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. Efficiency Improvement Techniques

» Suppose that we have two different simulation algorithms for computing «:

a.s.
Qa, — Q

and
5 a
» We want to use the algorithm that is computationally more efficient

» Suppose
n'?(a,, — a) = oy N(0,1)

and
(B, — a) = 03N(0,1)
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» Then:

oy, ~ ~ N(a, 0% /n)

Ba = N(a,03/n)

)

» Choose «, over 3, if o3 < o2

» Constructing estimators with such a smaller variance is called a variance
reduction technique
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» But each iteration of o, may be more costly than an iteration of 3,,:
Ti(n) = total computer time expended to compute «,

T>(n) = total computer time expended to compute 3,

» Then, the estimators available after ¢ units of computer time have been
expended are
ale) = any ),  B(e) = By,

where
N;(c) = max{n : T;(n) < ¢}
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» If N;(c)/c — \; as ¢ — oo, then (typically)
M (afc) —a) = )xl_l/QalN(O, 1)

and
~1/2
2 (B(e) = a) = A, PN (0, 1)
» Choose af(c) over B(c) if A\{'o? < \;'o2
» Constructing estimators with such a smaller work-normalized variance is
called an efficiency improvement technique
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A Philosophical Distinction

Statistics and simulation/Monte Carlo may seem very clearly related
BUT

In statistics, one is sampling because one does not know P

In simulation/Monte Carlo, one samples as a computational vehicle for computing

/ﬂ W (w)P(dw) (= E[W))

One knows the associated P, at least implicitly

We can hope to use available problem structure to obtain efficiency improvements
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Il. Control Variates
Goal: Compute oo = E[W]

Given: A rv Z with known expectation

>

vVvyy

v

Put C =27 —FE[Z] and W(A\) =W — \C
Then, E[W(A)] =« forall A € R
Var(W(\)) = Var(W) — 2ACov(W, C) + A?Var(C')
Minimizing A:
A" = Cov(W, C)/Var(C)
Minimum variance:
Var(W(X\*)) = Var(W) - (1 — p?)

p = coefficient of correlation between W and C

X, = Cov(W, C)/Var(C)

No asymptotic loss of efficiency
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Markov Chains and Martingale Controls
Goal: Compute o = E, [Z;’io e‘o‘jr(Xj)} (é u*(x))

» It is known that u* satisfies
u=r+e *Pu

> Also,

=0

J
is a martingale adapted to (X, : n > 0), i.e.,
E[Mpi | Xo,. .., Xo] M,

» So, C,, = M,, — M, has mean zero
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» Put A =1. Then,

So,
Var(IW(\)) =0

» We don't know u* ... but if uw is a good approximation to u*, use

where
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I1l. Common Random Numbers

Suppose we have two policies we wish to compare:
R1 = E[Wl] VS KRgo — E[WQ]

Goal: Compute av = K1 — Ko
» EIT 1: Estimate « via

“stratified sampling”
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» EIT 2: “Couple” W; and W5 with a well-chosen joint distribution (not
independent)

W =W, — W,
Var(W) = Var(W;) — 2Cov(W;, W3) + Var(Ws)

» Want Cov(WW;, W;) to be as large as possible
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Suppose

Wl = ﬁ(gla"'agd)
Wo = fol&1, ... &)

Guaranteed efficiency improvement if f; So1=1,2

" "
common random numbers
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IV. Importance Sampling
Goal: Compute oo = E[W]| = Ep[W]

» Note that
:/QW(W)P(dw :/W W P(d“’)

2 [wer

— Eo[WL

> Put Q" (dw) = [W(w)|P(dw)/Ep[|[W]]

> IfW >0 WL =«

» Of course, we do not know Q*. Instead, we hope to use a @ that
approximates Q*
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For example, o = Ep[r(X,,)]

» Then,
o= EQ[?"(Xn)Ln]
where .
L — T P(XM Xi+1)
" Q(X;, Xit1)

» Varg(L,) ~ap", f>1
» On the other hand,

%log L, — Zlog (P(x,y)) Qz,y)mo(x) <0

x7y

so L, — 0, Q as.
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Jr,®)

: AL

1

> \Er(Ln) is highly misleading in many settings

> If
or-ofl)

Varo(Ly,) = O(1)

then,
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V. Gradient Estimation

» Suppose that 6 is a decision variable:

:AW@@HW)

or

» How to efficiently compute V(6

» Why it is of interest:
» Stochastic gradient descent algorithm
» Statistical analysis:

~

f: statistical estimator for “true” parameter 6
a() — a(by) ~ Va(b) (eA— 90)

R Va(6,)N(0,C)
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One can often move parametric dependence from W (6) to P, and vice versa...

» When W (6) depends smoothly on 6:
VOK(QQ) = Ep [VW(H())]

“infinitesimal perturbation analysis”
» When P, depends smoothly on 6:

a(f) = Ey, [WL(9)]

so
Va(0) = Eg, [WVL(6h)]
where
L0 = Bl

“likelihood ratio gradient estimation”
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Application to Markov Chains

» Compute V() where a(0) = Ey [r(Xs)]
> Here, W = 137" r(X))
» Then,
Va(by) ~ Egy [WV L, (6)]

where
. Vp(90 X1 X')
VL, (0, = (bt Bt
( 0) Z p(007Xj—17Xj)

j=1

Remark: (VL,(6y) : n > 1) is a zero-mean martingale adapted to (X,, : n > 0)
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IPA versus Likelihood Ratio Gradient Estimation
IPA:

1 n
- > Vr(y, X;) = Va(by) + —=N(0,C)
=1

1
NG

Likelihood ratio:

2 VR0 = 3 X)) 30D,

:%erc ZD + By [r ZD
p

(re(z) = 7’( ) — Egy [1(Xoo)])
2 Va(lo) + Ni(0,0%)No(0, Cy) + v/ Es, [1(Xo0)] Na(0, Cy)
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Since the D,'s are martingale differences,
E [T’(X])DZ] = 0, 7> j

Modify estimator:
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> If By, [r(X)] =0, then
1 n n
- > DY (X))
=1 =
1
2 0101/2/ Bs(s)dBi(s)  Olvera-Cravioto + G (2018)
0

» So, work with r.(z) = r(z) — Ep, [1(X)]
» Effectively equivalent to using 2?21 D; as a control variate
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Finite Difference Estimators

» Central differences:

W0+ h) —W,(6y—h) D h?
2h ~a'(b) +

3)(0,) + —N 0,1
» To balance bias and variance, put h ~ en /6

» Convergence rate: n~ /3

» If we use common random numbers, convergence rate ~ n=2/5
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VI. Stochastic Optimization

» 1 policies

» Which policy maximizes reward?
“Selection of best system"

Connections to multi-armed bandit literature
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m@in a(f)
> Op1 =0, — C,Va(b,)
“stochastic gradient descent”

» Optimal choice of C,, depends on Hessian of «(-), covariance structure of
Va(f)
» Polyak averaging can be effective in implicitly finding C),
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» Large literature that intersects with many different applications domains

» Many areas not covered in today's lectures

» Stochastic Simulation: Algorithms and Analysis, Asmussen + G (2007)
» Winter Simulation Conference
» ACM Transactions on Modeling and Computer Simulation
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