Simulation Methodology: An Overview

Peter W. Glynn
Stanford University

Theory of RL Bootcamp, Simons Institute
September 4, 2020
Outline:

I. Efficiency Improvement Techniques
II. Control Variates
III. Common Random Numbers
IV. Importance Sampling
V. Gradient Estimation
VI. Stochastic Optimization
I. Efficiency Improvement Techniques

▶ Suppose that we have two different simulation algorithms for computing \(\alpha \):

\[
\alpha_n \xrightarrow{\text{a.s.}} \alpha
\]

and

\[
\beta_n \xrightarrow{\text{a.s.}} \alpha
\]

▶ We want to use the algorithm that is computationally more efficient

▶ Suppose

\[
n^{1/2}(\alpha_n - \alpha) \Rightarrow \sigma_1 N(0, 1)
\]

and

\[
n^{1/2}(\beta_n - \alpha) \Rightarrow \sigma_2 N(0, 1)
\]
Then:

\[\alpha_n \xrightarrow{D} N(\alpha, \sigma_1^2/n) \]
\[\beta_n \xrightarrow{D} N(\alpha, \sigma_2^2/n) \]

Choose \(\alpha_n \) over \(\beta_n \) if \(\sigma_1^2 \leq \sigma_2^2 \)

Constructing estimators with such a smaller variance is called a \textit{variance reduction technique}.
But each iteration of α_n may be more costly than an iteration of β_n:

$$T_1(n) = \text{total computer time expended to compute } \alpha_n$$

$$T_2(n) = \text{total computer time expended to compute } \beta_n$$

Then, the estimators available after c units of computer time have been expended are

$$\alpha(c) = \alpha_{N_1}(c), \quad \beta(c) = \beta_{N_2}(c),$$

where

$$N_i(c) = \max\{n : T_i(n) \leq c\}$$
If \(N_i(c)/c \to \lambda_i \) as \(c \to \infty \), then (typically)

\[
c^{1/2}(\alpha(c) - \alpha) \Rightarrow \lambda_1^{-1/2} \sigma_1 N(0, 1)
\]

and

\[
c^{1/2}(\beta(c) - \alpha) \Rightarrow \lambda_2^{-1/2} \sigma_2 N(0, 1)
\]

Choose \(\alpha(c) \) over \(\beta(c) \) if \(\lambda_1^{-1} \sigma_1^2 \leq \lambda_2^{-1} \sigma_2^2 \)

Constructing estimators with such a smaller work-normalized variance is called an efficiency improvement technique.
A Philosophical Distinction

Statistics and simulation/Monte Carlo may seem very clearly related

BUT

In statistics, one is sampling because one does not know P

In simulation/Monte Carlo, one samples as a computational vehicle for computing

$$\int_{\Omega} W(\omega)P(d\omega) \ (= E[W])$$

One knows the associated P, at least implicitly

We can hope to use available problem structure to obtain efficiency improvements
II. Control Variates

Goal: Compute $\alpha = E[W]

Given: A rv Z with known expectation

- Put $C = Z - E[Z]$ and $W(\lambda) = W - \lambda C$
- Then, $E[W(\lambda)] = \alpha$ for all $\lambda \in \mathbb{R}$
- $\text{Var}(W(\lambda)) = \text{Var}(W) - 2\lambda \text{Cov}(W, C) + \lambda^2 \text{Var}(C)$
- Minimizing λ:
 $$\lambda^* = \frac{\text{Cov}(W, C)}{\text{Var}(C')}$$
- Minimum variance:
 $$\text{Var}(W(\lambda^*)) = \text{Var}(W) \cdot (1 - \rho^2)$$
 $$\rho = \text{coefficient of correlation between } W \text{ and } C$$
- $\hat{\lambda}_n = \frac{\text{Cov}(W, C')}{\text{Var}(C')}$
- No asymptotic loss of efficiency
Markov Chains and Martingale Controls

Goal: Compute $\alpha = E_x \left[\sum_{j=0}^{\infty} e^{-\alpha j} r(X_j) \right] \ (\Delta = u^*(x))$

- It is known that u^* satisfies

$$u = r + e^{-\alpha} Pu$$

- Also,

$$M_n = \sum_{j=0}^{n-1} e^{-\alpha j} r(X_j) + e^{-\alpha n} u^*(X_n)$$

is a martingale adapted to $(X_n : n \geq 0)$, i.e.,

$$E [M_{n+1} \mid X_0, \ldots, X_n] \overset{a.s.}{=} M_n$$

- So, $C_n = M_n - M_0$ has mean zero
Put $\lambda = 1$. Then,

$$ W - \lambda C_\infty = u^*(x) $$

So,

$$ \text{Var}(W(\lambda)) = 0 $$

We don’t know u^* ... but if \tilde{u} is a good approximation to u^*, use

$$ \tilde{M}_n = \sum_{j=0}^{n-1} e^{-\alpha j} \tilde{r}(X_j) + e^{-\alpha n} \tilde{u}(X_n), $$

where

$$ \tilde{r} \triangleq \tilde{u} - e^{-\alpha} P\tilde{u} $$
Suppose we have two policies we wish to compare:

\[\kappa_1 = E[W_1] \quad \text{vs} \quad \kappa_2 = E[W_2] \]

Goal: Compute \(\alpha = \kappa_1 - \kappa_2 \)

- **EIT 1**: Estimate \(\alpha \) via

\[\hat{\alpha} = \overline{W}_1(n_1) - \overline{W}_2(n_2) \]

“stratified sampling”

\[n_i \propto \lambda_i^{-1/2} \sigma_i, \quad i = 1, 2 \]
EIT 2: “Couple” W_1 and W_2 with a well-chosen joint distribution (not independent)

$$W = W_1 - W_2$$

$$\text{Var}(W) = \text{Var}(W_1) - 2\text{Cov}(W_1, W_2) + \text{Var}(W_2)$$

Want $\text{Cov}(W_1, W_2)$ to be as large as possible
Suppose

\[W_1 = \tilde{f}_1(\xi_1, \ldots, \xi_d) \]
\[W_2 = \tilde{f}_2(\xi_1, \ldots, \xi_d) \]

Guaranteed efficiency improvement if \(\tilde{f}_i \nearrow, i = 1, 2 \)

“common random numbers”
IV. Importance Sampling

Goal: Compute $\alpha = E[W] = E_P[W]$

- Note that

$$E_P[W] = \int_\Omega W(\omega)P(d\omega) = \int_\Omega W(\omega)\frac{P(d\omega)}{Q(d\omega)}Q(d\omega)$$

$$\Delta = \int_\Omega W(\omega)L(\omega)Q(d\omega) = E_Q[WL]$$

- Put $Q^*(d\omega) = |W(\omega)|P(d\omega)/E_P[|W|]$

- If $W \geq 0$, $WL^* = \alpha$

- Of course, we do not know Q^*. Instead, we hope to use a \tilde{Q} that approximates Q^*
For example, $\alpha = E_P[r(X_n)]$

Then,

$$\alpha = E_Q[r(X_n)L_n]$$

where

$$L_n = \prod_{i=0}^{n-1} \frac{P(X_i, X_{i+1})}{Q(X_i, X_{i+1})}$$

$\text{Var}_Q(L_n) \sim a\beta^n$, $\beta > 1$

On the other hand,

$$\frac{1}{n} \log L_n \to \sum_{x,y} \log \left(\frac{P(x, y)}{Q(x, y)} \right) Q(x, y) \pi_Q(x) < 0$$

so $L_n \to 0$, Q a.s.
\[\text{Var}(L_n) \] is highly misleading in many settings

If

\[Q - P = O \left(\frac{1}{\sqrt{n}} \right) , \]

then,

\[\text{Var}_Q(L_n) = O(1) \]
V. Gradient Estimation

- Suppose that θ is a decision variable:

$$\alpha(\theta) = \int_\Omega W(\theta, \omega) P(d\omega)$$

or

$$\alpha(\theta) = \int_\Omega W(\omega) P_\theta(d\omega)$$

- How to efficiently compute $\nabla \alpha(\theta)$?
- Why it is of interest:
 - Stochastic gradient descent algorithm
 - Statistical analysis:

\(\hat{\theta}\): statistical estimator for “true” parameter θ_0

$$\alpha(\hat{\theta}) - \alpha(\theta_0) \approx \nabla \alpha(\theta_0) \left(\hat{\theta} - \theta_0 \right)$$

$$\overset{D}{\approx} \nabla \alpha(\theta_0) N(0, C)$$
One can often move parametric dependence from $W(\theta)$ to P_θ and vice versa...

- When $W(\theta)$ depends smoothly on θ:
 \[
 \nabla \alpha(\theta_0) = E_P [\nabla W(\theta_0)]
 \]
 “infinitesimal perturbation analysis”

- When P_θ depends smoothly on θ:
 \[
 \alpha(\theta) = E_{\theta_0} [WL(\theta)]
 \]
 so
 \[
 \nabla \alpha(\theta) = E_{\theta_0} [W \nabla L(\theta_0)]
 \]
 where
 \[
 L(\theta, \omega) = \frac{P_\theta(d\omega)}{P_{\theta_0}(d\omega)}
 \]
 “likelihood ratio gradient estimation”
Application to Markov Chains

Compute \(\nabla \alpha(\theta_0) \) where \(\alpha(\theta) = E_\theta [r(X_\infty)] \)

Here, \(W = \frac{1}{n} \sum_{j=1}^{n} r(X_j) \)

Then,

\[
\nabla \alpha(\theta_0) \approx E_{\theta_0} [W \nabla L_n(\theta_0)]
\]

where

\[
\nabla L_n(\theta_0) = \sum_{j=1}^{n} \frac{\nabla p(\theta_0, X_{j-1}, X_j)}{p(\theta_0, X_{j-1}, X_j)}
\]

Remark: \((\nabla L_n(\theta_0) : n \geq 1) \) is a zero-mean martingale adapted to \((X_n : n \geq 0) \)
IPA versus Likelihood Ratio Gradient Estimation

IPA:

\[
\frac{1}{n} \sum_{j=1}^{n} \nabla r(\theta_0, X_j) \approx \nabla \alpha(\theta_0) + \frac{1}{\sqrt{n}} N(0, C')
\]

Likelihood ratio:

\[
\frac{1}{n} \sum_{j=1}^{n} r(X_j) \nabla L_n(\theta) = \frac{1}{n} \sum_{j=1}^{n} r(X_j) \sum_{i=1}^{n} D_i \\
= \frac{1}{n} \sum_{j=1}^{n} r_c(X_j) \sum_{i=1}^{n} D_i + E_{\theta_0} [r(X_\infty)] \sum_{i=1}^{n} D_i \\
= \frac{D}{n} \nabla \alpha(\theta_0) + N_1(0, \sigma^2) N_2(0, C_2) + \sqrt{n} E_{\theta_0} [r(X_\infty)] N_2(0, C_2)
\]
Since the D_j's are martingale differences,

$$E [r(X_j)D_i] = 0, \quad i > j$$

Modify estimator:

$$\frac{1}{n} \sum_{i=1}^{n} D_i \sum_{j=i}^{n} r(X_j) \approx \sqrt{n} E_{\theta_0} [r(X_\infty)] \int_{0}^{1} (1 - s)dB(s)$$
If \(E_{\theta_0}[r(X_\infty)] = 0 \), then

\[
\frac{1}{n} \sum_{i=1}^{n} D_i \sum_{j=i}^{n} r(X_j)
\]

\[\approx \sigma_1 C^{1/2} \int_{0}^{1} B_2(s) d\tilde{B}_1(s) \]
Olvera-Cravioto + G (2018)

So, work with \(r_c(x) = r(x) - E_{\theta_0}[r(X_\infty)] \)

Effectively equivalent to using \(\sum_{j=1}^{n} D_j \) as a control variate
Finite Difference Estimators

- Central differences:
 \[
 \frac{W_n(\theta_0 + h) - W_n(\theta_0 - h)}{2h} \approx \alpha'(\theta_0) + \frac{h^2}{3} \alpha^{(3)}(\theta_0) + \frac{\sigma}{\sqrt{nh}} N(0, 1)
 \]

- To balance bias and variance, put \(h \approx cn^{-1/6} \)
- Convergence rate: \(n^{-1/3} \)
- If we use common random numbers, convergence rate \(\approx n^{-2/5} \)
VI. Stochastic Optimization

- r policies

- Which policy maximizes reward?

 “Selection of best system”

 Connections to multi-armed bandit literature
\[\min_{\theta} \alpha(\theta) \]

- \(\theta_{n+1} = \theta_n - C_n \hat{\nabla} \alpha(\theta_n) \)

 "stochastic gradient descent"

- Optimal choice of \(C_n \) depends on Hessian of \(\alpha(\cdot) \), covariance structure of \(\hat{\nabla} \alpha(\theta_\infty) \)

- Polyak averaging can be effective in implicitly finding \(C_n \)
- Large literature that intersects with many different applications domains

- Many areas not covered in today’s lectures
 - Winter Simulation Conference
 - ACM Transactions on Modeling and Computer Simulation