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Optimal Control and RL



Optimal Control and RL Quick recap

From DP to Q-learning Xk+1 = F(Xk, Uk)

Value function: J?(x) = min
u

∞∑

k=0

c(Xk, Uk) , X0 = x ∈ X

DP eqn: J?(Xk) = min
Uk
{c(Xk, Uk) + J?(Xk+1)︸ ︷︷ ︸

Q?(Xk,Uk)

}

DP for Q: Q?(Xk, Uk) = c(Xk, Uk) +Q?(Xk+1)

Model Free Error Representation for Bellman Error

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Find θ∗ among family {Qθ(x, u) : θ ∈ Rd}

A conditional expectation would appear for a Markovian model
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Optimal Control and RL TD Learning

Temporal Difference Methods Xk+1 = F(Xk, Uk)

Dynamic Programming

DP eqn: J?(x) = min
Uk
{c(x, u) + J?(F(x, u))}

Policy Iteration: Given initial policy φ0: Uk = φ0(Xk)
1. Solve the fixed-policy Bellman equation:

Jφ0
(x) = c(x, u) + Jφ0

(F(x, u))︸ ︷︷ ︸
Qφ0 (x,u)

∣∣∣
u=φ0(x)

2 / 32



Optimal Control and RL TD Learning

Temporal Difference Methods Xk+1 = F(Xk, Uk)

Dynamic Programming

DP eqn: J?(x) = min
Uk
{c(x, u) + J?(F(x, u))}

Policy Iteration: Given initial policy φ0: Uk = φ0(Xk)
1. Solve the fixed-policy Bellman equation:

Jφ0
(x) = c(x, u) + Jφ0

(F(x, u))︸ ︷︷ ︸
Qφ0 (x,u)

∣∣∣
u=φ0(x)

2 / 32



Optimal Control and RL TD Learning

Temporal Difference Methods Xk+1 = F(Xk, Uk)

Dynamic Programming

DP eqn: J?(x) = min
Uk
{c(x, u) + J?(F(x, u))}

Policy Iteration: Given initial policy φ0: Uk = φ0(Xk)
1. Solve the fixed-policy Bellman equation:

Jφ0
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2. Update policy: φ1(x) = arg min
u

Qφ0
(x, u) repeat ...
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Optimal Control and RL TD Learning

Temporal Difference Methods Xk+1 = F(Xk, Uk)

Dynamic Programming

DP eqn: J?(x) = min
Uk
{c(x, u) + J?(F(x, u))}

Policy Iteration: Given initial policy φ0: Uk = φ0(Xk)
1. Solve the fixed-policy Bellman equation:

Jφ0
(x) = c(x, u) + Jφ0

(F(x, u))︸ ︷︷ ︸
Qφ0 (x,u)

∣∣∣
u=φ0(x)

Fixed policy Bellman equation observed:

Qφn(Xk, Uk) = c(Xk, Uk) +Qφn
(
Xk+1,φ

n(Xk+1)
)
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Optimal Control and RL TD Learning

Temporal Difference Methods
Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Sutton et al recognized the value of the temporal difference in the early 80s
TD(λ): estimate value function for fixed policy Uk = φ(Xk)

Modified DP equation: Qφ(Xk, Uk) = c(Xk, Uk) +Qφ(Xk+1,φ(Xk+1))

TD(λ) (or SARSA, if you like), attempts to find roots of

f̄(θ) = E∞[ζθEθ(X,U)] = lim
T→∞

1

T

T−1∑

k=0

ζθkEθ(Xk, Uk)
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Optimal Control and RL TD Learning

Temporal Difference Methods
Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

f̄(θ) = E∞[ζθEθ(X,U)] = lim
T→∞

1

T

T−1∑

k=0

ζθkEθ(Xk, Uk)

Solution approaches: 1. ODE design: d
dtθt = Gtf̄(θt), and translation:

θn+1 = θn + αn+1GnζnEθn(Xn, Un)

ζn+1 = λζn +∇θQθn(Xn+1, Un+1)

2. LSTD: Consider a linear parameterization Qθ = θTψ, giving

0 =
1

T

T−1∑

k=0

ζkEθ(Xk, Uk) = AT θ − bT

Amazing fact: θ∗T = A−1
T bT obtained for special gain: Gn = −A−1

n
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Optimal Control and RL Does it work?

Temporal Difference Methods
Does it work? Let’s stick to Qθ = θTψ

θn+1 = θn + αn+1GnζnEθn(Xn, Un)

ζn+1 = λζn +∇θQθn(Xn+1, Un+1)

Require exploration, such as Uk = φ̃(Xk, ξk) ⇐= QSA theory to come

Persistence of excitation:
1

T

T−1∑

k=0

ψ(Xk, Uk)ψ(Xk, Uk)
T → Σψ > 0

Some good news:

TD(1) solves the min-norm problem: minθ ‖Qθ −Q∗‖π

This beautiful result was obtained for MDPs, in the on-policy setting:

Uk = φ(Xk)

π is the steady-state distribution of {(Xk, Uk) : k ≥ 0}

Potential resolution: on-policy ⊕ re-start (periodically re-set initial condition)

However, is minimizing ‖Qθ −Q∗‖π a compelling goal?
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Optimal Control and RL Watkins and DQN

Q(0) Learning and Deep Q-Learning
A generalization of Watkins’ algorithm [13, 26, 10]

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Goal as in the fixed-policy setting: Find roots of

f̄(θ∗) = 0 Why?

f̄(θ) = E∞[ζθEθ(X,U)] = lim
T→∞

1

T

T−1∑

k=0

ζθkEθ(Xk, Uk)

Eligibility vector: ζθk = ∇θQθ(Xk, Uk)

Design principle:
Step 1: consider an ODE: d

dtθt = −Gtf̄(θt) (matrix gain part of design)
Step 2: translate to a discrete time algorithm based on measurements.
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Optimal Control and RL Watkins and DQN

Q(0) Learning and Deep Q-Learning

f̄(θ) = lim
1

T

T−1∑
k=0

ζθkEθ(Xk, Uk) f̄(θ∗) = 0 Why?

Troubles with Q: Slow! Does a root exist? Does it have significance?

Batch algorithms to the rescue? [28, 29, 30, 31]

DQN θn+1 = arg min
θ

{
En(θ) +

1

αn+1
‖θ − θn‖2

}

En(θ) =
1

rn

Tn+1−1∑

k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) +Qθn(Xk+1)

]2

With a linear parameterization, this is a quadratic program!

Sadly,
ODE approximation for DQN ≡ Q(0) Learning

Even for neural network function approximation [M&M, 2020]
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v

min z, v

s.t. z ∈ P

z∗

P
J�(x) = min

u

∞∑

k=0

c(Xk, Uk)

DP ⇒ LP



From DP to QP Metrics For Success

Inverse Dynamic Programming
What is a good approximation? E(x)

def
= −J(x) + minu[c(x, u) + J(F(x, u))]

For any J , you have solved a DP equation:

J(x) = min
u

[cJ(x, u) + J(F(x, u))]

cJ(x, u)
def
= c(x, u)− E(x) optimal policy φJ

Let JφJ denote the value function under the policy φJ

Proposition 3.7

Assume E(x) ≥ −%c(x, u), all x, u and minor assumptions on J

Then, J?(x) ≤ JφJ (x) ≤ (1 + %)J?(x)

We have our gold standard
and our first LP constraint
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We have our gold standard
and our first LP constraint
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From DP to QP DP is LP

Every DP is an LP
Every control student knows this, starting with [Manne, 1960] [44, 45, 46]

Proposition: [Subject to mild assumptions]

J? solves the following LP:

max
J
〈µ, J〉

s.t. J(x) ≤ c(x, u) + J(F(x, u)) , x ∈ X , u ∈ U(x)

J is continuous, and J(xe) = 0.

µ a probability measure on X (given)

Applications to ADP in the thesis of de Farias (with BVR) [47, 48],
and Mengdi Wang’s survey on Monday, August 31

One way to derive the SDP representation of LQR [Boyd et al]

Applications in deterministic control every day
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J,Q
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Q(x, u) ≥ J(x) , x ∈ X , u ∈ U(x)

J is continuous, and J(xe) = 0.

µ a probability measure on X (given)

9 / 32



From DP to QP DP is LP

Every DP is an LP
Every control student knows this, starting with [Manne, 1960] [44, 45, 46]

Proposition 3.9 [Subject to mild assumptions]

The pair (J?, Q?) solve the following LP:

max
J,Q

〈µ, J〉

s.t. Q(x, u) ≤ c(x, u) + J(F(x, u))

Q(x, u) ≥ J(x) , x ∈ X , u ∈ U(x)

J is continuous, and J(xe) = 0.

µ a probability measure on X (given)

Over-parameterization for RL more recent.

Motivation: Q(Xk, Uk) ≤ c(Xk, Uk) + J(Xk+1) (observed)
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From DP to QP DP is LP

Every DP is an LP
Explanation

Show that J(x) ≤ J?(x) for any feasible J , and all x

For any input sequence,
J(Xk) ≤ c(Xk, Uk) + J(Xk+1)

=⇒ J(X0) ≤
T−1∑

k=0

c(Xk, Uk) + J(XT )

max
J
〈µ, J〉

s.t. J(x) ≤ c(x, u) + J(F(x, u))

J is continuous, and J(xe) = 0.

J(XT )→ 0 for policies of interest, so

J(x) ≤
∞∑

k=0

c(Xk, Uk) , X0 = x

Take the infimum over all U =⇒ QED
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From DP to QP DP is QP

Every DP is a QP

Proposition: [Subject to mild assumptions]

The pair (J?, Q?) solve the following QP:

min
J,Q

− 〈µ, J〉+ κ〈ν, E2〉

s.t. 0 ≤ E(x, u)
def
= −Q(x, u) + c(x, u) + J(F(x, u))

Q(x, u) ≥ J(x) , x ∈ X , u ∈ U(x)

J is continuous, and J(xe) = 0.

ν a probability measure on X× U

The objective and constraints can be observed, without a model
=⇒ Long list of possible RL approximations
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Convex Q-Learning

Every DP is a QP =⇒ Convex Q Learning

min
θ
− 〈µ, Jθ〉+ κ〈ν, E2(θ)〉

s.t. 0 ≤ −Qθ(Xk, Uk) + c(Xk, Uk) + Jθ(Xk+1)

=⇒ zn(θ) ≥ 0

Qθ(x, u) ≥ Jθ(x) ⇐= Enforce through function architecture

zn(θ) =
1

rn

Tn+1−1∑

k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) + Jθ(Xk+1)

]
ζ+
k

Convex Q Version 1.0

θn+1 = arg min
θ∈Θ

{
−〈µ, Jθ〉+ κĒ2

n(θ)− λT
nzn(θ) +

1

αn+1

1
2‖θ − θn‖2

}

λn+1 =
[
λn − αn+1zn(θn)

]
+
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Convex Q-Learning

Convex Q Learning—Does it work?

θn+1 = arg min
θ∈Θ

{
−〈µ, Jθ〉+ κĒ2

n(θ)− λT
nzn(θ) +

1

αn+1

1
2
‖θ − θn‖2

}
λn+1 =

[
λn − αn+1zn(θn)

]
+

It is only 4 weeks old! Who knows what Version 1.1 will look like.
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Value function obtained from VIA Value function approximation from convex Q

MountainCar in early August

Lessons learned from initial testing:

1 Advantage function: Aθ = Qθ − Jθ, with Θ chosen so
Aθ(x, u) ≥ 0 all x, u, θ ∈ Θ

2 There may be sensitivity here: 〈µ, J〉
3 Many problems on openai.com are difficult because of fast sampling:
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Lessons learned from initial testing:

1 Advantage function: Aθ = Qθ − Jθ, with Θ chosen so
Aθ(x, u) ≥ 0 all x, u, θ ∈ Θ

Seems necessary for success

2 There may be sensitivity here: 〈µ, J〉
3 Many problems on openai.com are difficult because of fast sampling:
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Revisit Convex Q in continuous time [M&M 09]
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Conclusions

Conclusions

The LP and QP characterization of DP equations gives rise to RL
algorithms that are provably convergent, and for which we know what
problem we are actually solving!

Extensions to stochastic control – not a big deal

Much more work is required to develop these algorithms for particular
applications, and to improve efficiency

Extensions to Convex Policy Gradient: Manne’s LP suggests we
parametrize desired occupancy probabilities, and not the policy

More today:

Explain ODE method and “ODE approximation for DQN...”

QSA
qSGD
qPG

14 / 32



Conclusions

Conclusions

The LP and QP characterization of DP equations gives rise to RL
algorithms that are provably convergent, and for which we know what
problem we are actually solving!

Extensions to stochastic control – not a big deal

Much more work is required to develop these algorithms for particular
applications, and to improve efficiency

Extensions to Convex Policy Gradient: Manne’s LP suggests we
parametrize desired occupancy probabilities, and not the policy

More today:

Explain ODE method and “ODE approximation for DQN...”

QSA
qSGD
qPG

14 / 32



Conclusions

Conclusions

The LP and QP characterization of DP equations gives rise to RL
algorithms that are provably convergent, and for which we know what
problem we are actually solving!

Extensions to stochastic control – not a big deal

Much more work is required to develop these algorithms for particular
applications, and to improve efficiency

Extensions to Convex Policy Gradient: Manne’s LP suggests we
parametrize desired occupancy probabilities, and not the policy

More today:

Explain ODE method and “ODE approximation for DQN...”

QSA
qSGD
qPG

14 / 32



Conclusions

Conclusions

The LP and QP characterization of DP equations gives rise to RL
algorithms that are provably convergent, and for which we know what
problem we are actually solving!

Extensions to stochastic control – not a big deal

Much more work is required to develop these algorithms for particular
applications, and to improve efficiency

Extensions to Convex Policy Gradient: Manne’s LP suggests we
parametrize desired occupancy probabilities, and not the policy

More today:

Explain ODE method and “ODE approximation for DQN...”

QSA
qSGD
qPG

14 / 32



Conclusions

Conclusions

The LP and QP characterization of DP equations gives rise to RL
algorithms that are provably convergent, and for which we know what
problem we are actually solving!

Extensions to stochastic control – not a big deal

Much more work is required to develop these algorithms for particular
applications, and to improve efficiency

Extensions to Convex Policy Gradient: Manne’s LP suggests we
parametrize desired occupancy probabilities, and not the policy

More today:

Explain ODE method and “ODE approximation for DQN...”
QSA
qSGD
qPG

14 / 32



References

Markov Chains
and

Stochastic Stability

S. P. Meyn and  R. L. Tweedie

August 2008 Pre-publication version for on-line viewing.   Monograph to appear Februrary 2009 

π
(f
)
<

∞

∆V (x) ≤ −f(x) + bIC(x)

‖Pn(x, · )− π‖f → 0

su
p

C
E
x [S

τ
C
(f
)]
<

∞

References

15 / 32



References

Control Background I
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[62] M. Benäım. Dynamics of stochastic approximation algorithms. In Séminaire de
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F. d’Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 5744–5752. Curran Associates, Inc., 2019.

[74] B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[75] Y. Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k2). In Soviet Mathematics Doklady, 1983.

28 / 32



References

QSA and Extremum Seeking Control I

[76] S. Chen, A. Bernstein, A. Devraj, and S. Meyn. Accelerating optimization and
reinforcement learning with quasi-stochastic approximation. arXiv:In preparation, 2020.

[77] B. Lapeybe, G. Pages, and K. Sab. Sequences with low discrepancy generalisation and
application to Robbins-Monro algorithm. Statistics, 21(2):251–272, 1990.

[78] S. Laruelle and G. Pagès. Stochastic approximation with averaging innovation applied to
finance. Monte Carlo Methods and Applications, 18(1):1–51, 2012.

[79] S. Shirodkar and S. Meyn. Quasi stochastic approximation. In Proc. of the 2011 American
Control Conference (ACC), pages 2429–2435, July 2011.

[80] A. Bernstein, Y. Chen, M. Colombino, E. Dall’Anese, P. Mehta, and S. Meyn. Optimal
rate of convergence for quasi-stochastic approximation. arXiv:1903.07228, 2019.

[81] A. Bernstein, Y. Chen, M. Colombino, E. Dall’Anese, P. Mehta, and S. Meyn.
Quasi-stochastic approximation and off-policy reinforcement learning. In Proc. of the
IEEE Conf. on Dec. and Control, pages 5244–5251, Mar 2019.

[82] Y. Chen, A. Bernstein, A. Devraj, and S. Meyn. Model-Free Primal-Dual Methods for
Network Optimization with Application to Real-Time Optimal Power Flow. In Proc. of
the American Control Conf., pages 3140–3147, Sept. 2019.

29 / 32



References

QSA and Extremum Seeking Control II

[83] S. Bhatnagar and V. S. Borkar. Multiscale chaotic spsa and smoothed functional
algorithms for simulation optimization. Simulation, 79(10):568–580, 2003.

[84] S. Bhatnagar, M. C. Fu, S. I. Marcus, and I.-J. Wang. Two-timescale simultaneous
perturbation stochastic approximation using deterministic perturbation sequences. ACM
Transactions on Modeling and Computer Simulation (TOMACS), 13(2):180–209, 2003.

[85] M. Le Blanc. Sur l’electrification des chemins de fer au moyen de courants alternatifs de
frequence elevee [On the electrification of railways by means of alternating currents of
high frequency]. Revue Generale de l’Electricite, 12(8):275–277, 1922.

[86] Y. Tan, W. H. Moase, C. Manzie, D. Nešić, and I. M. Y. Mareels. Extremum seeking from
1922 to 2010. In Proceedings of the 29th Chinese Control Conference, pages 14–26, July
2010.

[87] P. F. Blackman. Extremum-seeking regulators. In An Exposition of Adaptive Control.
Macmillan, 1962.

[88] J. Sternby. Adaptive control of extremum systems. In H. Unbehauen, editor, Methods and
Applications in Adaptive Control, pages 151–160, Berlin, Heidelberg, 1980. Springer
Berlin Heidelberg.

30 / 32



References

QSA and Extremum Seeking Control III

[89] J. Sternby. Extremum control systems–an area for adaptive control? In Joint Automatic
Control Conference, number 17, page 8, 1980.
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