgk))Tvyﬂ(ht(x(k)))}, k=1,2,...

Jgk) = Jht(x(k))



Model-Based Feedforward Optimization

The desired behaviour of the system is defined via:

i fi 1
xeX(g],;n:ht(x) t(y) ( )

1. Obtain system model h; and its Jacobian Jp,.
2. Solve (1). E.g., projected-gradient method:

(D) :pron(t){x(k) B a(Jgk))Tvyﬂ(ht(x(k)))}, k=1,2,...

Jgk) = Jht(x(k))

» Stringent real-time requirements... Can we run the above to
convergence?

» Do we have model information in real time? E.g., forecasting
uncontrollable inputs, topology information, etc.



Model-Based Feedback Optimization

At each (discrete) time step ty:
1. Obtain a measurement y(K) of the system output

2. Run a single optimization iteration:

x(k+1) :projxm{x(k) — a(J(k))TVyf(k)(y(k))}, (2)

X system y

h(x)
L optimization

<t :pw.i,m{X‘“ (,(Jm)rvyf(k)(yw)}




Model-Based Feedback Optimization

At each (discrete) time step ty:
1. Obtain a measurement y(K) of the system output

2. Run a single optimization iteration:

x(k+1) :projxm{x(k) — a(J(k))TVyf(k)(y(k))}, (2)

X system y

h(x)
L optimization

<t :pw.i,m{X‘“ (,(Jm)rvyf(k)(yw)}

Still requires model information in the form of J(K)1



Model-Free Feedback Optimization

Replace the gradient of F(K)(x) := f(K)(h, (x))
VFO(x) = (In, (x))TVy ) (hg, (x))

with the zero-order approximation.



Model-Free Feedback Optimization
Replace the gradient of F(K)(x) := f(K)(h, (x))
VFO(x) = (In, (x))TVy ) (hg, (x))
with the zero-order approximation.

» Single function evaluation: > £ € R"is an exploration
vector

~ 1
VFR(x; €, ¢) = EEF(k)(H‘GE) » ¢ > 0is a (small) scalar
» Two function evaluations:
VRO (i€, €) 1= o€ [FO 0t c6) — FOO(x - )
€

» Multiple evaluations...



Model-Free Feedback Optimization

This talk focuses on two function evaluation approximation:
VPO €.6) i= 56 [FOx+ ) — FO9(x — )|
€

Motivation:

» Admits approximation:
VF(x;€ ¢) = €T VF(x) + O(€)

with O(e?) = 0 for quadratic functions.

» Has nicer properties than single-evaluation: smaller variance,
Lipschitz, etc
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Le Blanc, 1922 - origin of Extremum Seeking? Kiefer and
Wolfowitz, 1952. One-dimensional algorithm, no constraints.
Spall, 1992. Stochastic perturbations, two function
evaluations.

Bhatnagar et al, 2003; Prashanth et al, 2019. Deterministic
perturbations, static problem.

Duchi et al, 2015; Nesterov and Spokoiny, 2017. Stochastic
exploration, constrained problems.

Bandit optimization literature (Awerbuch and Kleinberg,
2004, Bubeck and Cesa-Bianchi, 2012, etc): stochastic
exploration, regret analysis.

Extremum seeking literature (Ariyur and Krstic, 2003, etc):
deterministic exploration, single evaluation

Hajinezhad et al, 2019. Network optimization with stochastic
exploration.



Our Focus

» Constrained time-varying networked systems optimization

» Using deterministic exploration signals — see Sean Meyn's talk
for “Why?”

» Online distributed (light) primal-dual methods for real-time
implementation

» Application to real-time optimal power flow in power networks



Networked Systems Optimization

Consider N systems interconnected via a network.

Desired behaviour of the network is defined via a time-varying
convex optimization problem:

N
(k) () (x (k) (4.
min fo"(y ))+Zf, (xi) (3a)
subject to : x; Xl(k) i=1,...,N (3b)

gPyPx)<0,j=1,....M (3¢)



Desired Trajectory Formulation

£ (y £ 4
min, % Z (x) (+2)
subjectto : x; € X(k) i=1,...,N (4b)

gPyPx)<0,j=1,....M (4c)

The desired trajectory z(*'K) := (x(*k), }\(*’k)) is the solution of:

max min £ ()1(x A) keN
AeDk) xe x (k)




Desired Trajectory Formulation

N
(k) (k) (K) (.
min fo (90 + 3 ) (42)
subject to : x,-EX(k) i=1,...,N (4b)
M) <0 j=1...M (4

The desired trajectory z(*'K) := (x(*k), }\(*’k)) is the solution of:

max min £ ()1(x A) keN
AeDk) xe x (k)

k) d
L850 ) == £8(x, ) + 2x|3 = ZIA

» L£K)(x, ) is the Lagrangian associated with (4)
> X € RY as the dual variable associated with (4c)
» p >0, d> 0 are Tikhonov-type regularization parameters
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At each time step k, perform the following steps:
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First-Order Primal-Dual Algorithm

At each time step k, perform the following steps:

[S1] (control application): Apply x(¥) to the system, and collect
the measurement y(¥) of the output y(*)(x(¥)).

[S2a] (gradient): Compute

VL) = V() + (1979, 10
+ (Vyg® FOITAW 4 px9),

[S2b] (primal step): Compute
x(k+1) — Proj y (k) {x(k) — a@ﬁ(k)} .
[S3] (dual step): Compute

AKHD = projpu { A + alg®@(F™H) — dAW]}.



First-Order Primal-Dual Algorithm with Feedback

At each time step k, perform the following steps:

[S1] (control application): Apply x(¥) to the system, and collect
the measurement y(¥) of the output y(*)(x(¥)).

[S2a] (gradient): Compute
VLK = v, f 0 (x(K)) 1 (5T, £F) (5K
+(Vy g (NI TAK) 4 px(),
S2b] (primal step): Compute
[
x(k+1) — Proj y (k) {x(k) — a@ﬁ(k)} .
[S3] (dual step): Compute

KD = projpu { A + alg®@(F™H) — dA9]}.



Zero-Order Primal-Dual Algorithm

At each time step k, perform the following steps:



Zero-Order Primal-Dual Algorithm
At each time step k, perform the following steps:
[S1a] (exploration): Apply ng) = x(K) 1 () and

g<) — (k) (k)

— e£%), and collect measurements y.’ and §(k).

X



Zero-Order Primal-Dual Algorithm

At each time step k, perform the following steps:

[S1a] (exploration): Apply ng) = x(F) + e£(F) and
(k) .— x(K) — ¢ and collect measurements ?Srk) and y
[S1b] (control application): Apply x(¥) to the system, and
collect the measurement y(¥) of the output y(¥)(x(k)).

().

X



Zero-Order Primal-Dual Algorithm
At each time step k, perform the following steps:
[S1a] (exploration): Apply x(k) = x(F) + e£(F) and
x5 = x() _ £ and collect measurements ysr) and y©.
[S1b] (control application): Apply x(¥) to the system, and
collect the measurement y(¥) of the output y(¥)(x(k)).
[S2a] (approximate gradient): Compute

Tt .— vf<k)(x(k))
2 (k) [ (R k) (k) (k)
+ 260 [{9G1) - (95

1
ek (k) (g(k) (k) (g(k) (k)
+ 5 €A [gF1) — g®GH)] + px®.
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Zero-Order Primal-Dual Algorithm
At each time step k, perform the following steps:
[S1a] (exploration): Apply x(k) = x(K) 1 () and

x5 = x() _ £ and collect measurements ysr) and y©.

[S1b] (control appllcatlon). Apply x(%) to the system, and
collect the measurement y(¥) of the output y(¥)(x(k)).
[S2a] (approximate gradient): Compute

VLK) = v, 70 (x()
+ *s“) 596 - 56
+ o €O [g(g) — gWFH) + pxlh).
[S2b] (apprommate primal step): Compute
x(k+1) — Proj y (k) {x(k) — a%ﬁ(k)} .
[S3] (dual step): Compute
AKD) = projpu { A + alg®@(F™H) — dA9]}.
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Assumptions

1. The exploration signal ﬁ(k) is deterministic, sampled from a
continuous-time signal &(t) satisfying

1 t+T
T/ S(T)E(T)T dr =1, forsome T > 0.
t

Eg., &(t) = V2sin(wit), i=1,...,n wi#w,Vi#j.

(T is a common integer multiple of the sinusoidal signal periods.)
2. The projection in the primal step is active every T time units.
3. Variability of the desired trajectory and gradients is bounded:
sup |24 200K |1, < g, sup [|[ VAR (x) VA (x) || < e
k>0 k>0
and similarly for other functions.

4. Measurement error is bounded by e, .



Tracking Result

Theorem

There exist « >0, e = O(a+ €2 + er + ¢), and ¢ < 1 such that
the sequence {z(K)} converges Q-linearly to {z*¥)} up to an
asymptotic error bound given by:

lim sup [|z(9) — 2K ||, < aeto
k—o00 l-c

System trajectory

desired

actual

Time



Proof Idea

> Use QSA (Sean Meyn's talk) — currently works mostly with
diminishing step size and no projection; or

» Prove directly — see:
Y. Chen, A. Bernstein, A. Devraj, S. Meyn, “Model-free primal-dual
methods for network optimization with application to real-time optimal
power flow,” 2020 American Control Conference (ACC), 3140-3147.



Application: Optimal Power Flow

Real-time optimization of the power injections of distributed
energy resources (DERs) in a power system.

» |EEE 123-node test feeder » Two possible network
configurations

» Total load and available PV

» 8 solar (PV) systems

» 3 battery systems

generation:
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Application: Optimal Power Flow
Real-time optimization of the power injections of distributed
energy resources (DERs) in a power system.

» Control variables
x € R?Veer: active and reactive power injection of DERs; x; = {xi 5, Xiq}

» Output variables
y € RMowes™1: yoltages and feeder head power; y = {v, Py}

» Objectives
Feeder head power following: fo(y) =(Po — Pg)?
Local DER objective: fi(x;) =ci(xi,p — Xp)’
» Constraints
Node voltage: V; < v;(x) < V;

Battery system:

PV system: 0 < x;, < X", X,%,, + X,%q < (ng)z



Numerical Study: Results

Uncontrolled behavior (no battery control and PV curtailment)
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Numerical Study: Results

Uncontrolled behavior (no battery control and PV curtailment)

[ Faeder head Other nodes

% %n‘
= 2
g 2
£ 0 N rk 1! Network 2 g

| Network 1} e = | Network 1! Network 2

1 (28 i (0-2 and 8-24 hours) | (28 i (02 and 8-24 hours)

0 hours) g 12 18 24 hours; :
Time / Hour ° b * “

12
Time / Hour

Real-time model-free optimization:
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Numerical Study: Sensitivity to Noise

» Performance metric
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NRMSE = | — >~ %
Kia Py

N

1
NK £

K
AW =— 33 () = Vil + 1y - v )

i=1 k=

-

» Sensitivity to measurement noise

59—y Ly A (0, 02)

0.3
% - — — —
x ” 115
02} ) 1 _ -0
UU)J — % Power tracking error l -0 -~
s —G- Voltage violation e 14
[
=z 1
0.1} 1
" 105
7
————x—————x—————x—[fz
06 O~ O~ O L 0
0 0.5 15 5

1
Standard deviation of noise,



Conclusion

» Real-time primal-dual methods to track desired trajectories of
networked systems

» Zero-order deterministic feedback-based approximations
» Stability and tracking results
» Application to OPF
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