
Theory of Reinforcement Learning
Aug. 19 – Dec. 18, 2020

Part 2: Every Optimization Problem Is a Quadratic Program

and implications for Q Learning

Sean Meyn

Department of Electrical and Computer Engineering University of Florida

Inria International Chair Inria, Paris

Thanks to to our sponsors: NSF and ARO

https://simons.berkeley.edu/programs/rl20/
http://ccc.centers.ufl.edu/

Part 2: From DP to QP to Q
Outline

1 Optimal Control and RL

2 From DP to QP

3 Convex Q-Learning

4 Conclusions

5 References

Optimal Control and RL

Optimal Control and RL Quick recap

From DP to Q-learning Xk+1 = F(Xk, Uk)

Value function: J?(x) = min
u

∞∑

k=0

c(Xk, Uk) , X0 = x ∈ X

DP eqn: J?(Xk) = min
Uk
{c(Xk, Uk) + J?(Xk+1)︸ ︷︷ ︸

Q?(Xk,Uk)

}

DP for Q: Q?(Xk, Uk) = c(Xk, Uk) +Q?(Xk+1)

Model Free Error Representation for Bellman Error

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Find θ∗ among family {Qθ(x, u) : θ ∈ Rd}

A conditional expectation would appear for a Markovian model

1 / 32

Optimal Control and RL Quick recap

From DP to Q-learning Xk+1 = F(Xk, Uk)

Value function: J?(x) = min
u

∞∑

k=0

c(Xk, Uk) , X0 = x ∈ X

DP eqn: J?(Xk) = min
Uk
{c(Xk, Uk) + J?(Xk+1)︸ ︷︷ ︸

Q?(Xk,Uk)

}

DP for Q: Q?(Xk, Uk) = c(Xk, Uk) +Q?(Xk+1)

Model Free Error Representation for Bellman Error

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Find θ∗ among family {Qθ(x, u) : θ ∈ Rd}

A conditional expectation would appear for a Markovian model

1 / 32

Optimal Control and RL Quick recap

From DP to Q-learning Xk+1 = F(Xk, Uk)

Value function: J?(x) = min
u

∞∑

k=0

c(Xk, Uk) , X0 = x ∈ X

DP eqn: J?(Xk) = min
Uk
{c(Xk, Uk) + J?(Xk+1)︸ ︷︷ ︸

Q?(Xk,Uk)

}

DP for Q: Q?(Xk, Uk) = c(Xk, Uk) +Q?(Xk+1)

Model Free Error Representation for Bellman Error

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Find θ∗ among family {Qθ(x, u) : θ ∈ Rd}

A conditional expectation would appear for a Markovian model

1 / 32

Optimal Control and RL TD Learning

Temporal Difference Methods Xk+1 = F(Xk, Uk)

Dynamic Programming

DP eqn: J?(x) = min
Uk
{c(x, u) + J?(F(x, u))}

Policy Iteration: Given initial policy φ0: Uk = φ0(Xk)
1. Solve the fixed-policy Bellman equation:

Jφ0
(x) = c(x, u) + Jφ0

(F(x, u))︸ ︷︷ ︸
Qφ0 (x,u)

∣∣∣
u=φ0(x)

2 / 32

Optimal Control and RL TD Learning

Temporal Difference Methods Xk+1 = F(Xk, Uk)

Dynamic Programming

DP eqn: J?(x) = min
Uk
{c(x, u) + J?(F(x, u))}

Policy Iteration: Given initial policy φ0: Uk = φ0(Xk)
1. Solve the fixed-policy Bellman equation:

Jφ0
(x) = c(x, u) + Jφ0

(F(x, u))︸ ︷︷ ︸
Qφ0 (x,u)

∣∣∣
u=φ0(x)

2 / 32

Optimal Control and RL TD Learning

Temporal Difference Methods Xk+1 = F(Xk, Uk)

Dynamic Programming

DP eqn: J?(x) = min
Uk
{c(x, u) + J?(F(x, u))}

Policy Iteration: Given initial policy φ0: Uk = φ0(Xk)
1. Solve the fixed-policy Bellman equation:

Jφ0
(x) = c(x, u) + Jφ0

(F(x, u))︸ ︷︷ ︸
Qφ0 (x,u)

∣∣∣
u=φ0(x)

2. Update policy: φ1(x) = arg min
u

Qφ0
(x, u) repeat ...

2 / 32

Optimal Control and RL TD Learning

Temporal Difference Methods Xk+1 = F(Xk, Uk)

Dynamic Programming

DP eqn: J?(x) = min
Uk
{c(x, u) + J?(F(x, u))}

Policy Iteration: Given initial policy φ0: Uk = φ0(Xk)
1. Solve the fixed-policy Bellman equation:

Jφ0
(x) = c(x, u) + Jφ0

(F(x, u))︸ ︷︷ ︸
Qφ0 (x,u)

∣∣∣
u=φ0(x)

Fixed policy Bellman equation observed:

Qφn(Xk, Uk) = c(Xk, Uk) +Qφn
(
Xk+1,φ

n(Xk+1)
)

2 / 32

Optimal Control and RL TD Learning

Temporal Difference Methods Xk+1 = F(Xk, Uk)

Dynamic Programming

DP eqn: J?(x) = min
Uk
{c(x, u) + J?(F(x, u))}

Policy Iteration: Given initial policy φ0: Uk = φ0(Xk)
1. Solve the fixed-policy Bellman equation:

Jφ0
(x) = c(x, u) + Jφ0

(F(x, u))︸ ︷︷ ︸
Qφ0 (x,u)

∣∣∣
u=φ0(x)

Model Free Error Representation for Bellman Error

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ
(
Xk+1,φ

n(Xk+1)
)

Find θ∗ among family {Qθ(x, u) : θ ∈ Rd}
2 / 32

Optimal Control and RL TD Learning

Temporal Difference Methods
Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Sutton et al recognized the value of the temporal difference in the early 80s
TD(λ): estimate value function for fixed policy Uk = φ(Xk)

Modified DP equation: Qφ(Xk, Uk) = c(Xk, Uk) +Qφ(Xk+1,φ(Xk+1))

TD(λ) (or SARSA, if you like), attempts to find roots of

f̄(θ) = E∞[ζθEθ(X,U)] = lim
T→∞

1

T

T−1∑

k=0

ζθkEθ(Xk, Uk)

3 / 32

Optimal Control and RL TD Learning

Temporal Difference Methods
Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Sutton et al recognized the value of the temporal difference in the early 80s
TD(λ): estimate value function for fixed policy Uk = φ(Xk)

Modified DP equation: Qφ(Xk, Uk) = c(Xk, Uk) +Qφ(Xk+1,φ(Xk+1))
We can keep our definition of Eθ with a change of notation:

Qθ(x) = Qθ(x,φ(x))

TD(λ) (or SARSA, if you like), attempts to find roots of

f̄(θ) = E∞[ζθEθ(X,U)] = lim
T→∞

1

T

T−1∑

k=0

ζθkEθ(Xk, Uk)

3 / 32

Optimal Control and RL TD Learning

Temporal Difference Methods
Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Sutton et al recognized the value of the temporal difference in the early 80s
TD(λ): estimate value function for fixed policy Uk = φ(Xk)

Modified DP equation: Qφ(Xk, Uk) = c(Xk, Uk) +Qφ(Xk+1,φ(Xk+1))
We can keep our definition of Eθ with a change of notation:

Qθ(x) = Qθ(x,φ(x))

TD(λ) (or SARSA, if you like), attempts to find roots of

f̄(θ) = E∞[ζθEθ(X,U)] = lim
T→∞

1

T

T−1∑

k=0

ζθkEθ(Xk, Uk)

3 / 32

Optimal Control and RL TD Learning

Temporal Difference Methods
Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Sutton et al recognized the value of the temporal difference in the early 80s
TD(λ): estimate value function for fixed policy Uk = φ(Xk)

Choices for the eligibility vector:

TD(0): ζθk = ∇θQθ(Xk, Uk)

TD(λ): ζθk =
k∑

i=0

λi∇θQθ(Xk−i, Uk−i)

TD(λ) (or SARSA, if you like), attempts to find roots of

f̄(θ) = E∞[ζθEθ(X,U)] = lim
T→∞

1

T

T−1∑

k=0

ζθkEθ(Xk, Uk)

3 / 32

Optimal Control and RL TD Learning

Temporal Difference Methods
Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Sutton et al recognized the value of the temporal difference in the early 80s
TD(λ): estimate value function for fixed policy Uk = φ(Xk)

Choices for the eligibility vector:

TD(0): ζθk = ∇θQθ(Xk, Uk)

TD(λ): ζθk =

k∑

i=0

λi∇θQθ(Xk−i, Uk−i)

TD(λ) (or SARSA, if you like), attempts to find roots of

f̄(θ) = E∞[ζθEθ(X,U)] = lim
T→∞

1

T

T−1∑

k=0

ζθkEθ(Xk, Uk)

3 / 32

Optimal Control and RL TD Learning

Temporal Difference Methods
Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

f̄(θ) = E∞[ζθEθ(X,U)] = lim
T→∞

1

T

T−1∑

k=0

ζθkEθ(Xk, Uk)

Solution approaches: 1. ODE design: d
dtθt = Gtf̄(θt), and translation:

θn+1 = θn + αn+1GnζnEθn(Xn, Un)

ζn+1 = λζn +∇θQθn(Xn+1, Un+1)

2. LSTD: Consider a linear parameterization Qθ = θTψ, giving

0 =
1

T

T−1∑

k=0

ζkEθ(Xk, Uk) = AT θ − bT

Amazing fact: θ∗T = A−1
T bT obtained for special gain: Gn = −A−1

n

4 / 32

Optimal Control and RL TD Learning

Temporal Difference Methods
Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

f̄(θ) = E∞[ζθEθ(X,U)] = lim
T→∞

1

T

T−1∑

k=0

ζθkEθ(Xk, Uk)

Solution approaches: 1. ODE design: d
dtθt = Gtf̄(θt), and translation:

θn+1 = θn + αn+1GnζnEθn(Xn, Un)

ζn+1 = λζn +∇θQθn(Xn+1, Un+1)

2. LSTD: Consider a linear parameterization Qθ = θTψ, giving

0 =
1

T

T−1∑

k=0

ζkEθ(Xk, Uk) = AT θ − bT

Amazing fact: θ∗T = A−1
T bT obtained for special gain: Gn = −A−1

n

4 / 32

Optimal Control and RL TD Learning

Temporal Difference Methods
Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

f̄(θ) = E∞[ζθEθ(X,U)] = lim
T→∞

1

T

T−1∑

k=0

ζθkEθ(Xk, Uk)

Solution approaches: 1. ODE design: d
dtθt = Gtf̄(θt), and translation:

θn+1 = θn + αn+1GnζnEθn(Xn, Un)

ζn+1 = λζn +∇θQθn(Xn+1, Un+1)

2. LSTD: Consider a linear parameterization Qθ = θTψ, giving

0 =
1

T

T−1∑

k=0

ζkEθ(Xk, Uk) = AT θ − bT

Amazing fact: θ∗T = A−1
T bT obtained for special gain: Gn = −A−1

n
4 / 32

Optimal Control and RL Does it work?

Temporal Difference Methods
Does it work? Let’s stick to Qθ = θTψ

θn+1 = θn + αn+1GnζnEθn(Xn, Un)

ζn+1 = λζn +∇θQθn(Xn+1, Un+1)

Require exploration, such as Uk = φ̃(Xk, ξk) ⇐= QSA theory to come

Persistence of excitation:
1

T

T−1∑

k=0

ψ(Xk, Uk)ψ(Xk, Uk)
T → Σψ > 0

Some good news:

TD(1) solves the min-norm problem: minθ ‖Qθ −Q∗‖π

This beautiful result was obtained for MDPs, in the on-policy setting:

Uk = φ(Xk)

π is the steady-state distribution of {(Xk, Uk) : k ≥ 0}

Potential resolution: on-policy ⊕ re-start (periodically re-set initial condition)

However, is minimizing ‖Qθ −Q∗‖π a compelling goal?

5 / 32

Optimal Control and RL Does it work?

Temporal Difference Methods
Does it work? Let’s stick to Qθ = θTψ

θn+1 = θn + αn+1GnζnEθn(Xn, Un)

ζn+1 = λζn +∇θQθn(Xn+1, Un+1)

Require exploration, such as Uk = φ̃(Xk, ξk)

Persistence of excitation:
1

T

T−1∑
k=0

ψ(Xk, Uk)ψ(Xk, Uk)T → Σψ > 0

Some good news:

Gn = A−1
n exists! (may fail for at most d values of λ)

TD(1) solves the min-norm problem: minθ ‖Qθ −Q∗‖π
This beautiful result was obtained for MDPs, in the on-policy setting:

Uk = φ(Xk)

π is the steady-state distribution of {(Xk, Uk) : k ≥ 0}

Potential resolution: on-policy ⊕ re-start (periodically re-set initial condition)

However, is minimizing ‖Qθ −Q∗‖π a compelling goal?

5 / 32

Optimal Control and RL Does it work?

Temporal Difference Methods
Does it work? Let’s stick to Qθ = θTψ

θn+1 = θn + αn+1GnζnEθn(Xn, Un)

ζn+1 = λζn +∇θQθn(Xn+1, Un+1)

Require exploration, such as Uk = φ̃(Xk, ξk)

Persistence of excitation:
1

T

T−1∑
k=0

ψ(Xk, Uk)ψ(Xk, Uk)T → Σψ > 0

Some good news:

Gn = A−1
n exists! (may fail for at most d values of λ)

TD(1) solves the min-norm problem: minθ ‖Qθ −Q∗‖π

This beautiful result was obtained for MDPs, in the on-policy setting:

Uk = φ(Xk)

π is the steady-state distribution of {(Xk, Uk) : k ≥ 0}

Potential resolution: on-policy ⊕ re-start (periodically re-set initial condition)

However, is minimizing ‖Qθ −Q∗‖π a compelling goal?

5 / 32

Optimal Control and RL Does it work?

Temporal Difference Methods
Does it work? Let’s stick to Qθ = θTψ

θn+1 = θn + αn+1GnζnEθn(Xn, Un)

Require exploration, such as Uk = φ̃(Xk, ξk)

Persistence of excitation:
1

T

T−1∑
k=0

ψ(Xk, Uk)ψ(Xk, Uk)T → Σψ > 0

Some good news:

TD(1) solves the min-norm problem: minθ ‖Qθ −Q∗‖π
Well, not so fast!

This beautiful result was obtained for MDPs, in the on-policy setting:

Uk = φ(Xk)

π is the steady-state distribution of {(Xk, Uk) : k ≥ 0}
... do you smell trouble?

Potential resolution: on-policy ⊕ re-start (periodically re-set initial condition)

However, is minimizing ‖Qθ −Q∗‖π a compelling goal?

5 / 32

Optimal Control and RL Does it work?

Temporal Difference Methods
Does it work? Let’s stick to Qθ = θTψ

θn+1 = θn + αn+1GnζnEθn(Xn, Un)

Some good news:

TD(1) solves the min-norm problem: minθ ‖Qθ −Q∗‖π
This beautiful result was obtained for MDPs, in the on-policy setting:

Uk = φ(Xk)

π is the steady-state distribution of {(Xk, Uk) : k ≥ 0}

Potential resolution: on-policy ⊕ re-start (periodically re-set initial condition)

However, is minimizing ‖Qθ −Q∗‖π a compelling goal?

5 / 32

Optimal Control and RL Does it work?

Temporal Difference Methods
Does it work? Let’s stick to Qθ = θTψ

θn+1 = θn + αn+1GnζnEθn(Xn, Un)

Some good news:

TD(1) solves the min-norm problem: minθ ‖Qθ −Q∗‖π
This beautiful result was obtained for MDPs, in the on-policy setting:

Uk = φ(Xk)

π is the steady-state distribution of {(Xk, Uk) : k ≥ 0}

Potential resolution: on-policy ⊕ re-start (periodically re-set initial condition)

However, is minimizing ‖Qθ −Q∗‖π a compelling goal?

5 / 32

Optimal Control and RL Watkins and DQN

Q(0) Learning and Deep Q-Learning
A generalization of Watkins’ algorithm [13, 26, 10]

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Goal as in the fixed-policy setting: Find roots of

f̄(θ∗) = 0 Why?

f̄(θ) = E∞[ζθEθ(X,U)] = lim
T→∞

1

T

T−1∑

k=0

ζθkEθ(Xk, Uk)

Eligibility vector: ζθk = ∇θQθ(Xk, Uk)

Design principle:
Step 1: consider an ODE: d

dtθt = −Gtf̄(θt) (matrix gain part of design)
Step 2: translate to a discrete time algorithm based on measurements.

6 / 32

Optimal Control and RL Watkins and DQN

Q(0) Learning and Deep Q-Learning
A generalization of Watkins’ algorithm [13, 26, 10]

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Goal as in the fixed-policy setting: Find roots of

f̄(θ∗) = 0 Why?

f̄(θ) = E∞[ζθEθ(X,U)] = lim
T→∞

1

T

T−1∑

k=0

ζθkEθ(Xk, Uk)

Eligibility vector: ζθk = ∇θQθ(Xk, Uk) Q(0)-learning

Design principle:
Step 1: consider an ODE: d

dtθt = −Gtf̄(θt) (matrix gain part of design)
Step 2: translate to a discrete time algorithm based on measurements.

6 / 32

Optimal Control and RL Watkins and DQN

Q(0) Learning and Deep Q-Learning
A generalization of Watkins’ algorithm [13, 26, 10]

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Goal as in the fixed-policy setting: Find roots of

f̄(θ∗) = 0 Why?

f̄(θ) = E∞[ζθEθ(X,U)] = lim
T→∞

1

T

T−1∑

k=0

ζθkEθ(Xk, Uk)

Eligibility vector: ζθk = ∇θQθ(Xk, Uk)

Design principle:
Step 1: consider an ODE: d

dtθt = −Gtf̄(θt) (matrix gain part of design)
Step 2: translate to a discrete time algorithm based on measurements.

6 / 32

Optimal Control and RL Watkins and DQN

Q(0) Learning and Deep Q-Learning
A generalization of Watkins’ algorithm [13, 26, 10]

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Goal as in the fixed-policy setting: Find roots of f̄(θ∗) = 0 Why?

f̄(θ) = E∞[ζθEθ(X,U)] = lim
T→∞

1

T

T−1∑

k=0

ζθkEθ(Xk, Uk)

Eligibility vector: ζθk = ∇θQθ(Xk, Uk)

Design principle:
Step 1: consider an ODE: d

dtθt = −Gtf̄(θt) (matrix gain part of design)
Step 2: translate to a discrete time algorithm based on measurements.

6 / 32

Optimal Control and RL Watkins and DQN

Q(0) Learning and Deep Q-Learning

f̄(θ) = lim
1

T

T−1∑
k=0

ζθkEθ(Xk, Uk) f̄(θ∗) = 0 Why?

Troubles with Q: Slow! Does a root exist? Does it have significance?

Batch algorithms to the rescue? [28, 29, 30, 31]

DQN θn+1 = arg min
θ

{
En(θ) +

1

αn+1
‖θ − θn‖2

}

En(θ) =
1

rn

Tn+1−1∑

k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) +Qθn(Xk+1)

]2

With a linear parameterization, this is a quadratic program!

Sadly,
ODE approximation for DQN ≡ Q(0) Learning

Even for neural network function approximation [M&M, 2020]

7 / 32

Optimal Control and RL Watkins and DQN

Q(0) Learning and Deep Q-Learning

f̄(θ) = lim
1

T

T−1∑
k=0

ζθkEθ(Xk, Uk) f̄(θ∗) = 0 Why?

Troubles with Q: Slow! Does a root exist? Does it have significance?

Batch algorithms to the rescue? [28, 29, 30, 31]

DQN θn+1 = arg min
θ

{
En(θ) +

1

αn+1
‖θ − θn‖2

}

En(θ) =
1

rn

Tn+1−1∑

k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) +Qθn(Xk+1)

]2

With a linear parameterization, this is a quadratic program!

Sadly,
ODE approximation for DQN ≡ Q(0) Learning

Even for neural network function approximation [M&M, 2020]

7 / 32

Optimal Control and RL Watkins and DQN

Q(0) Learning and Deep Q-Learning

f̄(θ) = lim
1

T

T−1∑
k=0

ζθkEθ(Xk, Uk) f̄(θ∗) = 0 Why?

Troubles with Q: Slow! Does a root exist? Does it have significance?

Batch algorithms to the rescue? [28, 29, 30, 31]

DQN θn+1 = arg min
θ

{
En(θ) +

1

αn+1
‖θ − θn‖2

}

En(θ) =
1

rn

Tn+1−1∑

k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) +Qθn(Xk+1)

]2

With a linear parameterization, this is a quadratic program!

Sadly,
ODE approximation for DQN ≡ Q(0) Learning

Even for neural network function approximation [M&M, 2020]

7 / 32

Optimal Control and RL Watkins and DQN

Q(0) Learning and Deep Q-Learning

f̄(θ) = lim
1

T

T−1∑
k=0

ζθkEθ(Xk, Uk) f̄(θ∗) = 0 Why?

Troubles with Q: Slow! Does a root exist? Does it have significance?

Batch algorithms to the rescue? [28, 29, 30, 31]

DQN θn+1 = arg min
θ

{
En(θ) +

1

αn+1
‖θ − θn‖2

}

En(θ) =
1

rn

Tn+1−1∑

k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) +Qθn(Xk+1)

]2

With a linear parameterization, this is a quadratic program!

Sadly,
ODE approximation for DQN ≡ Q(0) Learning

Even for neural network function approximation [M&M, 2020]

7 / 32

v

min z, v

s.t. z ∈ P

z∗

P
J�(x) = min

u

∞∑

k=0

c(Xk, Uk)

DP ⇒ LP

From DP to QP Metrics For Success

Inverse Dynamic Programming
What is a good approximation? E(x)

def
= −J(x) + minu[c(x, u) + J(F(x, u))]

For any J , you have solved a DP equation:

J(x) = min
u

[cJ(x, u) + J(F(x, u))]

cJ(x, u)
def
= c(x, u)− E(x) optimal policy φJ

Let JφJ denote the value function under the policy φJ

Proposition 3.7

Assume E(x) ≥ −%c(x, u), all x, u and minor assumptions on J

Then, J?(x) ≤ JφJ (x) ≤ (1 + %)J?(x)

We have our gold standard
and our first LP constraint

8 / 32

From DP to QP Metrics For Success

Inverse Dynamic Programming
What is a good approximation? E(x)

def
= −J(x) + minu[c(x, u) + J(F(x, u))]

For any J , you have solved a DP equation:

J(x) = min
u

[cJ(x, u) + J(F(x, u))]

cJ(x, u)
def
= c(x, u)− E(x) optimal policy φJ

Let JφJ denote the value function under the policy φJ

Proposition 3.7

Assume E(x) ≥ −%c(x, u), all x, u and minor assumptions on J

Then, J?(x) ≤ JφJ (x) ≤ (1 + %)J?(x)

We have our gold standard
and our first LP constraint

8 / 32

From DP to QP Metrics For Success

Inverse Dynamic Programming
What is a good approximation? E(x)

def
= −J(x) + minu[c(x, u) + J(F(x, u))]

For any J , you have solved a DP equation:

J(x) = min
u

[cJ(x, u) + J(F(x, u))]

cJ(x, u)
def
= c(x, u)− E(x) optimal policy φJ

Let JφJ denote the value function under the policy φJ

Proposition 3.7

Assume E(x) ≥ −%c(x, u), all x, u and minor assumptions on J

Then, J?(x) ≤ JφJ (x) ≤ (1 + %)J?(x)

We have our gold standard
and our first LP constraint

8 / 32

From DP to QP Metrics For Success

Inverse Dynamic Programming
What is a good approximation? E(x)

def
= −J(x) + minu[c(x, u) + J(F(x, u))]

For any J , you have solved a DP equation:

J(x) = min
u

[cJ(x, u) + J(F(x, u))]

cJ(x, u)
def
= c(x, u)− E(x) optimal policy φJ

Let JφJ denote the value function under the policy φJ

Proposition 3.7

Assume E(x) ≥ −%c(x, u), all x, u and minor assumptions on J

Then, J?(x) ≤ JφJ (x) ≤ (1 + %)J?(x)

We have our gold standard
and our first LP constraint

8 / 32

From DP to QP DP is LP

Every DP is an LP
Every control student knows this, starting with [Manne, 1960] [44, 45, 46]

Proposition: [Subject to mild assumptions]

J? solves the following LP:

max
J
〈µ, J〉

s.t. J(x) ≤ c(x, u) + J(F(x, u)) , x ∈ X , u ∈ U(x)

J is continuous, and J(xe) = 0.

µ a probability measure on X (given)

Applications to ADP in the thesis of de Farias (with BVR) [47, 48],
and Mengdi Wang’s survey on Monday, August 31

One way to derive the SDP representation of LQR [Boyd et al]

Applications in deterministic control every day

9 / 32

From DP to QP DP is LP

Every DP is an LP
Every control student knows this, starting with [Manne, 1960] [44, 45, 46]

Proposition 3.9 [Subject to mild assumptions]

The pair (J?, Q?) solve the following LP:

max
J,Q

〈µ, J〉

s.t. Q(x, u) ≤ c(x, u) + J(F(x, u))

Q(x, u) ≥ J(x) , x ∈ X , u ∈ U(x)

J is continuous, and J(xe) = 0.

µ a probability measure on X (given)

9 / 32

From DP to QP DP is LP

Every DP is an LP
Every control student knows this, starting with [Manne, 1960] [44, 45, 46]

Proposition 3.9 [Subject to mild assumptions]

The pair (J?, Q?) solve the following LP:

max
J,Q

〈µ, J〉

s.t. Q(x, u) ≤ c(x, u) + J(F(x, u))

Q(x, u) ≥ J(x) , x ∈ X , u ∈ U(x)

J is continuous, and J(xe) = 0.

µ a probability measure on X (given)

Over-parameterization for RL more recent.

Motivation: Q(Xk, Uk) ≤ c(Xk, Uk) + J(Xk+1) (observed)

9 / 32

From DP to QP DP is LP

Every DP is an LP
Explanation

Show that J(x) ≤ J?(x) for any feasible J , and all x

For any input sequence,
J(Xk) ≤ c(Xk, Uk) + J(Xk+1)

=⇒ J(X0) ≤
T−1∑

k=0

c(Xk, Uk) + J(XT)

max
J
〈µ, J〉

s.t. J(x) ≤ c(x, u) + J(F(x, u))

J is continuous, and J(xe) = 0.

J(XT)→ 0 for policies of interest, so

J(x) ≤
∞∑

k=0

c(Xk, Uk) , X0 = x

Take the infimum over all U =⇒ QED

10 / 32

From DP to QP DP is LP

Every DP is an LP
Explanation

Show that J(x) ≤ J?(x) for any feasible J , and all x

For any input sequence,
J(Xk) ≤ c(Xk, Uk) + J(Xk+1)

=⇒ J(X0) ≤
T−1∑

k=0

c(Xk, Uk) + J(XT)

max
J
〈µ, J〉

s.t. J(x) ≤ c(x, u) + J(F(x, u))

J is continuous, and J(xe) = 0.

J(XT)→ 0 for policies of interest, so

J(x) ≤
∞∑

k=0

c(Xk, Uk) , X0 = x

Take the infimum over all U =⇒ QED

10 / 32

From DP to QP DP is LP

Every DP is an LP
Explanation

Show that J(x) ≤ J?(x) for any feasible J , and all x

For any input sequence,
J(Xk) ≤ c(Xk, Uk) + J(Xk+1)

=⇒ J(X0) ≤
T−1∑

k=0

c(Xk, Uk) + J(XT)

max
J
〈µ, J〉

s.t. J(x) ≤ c(x, u) + J(F(x, u))

J is continuous, and J(xe) = 0.

J(XT)→ 0 for policies of interest, so

J(x) ≤
∞∑

k=0

c(Xk, Uk) , X0 = x

Take the infimum over all U =⇒ QED

10 / 32

From DP to QP DP is QP

Every DP is a QP

Proposition: [Subject to mild assumptions]

The pair (J?, Q?) solve the following QP:

min
J,Q

− 〈µ, J〉+ κ〈ν, E2〉

s.t. 0 ≤ E(x, u)
def
= −Q(x, u) + c(x, u) + J(F(x, u))

Q(x, u) ≥ J(x) , x ∈ X , u ∈ U(x)

J is continuous, and J(xe) = 0.

ν a probability measure on X× U

The objective and constraints can be observed, without a model
=⇒ Long list of possible RL approximations

11 / 32

From DP to QP DP is QP

Every DP is a QP

Proposition: [Subject to mild assumptions]

The pair (J?, Q?) solve the following QP:

min
J,Q

− 〈µ, J〉+ κ〈ν, E2〉

s.t. 0 ≤ E(x, u)
def
= −Q(x, u) + c(x, u) + J(F(x, u))

Q(x, u) ≥ J(x) , x ∈ X , u ∈ U(x)

J is continuous, and J(xe) = 0.

ν a probability measure on X× U

The objective and constraints can be observed, without a model
=⇒ Long list of possible RL approximations

11 / 32

Convex Q-Learning

Convex Q-Learning

Every DP is a QP =⇒ Convex Q Learning

min
θ
− 〈µ, Jθ〉+ κ〈ν, E2(θ)〉

s.t. 0 ≤ −Qθ(Xk, Uk) + c(Xk, Uk) + Jθ(Xk+1)

=⇒ zn(θ) ≥ 0

Qθ(x, u) ≥ Jθ(x) ⇐= Enforce through function architecture

zn(θ) =
1

rn

Tn+1−1∑

k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) + Jθ(Xk+1)

]
ζ+
k

Convex Q Version 1.0

θn+1 = arg min
θ∈Θ

{
−〈µ, Jθ〉+ κĒ2

n(θ)− λT
nzn(θ) +

1

αn+1

1
2‖θ − θn‖2

}

λn+1 =
[
λn − αn+1zn(θn)

]
+

12 / 32

Convex Q-Learning

Every DP is a QP =⇒ Convex Q Learning

min
θ
− 〈µ, Jθ〉+ κ〈ν, E2(θ)〉

s.t. 0 ≤ −Qθ(Xk, Uk) + c(Xk, Uk) + Jθ(Xk+1) =⇒ zn(θ) ≥ 0

zn(θ) =
1

rn

Tn+1−1∑

k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) + Jθ(Xk+1)

]
ζ+
k

ζ+
k : vector with non-negative entries

Convex Q Version 1.0

θn+1 = arg min
θ∈Θ

{
−〈µ, Jθ〉+ κĒ2

n(θ)− λT
nzn(θ) +

1

αn+1

1
2‖θ − θn‖2

}

λn+1 =
[
λn − αn+1zn(θn)

]
+

12 / 32

Convex Q-Learning

Every DP is a QP =⇒ Convex Q Learning

min
θ
− 〈µ, Jθ〉+ κ〈ν, E2(θ)〉

s.t. 0 ≤ −Qθ(Xk, Uk) + c(Xk, Uk) + Jθ(Xk+1) =⇒ zn(θ) ≥ 0

zn(θ) =
1

rn

Tn+1−1∑

k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) + Jθ(Xk+1)

]
ζ+
k

Ē2
n(θ) =

1

rn

Tn+1−1∑

k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) + Jθ(Xk+1)

]2

Convex Q Version 1.0

θn+1 = arg min
θ∈Θ

{
−〈µ, Jθ〉+ κĒ2

n(θ)− λT
nzn(θ) +

1

αn+1

1
2‖θ − θn‖2

}

λn+1 =
[
λn − αn+1zn(θn)

]
+

12 / 32

Convex Q-Learning

Every DP is a QP =⇒ Convex Q Learning

min
θ
− 〈µ, Jθ〉+ κ〈ν, E2(θ)〉

s.t. 0 ≤ −Qθ(Xk, Uk) + c(Xk, Uk) + Jθ(Xk+1) =⇒ zn(θ) ≥ 0

zn(θ) =
1

rn

Tn+1−1∑
k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) + J

θ
(Xk+1)

]
ζ
+
k

Ē2n(θ) =
1

rn

Tn+1−1∑
k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) + J

θ
(Xk+1)

]2

Convex Q Version 1.0

θn+1 = arg min
θ∈Θ

{
−〈µ, Jθ〉+ κĒ2

n(θ)− λT
nzn(θ) +

1

αn+1

1
2‖θ − θn‖2

}

λn+1 =
[
λn − αn+1zn(θn)

]
+

12 / 32

Convex Q-Learning

Convex Q Learning—Does it work?

θn+1 = arg min
θ∈Θ

{
−〈µ, Jθ〉+ κĒ2

n(θ)− λT
nzn(θ) +

1

αn+1

1
2
‖θ − θn‖2

}
λn+1 =

[
λn − αn+1zn(θn)

]
+

It is only 4 weeks old! Who knows what Version 1.1 will look like.

0
-1.2 -0.07

20

-0.86 -0.042

40

-0.52 -0.014

60

-0.18 0.014

80

0.16 0.042
0.07

-0.070
-1.2 -0.042

20

-0.86 -0.014-0.52

40

0.014-0.18

60

0.0420.16
0.070.5

80

Value function obtained from VIA Value function approximation from convex Q

MountainCar in early August

Lessons learned from initial testing:

1 Advantage function: Aθ = Qθ − Jθ, with Θ chosen so
Aθ(x, u) ≥ 0 all x, u, θ ∈ Θ

2 There may be sensitivity here: 〈µ, J〉
3 Many problems on openai.com are difficult because of fast sampling:

13 / 32

Convex Q-Learning

Convex Q Learning—Does it work?

θn+1 = arg min
θ∈Θ

{
−〈µ, Jθ〉+ κĒ2

n(θ)− λT
nzn(θ) +

1

αn+1

1
2
‖θ − θn‖2

}
λn+1 =

[
λn − αn+1zn(θn)

]
+

Lessons learned from initial testing:

1 Advantage function: Aθ = Qθ − Jθ, with Θ chosen so
Aθ(x, u) ≥ 0 all x, u, θ ∈ Θ

Seems necessary for success

2 There may be sensitivity here: 〈µ, J〉
3 Many problems on openai.com are difficult because of fast sampling:

13 / 32

Convex Q-Learning

Convex Q Learning—Does it work?

θn+1 = arg min
θ∈Θ

{
−〈µ, Jθ〉+ κĒ2

n(θ)− λT
nzn(θ) +

1

αn+1

1
2
‖θ − θn‖2

}
λn+1 =

[
λn − αn+1zn(θn)

]
+

Lessons learned from initial testing:

1 Advantage function: Aθ = Qθ − Jθ, with Θ chosen so
Aθ(x, u) ≥ 0 all x, u, θ ∈ Θ

2 There may be sensitivity here: 〈µ, J〉

3 Many problems on openai.com are difficult because of fast sampling:

13 / 32

Convex Q-Learning

Convex Q Learning—Does it work?

θn+1 = arg min
θ∈Θ

{
−〈µ, Jθ〉+ κĒ2

n(θ)− λT
nzn(θ) +

1

αn+1

1
2
‖θ − θn‖2

}
λn+1 =

[
λn − αn+1zn(θn)

]
+

Lessons learned from initial testing:

1 Advantage function: Aθ = Qθ − Jθ, with Θ chosen so
Aθ(x, u) ≥ 0 all x, u, θ ∈ Θ

2 There may be sensitivity here: 〈µ, J〉
3 Many problems on openai.com are difficult because of fast sampling:

Xk+1 ≈ Xk =⇒ −Qθ(Xk, Uk) + c(Xk, Uk) + Jθ(Xk+1) ≈ −Aθ(Xk, Uk) + c(Xk, Uk)

13 / 32

Convex Q-Learning

Convex Q Learning—Does it work?

θn+1 = arg min
θ∈Θ

{
−〈µ, Jθ〉+ κĒ2

n(θ)− λT
nzn(θ) +

1

αn+1

1
2
‖θ − θn‖2

}
λn+1 =

[
λn − αn+1zn(θn)

]
+

Lessons learned from initial testing:

1 Advantage function: Aθ = Qθ − Jθ, with Θ chosen so
Aθ(x, u) ≥ 0 all x, u, θ ∈ Θ

2 There may be sensitivity here: 〈µ, J〉
3 Many problems on openai.com are difficult because of fast sampling:

Xk+1 ≈ Xk =⇒ −Qθ(Xk, Uk) + c(Xk, Uk) + Jθ(Xk+1) ≈ −Aθ(Xk, Uk) + c(Xk, Uk)

Revisit Convex Q in continuous time [M&M 09]

13 / 32

Conclusions

Conclusions

The LP and QP characterization of DP equations gives rise to RL
algorithms that are provably convergent, and for which we know what
problem we are actually solving!

Extensions to stochastic control – not a big deal

Much more work is required to develop these algorithms for particular
applications, and to improve efficiency

Extensions to Convex Policy Gradient: Manne’s LP suggests we
parametrize desired occupancy probabilities, and not the policy

More today:

Explain ODE method and “ODE approximation for DQN...”

QSA
qSGD
qPG

14 / 32

Conclusions

Conclusions

The LP and QP characterization of DP equations gives rise to RL
algorithms that are provably convergent, and for which we know what
problem we are actually solving!

Extensions to stochastic control – not a big deal

Much more work is required to develop these algorithms for particular
applications, and to improve efficiency

Extensions to Convex Policy Gradient: Manne’s LP suggests we
parametrize desired occupancy probabilities, and not the policy

More today:

Explain ODE method and “ODE approximation for DQN...”

QSA
qSGD
qPG

14 / 32

Conclusions

Conclusions

The LP and QP characterization of DP equations gives rise to RL
algorithms that are provably convergent, and for which we know what
problem we are actually solving!

Extensions to stochastic control – not a big deal

Much more work is required to develop these algorithms for particular
applications, and to improve efficiency

Extensions to Convex Policy Gradient: Manne’s LP suggests we
parametrize desired occupancy probabilities, and not the policy

More today:

Explain ODE method and “ODE approximation for DQN...”

QSA
qSGD
qPG

14 / 32

Conclusions

Conclusions

The LP and QP characterization of DP equations gives rise to RL
algorithms that are provably convergent, and for which we know what
problem we are actually solving!

Extensions to stochastic control – not a big deal

Much more work is required to develop these algorithms for particular
applications, and to improve efficiency

Extensions to Convex Policy Gradient: Manne’s LP suggests we
parametrize desired occupancy probabilities, and not the policy

More today:

Explain ODE method and “ODE approximation for DQN...”

QSA
qSGD
qPG

14 / 32

Conclusions

Conclusions

The LP and QP characterization of DP equations gives rise to RL
algorithms that are provably convergent, and for which we know what
problem we are actually solving!

Extensions to stochastic control – not a big deal

Much more work is required to develop these algorithms for particular
applications, and to improve efficiency

Extensions to Convex Policy Gradient: Manne’s LP suggests we
parametrize desired occupancy probabilities, and not the policy

More today:

Explain ODE method and “ODE approximation for DQN...”
QSA
qSGD
qPG

14 / 32

References

Markov Chains
and

Stochastic Stability

S. P. Meyn and R. L. Tweedie

August 2008 Pre-publication version for on-line viewing. Monograph to appear Februrary 2009

π
(f
)
<

∞

∆V (x) ≤ −f(x) + bIC(x)

‖Pn(x, ·)− π‖f → 0

su
p

C
E
x [S

τ
C
(f
)]
<

∞

References

15 / 32

References

Control Background I

[1] K. J. Åström and R. M. Murray. Feedback Systems: An Introduction for Scientists and
Engineers. Princeton University Press, USA, 2008 (recent edition on-line).

[2] K. J. Åström and K. Furuta. Swinging up a pendulum by energy control. Automatica,
36(2):287 – 295, 2000.

[3] K. J. Astrom and B. Wittenmark. Adaptive Control. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2nd edition, 1994.

[4] M. Krstic, P. V. Kokotovic, and I. Kanellakopoulos. Nonlinear and adaptive control
design. John Wiley & Sons, Inc., 1995.

[5] K. J. Åström. Theory and applications of adaptive control—a survey. Automatica,
19(5):471–486, 1983.

[6] K. J. Åström. Adaptive control around 1960. IEEE Control Systems Magazine,
16(3):44–49, 1996.

[7] B. Wittenmark. Stochastic adaptive control methods: a survey. International Journal of
Control, 21(5):705–730, 1975.

[8] L. Ljung. Analysis of recursive stochastic algorithms. IEEE Transactions on Automatic
Control, 22(4):551–575, 1977.

16 / 32

References

Control Background II

[9] N. Matni, A. Proutiere, A. Rantzer, and S. Tu. From self-tuning regulators to
reinforcement learning and back again. In Proc. of the IEEE Conf. on Dec. and Control,
pages 3724–3740, 2019.

17 / 32

References

RL Background I

[10] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press. On-line
edition at http://www.cs.ualberta.ca/~sutton/book/the-book.html, Cambridge,
MA, 2nd edition, 2018.

[11] C. Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers, 2010.

[12] R. S. Sutton.Learning to predict by the methods of temporal differences. Mach. Learn.,
3(1):9–44, 1988.

[13] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-4):279–292, 1992.

[14] J. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine Learning,
16:185–202, 1994.

[15] T. Jaakola, M. Jordan, and S. Singh. On the convergence of stochastic iterative dynamic
programming algorithms. Neural Computation, 6:1185–1201, 1994.

[16] J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function
approximation. IEEE Trans. Automat. Control, 42(5):674–690, 1997.

[17] J. N. Tsitsiklis and B. Van Roy. Optimal stopping of Markov processes: Hilbert space
theory, approximation algorithms, and an application to pricing high-dimensional financial
derivatives. IEEE Trans. Automat. Control, 44(10):1840–1851, 1999.

18 / 32

http://www.cs.ualberta.ca/~sutton/book/the-book.html

References

RL Background II

[18] D. Choi and B. Van Roy. A generalized Kalman filter for fixed point approximation and
efficient temporal-difference learning. Discrete Event Dynamic Systems: Theory and
Applications, 16(2):207–239, 2006.

[19] S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference
learning. Mach. Learn., 22(1-3):33–57, 1996.

[20] J. A. Boyan. Technical update: Least-squares temporal difference learning. Mach. Learn.,
49(2-3):233–246, 2002.

[21] A. Nedic and D. Bertsekas. Least squares policy evaluation algorithms with linear function
approximation. Discrete Event Dyn. Systems: Theory and Appl., 13(1-2):79–110, 2003.

[22] C. Szepesvári. The asymptotic convergence-rate of Q-learning. In Proceedings of the 10th
Internat. Conf. on Neural Info. Proc. Systems, 1064–1070. MIT Press, 1997.

[23] E. Even-Dar and Y. Mansour. Learning rates for Q-learning. Journal of Machine Learning
Research, 5(Dec):1–25, 2003.

[24] M. G. Azar, R. Munos, M. Ghavamzadeh, and H. Kappen. Speedy Q-learning. In
Advances in Neural Information Processing Systems, 2011.

19 / 32

References

RL Background III

[25] D. Huang, W. Chen, P. Mehta, S. Meyn, and A. Surana. Feature selection for
neuro-dynamic programming. In F. Lewis, editor, Reinforcement Learning and
Approximate Dynamic Programming for Feedback Control. Wiley, 2011.

[26] A. M. Devraj, A. Bušić, and S. Meyn. Fundamental design principles for reinforcement
learning algorithms. In Handbook on Reinforcement Learning and Control. Springer, 2020.

[27] S. P. Meyn. Control Techniques for Complex Networks. Cambridge University Press, 2007.
See last chapter on simulation and average-cost TD learning

DQN:

[28] M. Riedmiller. Neural fitted Q iteration – first experiences with a data efficient neural
reinforcement learning method. In J. Gama, R. Camacho, P. B. Brazdil, A. M. Jorge, and
L. Torgo, editors, Machine Learning: ECML 2005, pages 317–328, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

[29] S. Lange, T. Gabel, and M. Riedmiller. Batch reinforcement learning. In Reinforcement
learning, pages 45–73. Springer, 2012.

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A.
Riedmiller. Playing Atari with deep reinforcement learning. ArXiv, abs/1312.5602, 2013.

20 / 32

References

RL Background IV

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. A. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level
control through deep reinforcement learning. Nature, 518:529–533, 2015.

Actor Critic / Policy Gradient

[32] P. J. Schweitzer. Perturbation theory and finite Markov chains. J. Appl. Prob., 5:401–403,
1968.

[33] C. D. Meyer, Jr. The role of the group generalized inverse in the theory of finite Markov
chains. SIAM Review, 17(3):443–464, 1975.

[34] P. W. Glynn. Stochastic approximation for Monte Carlo optimization. In Proceedings of
the 18th conference on Winter simulation, pages 356–365, 1986.

[35] R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[36] T. Jaakkola, S. P. Singh, and M. I. Jordan. Reinforcement learning algorithm for partially
observable Markov decision problems. In Advances in neural information processing
systems, pages 345–352, 1995.

21 / 32

References

RL Background V

[37] X.-R. Cao and H.-F. Chen. Perturbation realization, potentials, and sensitivity analysis of
Markov processes. IEEE Transactions on Automatic Control, 42(10):1382–1393, Oct
1997.

[38] P. Marbach and J. N. Tsitsiklis. Simulation-based optimization of Markov reward
processes. IEEE Trans. Automat. Control, 46(2):191–209, 2001.

[39] V. R. Konda and J. N. Tsitsiklis. Actor-critic algorithms. In Advances in neural
information processing systems, pages 1008–1014, 2000.

[40] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. In Advances in neural information
processing systems, pages 1057–1063, 2000.

[41] P. Marbach and J. N. Tsitsiklis. Simulation-based optimization of Markov reward
processes. IEEE Trans. Automat. Control, 46(2):191–209, 2001.

[42] S. M. Kakade. A natural policy gradient. In Advances in neural information processing
systems, pages 1531–1538, 2002.

22 / 32

References

RL Background VI

[43] H. Mania, A. Guy, and B. Recht. Simple random search provides a competitive approach
to reinforcement learning. In Advances in Neural Information Processing Systems, pages
1800–1809, 2018.

MDPs, LPs and Convex Q:

[44] A. S. Manne. Linear programming and sequential decisions. Management Sci.,
6(3):259–267, 1960.

[45] C. Derman. Finite State Markovian Decision Processes, volume 67 of Mathematics in
Science and Engineering. Academic Press, Inc., 1970.

[46] V. S. Borkar. Convex analytic methods in Markov decision processes. In Handbook of
Markov decision processes, volume 40 of Internat. Ser. Oper. Res. Management Sci.,
pages 347–375. Kluwer Acad. Publ., Boston, MA, 2002.

[47] D. P. de Farias and B. Van Roy. The linear programming approach to approximate
dynamic programming. Operations Res., 51(6):850–865, 2003.

[48] D. P. de Farias and B. Van Roy. A cost-shaping linear program for average-cost
approximate dynamic programming with performance guarantees. Math. Oper. Res.,
31(3):597–620, 2006.

23 / 32

References

RL Background VII

[49] P. G. Mehta and S. P. Meyn. Q-learning and Pontryagin’s minimum principle. In Proc. of
the IEEE Conf. on Dec. and Control, pages 3598–3605, Dec. 2009.

[50] P. G. Mehta and S. P. Meyn. Convex Q-learning, part 1: Deterministic optimal control.
ArXiv e-prints:2008.03559, 2020.

Gator Nation:

[51] A. M. Devraj and S. P. Meyn. Fastest convergence for Q-learning. ArXiv , July 2017
(extended version of NIPS 2017).

[52] A. M. Devraj. Reinforcement Learning Design with Optimal Learning Rate. PhD thesis,
University of Florida, 2019.

[53] A. M. Devraj and S. P. Meyn. Q-learning with Uniformly Bounded Variance: Large
Discounting is Not a Barrier to Fast Learning. arXiv e-prints 2002.10301, and to appear
AISTATS, Feb. 2020.

[54] A. M. Devraj, A. Bušić, and S. Meyn. On matrix momentum stochastic approximation
and applications to Q-learning. In Allerton Conference on Communication, Control, and
Computing, pages 749–756, Sep 2019.

24 / 32

https://arxiv.org/abs/1707.03770

References

Stochastic Miscellanea I

[55] S. Asmussen and P. W. Glynn. Stochastic Simulation: Algorithms and Analysis, volume 57
of Stochastic Modelling and Applied Probability. Springer-Verlag, New York, 2007.

[56] P. W. Glynn and S. P. Meyn. A Liapounov bound for solutions of the Poisson equation.
Ann. Probab., 24(2):916–931, 1996.

[57] S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Cambridge
University Press, Cambridge, second edition, 2009. Published in the Cambridge
Mathematical Library.

[58] R. Douc, E. Moulines, P. Priouret, and P. Soulier. Markov Chains. Springer, 2018.

25 / 32

References

Stochastic Approximation I

[59] V. S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Hindustan
Book Agency and Cambridge University Press, Delhi, India & Cambridge, UK, 2008.

[60] A. Benveniste, M. Métivier, and P. Priouret. Adaptive algorithms and stochastic
approximations, volume 22 of Applications of Mathematics (New York). Springer-Verlag,
Berlin, 1990. Translated from the French by Stephen S. Wilson.

[61] V. S. Borkar and S. P. Meyn. The ODE method for convergence of stochastic
approximation and reinforcement learning. SIAM J. Control Optim., 38(2):447–469, 2000.

[62] M. Benäım. Dynamics of stochastic approximation algorithms. In Séminaire de
Probabilités, XXXIII, pages 1–68. Springer, Berlin, 1999.

[63] J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression
function. Ann. Math. Statist., 23(3):462–466, 09 1952.

[64] D. Ruppert. A Newton-Raphson version of the multivariate Robbins-Monro procedure.
The Annals of Statistics, 13(1):236–245, 1985.

[65] D. Ruppert. Efficient estimators from a slowly convergent Robbins-Monro processes.
Technical Report Tech. Rept. No. 781, Cornell University, School of Operations Research
and Industrial Engineering, Ithaca, NY, 1988.

26 / 32

References

Stochastic Approximation II

[66] B. T. Polyak. A new method of stochastic approximation type. Avtomatika i
telemekhanika, 98–107, 1990 (in Russian). Translated in Automat. Remote Control, 51
1991.

[67] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging.
SIAM J. Control Optim., 30(4):838–855, 1992.

[68] V. R. Konda and J. N. Tsitsiklis. Convergence rate of linear two-time-scale stochastic
approximation. Ann. Appl. Probab., 14(2):796–819, 2004.

[69] E. Moulines and F. R. Bach. Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. In Advances in Neural Information Processing Systems
24, 451–459. Curran Associates, Inc., 2011.

[70] S. Chen, A. M. Devraj, A. Bušić, and S. Meyn. Explicit Mean-Square Error Bounds for
Monte-Carlo and Linear Stochastic Approximation. arXiv e-prints, 2002.02584, Feb. 2020.

[71] W. Mou, C. Junchi Li, M. J. Wainwright, P. L. Bartlett, and M. I. Jordan. On Linear
Stochastic Approximation: Fine-grained Polyak-Ruppert and Non-Asymptotic
Concentration. arXiv e-prints, page arXiv:2004.04719, Apr. 2020.

27 / 32

References

Optimization and ODEs I

[72] W. Su, S. Boyd, and E. Candes. A differential equation for modeling nesterov’s
accelerated gradient method: Theory and insights. In Advances in neural information
processing systems, pages 2510–2518, 2014.

[73] B. Shi, S. S. Du, W. Su, and M. I. Jordan. Acceleration via symplectic discretization of
high-resolution differential equations. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 5744–5752. Curran Associates, Inc., 2019.

[74] B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[75] Y. Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k2). In Soviet Mathematics Doklady, 1983.

28 / 32

References

QSA and Extremum Seeking Control I

[76] S. Chen, A. Bernstein, A. Devraj, and S. Meyn. Accelerating optimization and
reinforcement learning with quasi-stochastic approximation. arXiv:In preparation, 2020.

[77] B. Lapeybe, G. Pages, and K. Sab. Sequences with low discrepancy generalisation and
application to Robbins-Monro algorithm. Statistics, 21(2):251–272, 1990.

[78] S. Laruelle and G. Pagès. Stochastic approximation with averaging innovation applied to
finance. Monte Carlo Methods and Applications, 18(1):1–51, 2012.

[79] S. Shirodkar and S. Meyn. Quasi stochastic approximation. In Proc. of the 2011 American
Control Conference (ACC), pages 2429–2435, July 2011.

[80] A. Bernstein, Y. Chen, M. Colombino, E. Dall’Anese, P. Mehta, and S. Meyn. Optimal
rate of convergence for quasi-stochastic approximation. arXiv:1903.07228, 2019.

[81] A. Bernstein, Y. Chen, M. Colombino, E. Dall’Anese, P. Mehta, and S. Meyn.
Quasi-stochastic approximation and off-policy reinforcement learning. In Proc. of the
IEEE Conf. on Dec. and Control, pages 5244–5251, Mar 2019.

[82] Y. Chen, A. Bernstein, A. Devraj, and S. Meyn. Model-Free Primal-Dual Methods for
Network Optimization with Application to Real-Time Optimal Power Flow. In Proc. of
the American Control Conf., pages 3140–3147, Sept. 2019.

29 / 32

References

QSA and Extremum Seeking Control II

[83] S. Bhatnagar and V. S. Borkar. Multiscale chaotic spsa and smoothed functional
algorithms for simulation optimization. Simulation, 79(10):568–580, 2003.

[84] S. Bhatnagar, M. C. Fu, S. I. Marcus, and I.-J. Wang. Two-timescale simultaneous
perturbation stochastic approximation using deterministic perturbation sequences. ACM
Transactions on Modeling and Computer Simulation (TOMACS), 13(2):180–209, 2003.

[85] M. Le Blanc. Sur l’electrification des chemins de fer au moyen de courants alternatifs de
frequence elevee [On the electrification of railways by means of alternating currents of
high frequency]. Revue Generale de l’Electricite, 12(8):275–277, 1922.

[86] Y. Tan, W. H. Moase, C. Manzie, D. Nešić, and I. M. Y. Mareels. Extremum seeking from
1922 to 2010. In Proceedings of the 29th Chinese Control Conference, pages 14–26, July
2010.

[87] P. F. Blackman. Extremum-seeking regulators. In An Exposition of Adaptive Control.
Macmillan, 1962.

[88] J. Sternby. Adaptive control of extremum systems. In H. Unbehauen, editor, Methods and
Applications in Adaptive Control, pages 151–160, Berlin, Heidelberg, 1980. Springer
Berlin Heidelberg.

30 / 32

References

QSA and Extremum Seeking Control III

[89] J. Sternby. Extremum control systems–an area for adaptive control? In Joint Automatic
Control Conference, number 17, page 8, 1980.

[90] K. B. Ariyur and M. Krstić. Real Time Optimization by Extremum Seeking Control. John
Wiley & Sons, Inc., New York, NY, USA, 2003.

[91] M. Krstić and H.-H. Wang. Stability of extremum seeking feedback for general nonlinear
dynamic systems. Automatica, 36(4):595 – 601, 2000.

[92] S. Liu and M. Krstic. Introduction to extremum seeking. In Stochastic Averaging and
Stochastic Extremum Seeking, Communications and Control Engineering. Springer,
London, 2012.

[93] O. Trollberg and E. W. Jacobsen. On the convergence rate of extremum seeking control.
In European Control Conference (ECC), pages 2115–2120. 2014.

31 / 32

References

Selected Applications I

[94] N. S. Raman, A. M. Devraj, P. Barooah, and S. P. Meyn. Reinforcement learning for
control of building HVAC systems. In American Control Conference, July 2020.

[95] K. Mason and S. Grijalva. A review of reinforcement learning for autonomous building
energy management. arXiv.org, 2019. arXiv:1903.05196.

News from Andrey@NREL:

[96] A. Bernstein and E. Dall’Anese. Real-time feedback-based optimization of distribution
grids: A unified approach. IEEE Transactions on Control of Network Systems,
6(3):1197–1209, 2019.

[97] A. Bernstein, E. Dall’Anese, and A. Simonetto. Online primal-dual methods with
measurement feedback for time-varying convex optimization. IEEE Transactions on Signal
Processing, 67(8):1978–1991, 2019.

[98] Y. Chen, A. Bernstein, A. Devraj, and S. Meyn. Model-free primal-dual methods for
network optimization with application to real-time optimal power flow. In 2020 American
Control Conference (ACC), pages 3140–3147, 2020.

32 / 32

	Optimal Control and RL
	Quick recap
	TD Learning
	Does it work?
	Watkins and DQN

	From DP to QP
	Metrics For Success
	DP is LP
	DP is QP

	Convex Q-Learning
	Conclusions
	References

