
ONLINE LEARNING IN MDPS 
PART 2

Gergely Neu
Universitat Pompeu Fabra, Barcelona



ONLINE LEARNING IN MDPS 
PART 2
ADVERSARIAL MDPS

Gergely Neu
Universitat Pompeu Fabra, Barcelona



MARKOV DECISION PROCESSES

Environment
Learner

(“Agent”)

State 𝑋𝑡

Action 𝐴𝑡



MARKOV DECISION PROCESSES

Environment
Learner

(“Agent”)

State 𝑋𝑡

Action 𝐴𝑡

Reward 
function

Reward 𝑅𝑡



MARKOV DECISION PROCESSES

Environment
Learner

(“Agent”)

State 𝑋𝑡

Action 𝐴𝑡

Reward 
function

Reward 𝑅𝑡

•Learner: 
• Observe state 𝑋𝑡, choose action 𝐴𝑡
• Obtain reward 𝑟 𝑋𝑡 , 𝐴𝑡

•Environment: Draw next state 𝑋𝑡+1 ∼ 𝑃 ⋅ 𝑋𝑡 , 𝐴𝑡



ADVERSARIAL
MARKOV DECISION PROCESSES

Environment
Learner

(“Agent”)

State 𝑋𝑡

Action 𝐴𝑡

Reward 
function

Reward 𝑅𝑡

Adversary
•Learner: 

• Observe state 𝑋𝑡, choose action 𝐴𝑡
• Obtain reward 𝑟 𝑋𝑡 , 𝐴𝑡 𝑟𝑡 𝑋𝑡 , 𝐴𝑡

•Environment: Draw next state 𝑋𝑡+1 ∼ 𝑃 ⋅ 𝑋𝑡 , 𝐴𝑡 𝑃𝑡 ⋅ 𝑋𝑡 , 𝐴𝑡



ADVERSARIAL
MARKOV DECISION PROCESSES

Environment
Learner

(“Agent”)

State 𝑋𝑡

Action 𝐴𝑡

Reward 
function

Reward 𝑅𝑡

Adversary
•Learner: 

• Observe state 𝑋𝑡, choose action 𝐴𝑡
• Obtain reward 𝑟 𝑋𝑡 , 𝐴𝑡 𝑟𝑡 𝑋𝑡 , 𝐴𝑡

•Environment: Draw next state 𝑋𝑡+1 ∼ 𝑃 ⋅ 𝑋𝑡 , 𝐴𝑡 𝑃𝑡 ⋅ 𝑋𝑡 , 𝐴𝑡

This talk:
what is achievable when an 

external adversary is allowed 
to change the reward 

function and the transition 
function over time?



PERFORMANCE MEASURE: REGRET

Regret

ℜ𝔢𝔤𝑇 𝜋 =෍

𝑡=1

𝑇

𝔼 𝑟𝑡 𝑋𝑡
∗, 𝜋 𝑋𝑡

∗ − 𝑟𝑡 𝑋𝑡, 𝐴𝑡 ,

where 𝑋1
∗, 𝑋2

∗, … is the sequence of states that would 
have been generated by running comparator policy 𝜋

through the dynamics 𝑃1, 𝑃2, …



PERFORMANCE MEASURE: REGRET

Regret

ℜ𝔢𝔤𝑇 𝜋 =෍

𝑡=1

𝑇

𝔼 𝑟𝑡 𝑋𝑡
∗, 𝜋 𝑋𝑡

∗ − 𝑟𝑡 𝑋𝑡, 𝐴𝑡 ,

where 𝑋1
∗, 𝑋2

∗, … is the sequence of states that would 
have been generated by running comparator policy 𝜋

through the dynamics 𝑃1, 𝑃2, …

Goal: sublinear regret 

lim
𝑇→∞

max
𝜋

ℜ𝔢𝔤𝑇 𝜋

𝑇
= 0



OUTLINE

• Hardness results
• Non-oblivious adversaries
• Arbitrarily changing dynamics

• Arbitrarily changing reward functions
• Some common ideas
• Two algorithm families



SOME HARDNESS RESULTS



NON-OBLIVIOUS ADVERSARIES

Non-oblivious adversary: 
can take history ℋ𝑡 = 𝑋𝑡 , 𝐴𝑡−1, 𝑋𝑡−1, 𝐴𝑡−2, …

into account when selecting 𝑟𝑡 and 𝑃𝑡



NON-OBLIVIOUS ADVERSARIES

Non-oblivious adversary: 
can take history ℋ𝑡 = 𝑋𝑡 , 𝐴𝑡−1, 𝑋𝑡−1, 𝐴𝑡−2, …

into account when selecting 𝑟𝑡 and 𝑃𝑡

Theorem 
(Yu, Mannor and Shimkin, 2009)

No algorithm can guarantee sublinear 
regret against a non-oblivious adversary



Simple counterexample by Yu, Mannor and Shimkin (2009):

PROOF



Simple counterexample by Yu, Mannor and Shimkin (2009):

•Reward is function of state

•𝑟𝑡 default = 0

•𝑟𝑡 left = 1 if 𝐴𝑡−1 = right

•𝑟𝑡 right = 1 if 𝐴𝑡−1 = left

PROOF



Simple counterexample by Yu, Mannor and Shimkin (2009):

•Reward is function of state

•𝑟𝑡 default = 0

•𝑟𝑡 left = 1 if 𝐴𝑡−1 = right

•𝑟𝑡 right = 1 if 𝐴𝑡−1 = left

PROOF

𝑟𝑡 𝑋𝑡 = 0 for all 𝑡!



Simple counterexample by Yu, Mannor and Shimkin (2009):

•Reward is function of state

•𝑟𝑡 default = 0

•𝑟𝑡 left = 1 if 𝐴𝑡−1 = right

•𝑟𝑡 right = 1 if 𝐴𝑡−1 = left

PROOF

𝑟𝑡 𝑋𝑡 = 0 for all 𝑡!
But there is a policy 𝜋 with 

𝔼 σ𝑡 𝑟𝑡 𝑋𝑡
∗, 𝜋 𝑋𝑡

∗ ≥
1

2
− 𝑝 𝑇

Either 𝜋 1 = left or 𝜋 1 = right



Simple counterexample by Yu, Mannor and Shimkin (2009):

•Reward is function of state

•𝑟𝑡 default = 0

•𝑟𝑡 left = 1 if 𝐴𝑡−1 = right

•𝑟𝑡 right = 1 if 𝐴𝑡−1 = left

PROOF

𝑟𝑡 𝑋𝑡 = 0 for all 𝑡!
But there is a policy 𝜋 with 

𝔼 σ𝑡 𝑟𝑡 𝑋𝑡
∗, 𝜋 𝑋𝑡

∗ ≥
1

2
− 𝑝 𝑇

Either 𝜋 1 = left or 𝜋 1 = right

ℜ𝔢𝔤𝑇 𝜋 ≥
1

2
− 𝑝 𝑇



WHAT WENT WRONG?

Regret

ℜ𝔢𝔤𝑇 𝜋 =෍

𝑡=1

𝑇

𝔼 𝑟𝑡 𝑋𝑡
∗, 𝜋 𝑋𝑡

∗ − 𝑟𝑡 𝑋𝑡, 𝐴𝑡 ,

where 𝑋1
∗, 𝑋2

∗, … is the sequence of states that would 
have been generated by running comparator policy 𝜋

through the dynamics 𝑃1, 𝑃2, …



WHAT WENT WRONG?

Regret

ℜ𝔢𝔤𝑇 𝜋 =෍

𝑡=1

𝑇

𝔼 𝑟𝑡 𝑋𝑡
∗, 𝜋 𝑋𝑡

∗ − 𝑟𝑡 𝑋𝑡, 𝐴𝑡 ,

where 𝑋1
∗, 𝑋2

∗, … is the sequence of states that would 
have been generated by running comparator policy 𝜋

through the dynamics 𝑃1, 𝑃2, …

The reward 𝑟𝑡 was chosen in response to 
real state history ℋ𝑡 and not in response to 

comparator history
ℋ𝑡

∗ = 𝑋𝑡
∗, 𝐴𝑡−1

∗ , 𝑋𝑡−1
∗ , 𝐴𝑡−2

∗ , … , 𝑋1
∗!



WHAT WENT WRONG?

Regret

ℜ𝔢𝔤𝑇 𝜋 =෍

𝑡=1

𝑇

𝔼 𝑟𝑡 𝑋𝑡
∗, 𝜋 𝑋𝑡

∗ − 𝑟𝑡 𝑋𝑡, 𝐴𝑡 ,

where 𝑋1
∗, 𝑋2

∗, … is the sequence of states that would 
have been generated by running comparator policy 𝜋

through the dynamics 𝑃1, 𝑃2, …

The reward 𝑟𝑡 was chosen in response to 
real state history ℋ𝑡 and not in response to 

comparator history
ℋ𝑡

∗ = 𝑋𝑡
∗, 𝐴𝑡−1

∗ , 𝑋𝑡−1
∗ , 𝐴𝑡−2

∗ , … , 𝑋1
∗!

Possible solutions:
• Consider “policy regret”: redefine comparator to take the 

effect ℋ𝑡 → 𝑟𝑡 into account
• Consider oblivious adversaries



WHAT WENT WRONG?

Regret

ℜ𝔢𝔤𝑇 𝜋 =෍

𝑡=1

𝑇

𝔼 𝑟𝑡 𝑋𝑡
∗, 𝜋 𝑋𝑡

∗ − 𝑟𝑡 𝑋𝑡, 𝐴𝑡 ,

where 𝑋1
∗, 𝑋2

∗, … is the sequence of states that would 
have been generated by running comparator policy 𝜋

through the dynamics 𝑃1, 𝑃2, …

The reward 𝑟𝑡 was chosen in response to 
real state history ℋ𝑡 and not in response to 

comparator history
ℋ𝑡

∗ = 𝑋𝑡
∗, 𝐴𝑡−1

∗ , 𝑋𝑡−1
∗ , 𝐴𝑡−2

∗ , … , 𝑋1
∗!

Possible solutions:
• Consider “policy regret”: redefine comparator to take the 

effect ℋ𝑡 → 𝑟𝑡 into account
• Consider oblivious adversaries



OBLIVIOUS ADVERSARIES

Non-oblivious adversary: 
can take history ℋ𝑡 = 𝑋𝑡 , 𝐴𝑡−1, 𝑋𝑡−1, 𝐴𝑡−2, …

into account when selecting 𝑟𝑡 and 𝑃𝑡



OBLIVIOUS ADVERSARIES

Adversary
Oblivious adversary: 

cannot take history ℋ𝑡 into account when 
selecting 𝑟𝑡 and 𝑃𝑡

“Adversary ≈ nature”: 
it can (mis)behave arbitrarily, but doesn’t 

care about what you do



OBLIVIOUS ADVERSARIES

Adversary
Oblivious adversary: 

cannot take history ℋ𝑡 into account when 
selecting 𝑟𝑡 and 𝑃𝑡

“Adversary ≈ nature”: 
it can (mis)behave arbitrarily, but doesn’t 

care about what you do

Can we guarantee 
sublinear regret now?



Learning against an oblivious adversary can still be 
computationally hard when the 

transition function is allowed to change!

LEARNING WITH CHANGING 
TRANSITIONS IS HARD

Theorem
(Abbasi-Yadkori et al., 2013)

There is an adversarial MDP where achieving 
sublinear regret is computationally hard.



• Idea: learning of noisy parities can be formulated 
as an MDP with changing transition functions & 
rewards!

•𝑂 poly 𝑛 𝑇1−𝛼 regret ⇒ 𝑂
𝑝𝑜𝑙𝑦 𝑛

𝜀1/𝛼
excess risk, 

conjectured to be computationally hard to achieve

•Construction: an instance 𝑥 ∈ 0,1 𝑛 corresponds 
to a deterministic transition graph with rewards 
determined by the label 𝑦

PROOF CONSTRUCTION



• Idea: learning of noisy parities can be formulated 
as an MDP with changing transition functions & 
rewards!

•𝑂 poly 𝑛 𝑇1−𝛼 regret ⇒ 𝑂
𝑝𝑜𝑙𝑦 𝑛

𝜀1/𝛼
excess risk, 

conjectured to be computationally hard to achieve

•Construction: an instance 𝑥 ∈ 0,1 𝑛 corresponds 
to a deterministic transition graph with rewards 
determined by the label 𝑦

PROOF CONSTRUCTION

Corresponds to an oblivious 
adversary that picks 𝑃𝑡 , 𝑟𝑡 jointly!



Very recent work by Gajane et al. (2019), Cheung et al. (2020):

•define reward and transition variation as

𝑉𝑇
𝑟 =෍

𝑡=1

𝑇

max
𝑥,𝑎

𝑟𝑡 𝑥, 𝑎 − 𝑟𝑡+1 𝑥, 𝑎

𝑉𝑇
𝑃 =෍

𝑡=1

𝑇

max
𝑥,𝑎

𝑃𝑡 ⋅ 𝑥, 𝑎 − 𝑃𝑡+1 ⋅ 𝑥, 𝑎 1

• regret bounds of 𝑂 𝑉𝑇
𝑃 + 𝑉𝑇

𝑟 1/3𝑇2/3 are possible

•algorithm: UCRL + forgetting old data

SLOWLY CHANGING MDPS



ALGORITHMS FOR MDPS WITH 
ADVERSARIAL REWARDS



WHERE IT ALL STARTED…

NeurIPS 2005

Math of OR 2009



FORMAL PROTOCOL
Online learning in a fixed MDP
For each round 𝑡 = 1,2, … , 𝑇

• Learner observes state 𝑋𝑡 ∈ 𝒳

• Learner takes action 𝐴𝑡 ∈ 𝒜
• Adversary selects reward function 𝑟𝑡: 𝒳 ×𝒜 → 0,1
• Learner earns reward 𝑅𝑡 = 𝑟𝑡 𝑋𝑡 , 𝐴𝑡
• Learner observes feedback

• Full information: 𝑟𝑡
• Bandit feedback: 𝑅𝑡

• Environment produces new state 𝑋𝑡+1 ∼ 𝑃 ⋅ 𝑋𝑡 , 𝐴𝑡



FORMAL PROTOCOL
Online learning in a fixed MDP
For each round 𝑡 = 1,2, … , 𝑇

• Learner observes state 𝑋𝑡 ∈ 𝒳
• Learner selects stochastic policy 𝜋𝑡
• Learner takes action 𝐴𝑡 ∼ 𝜋𝑡 ⋅ 𝑋𝑡
• Adversary selects reward function 𝑟𝑡: 𝒳 ×𝒜 → 0,1
• Learner earns reward 𝑅𝑡 = 𝑟𝑡 𝑋𝑡 , 𝐴𝑡
• Learner observes feedback

• Full information: 𝑟𝑡
• Bandit feedback: 𝑅𝑡

• Environment produces new state 𝑋𝑡+1 ∼ 𝑃 ⋅ 𝑋𝑡 , 𝐴𝑡

Stochastic policy: 𝜋 𝑎 𝑥 = ℙ 𝐴𝑡 = 𝑎 𝑋𝑡 = 𝑥



Main challenge: dependence between consecutive time steps

TEMPORAL DEPENDENCES

𝜋𝑡

𝑟𝑡−1

𝑋𝑡 𝑋𝑡+1

𝐴𝑡

𝑋𝑡+2

𝐴𝑡+1

𝑋𝑡+3

𝐴𝑡+2 …

…

𝜋𝑡+1

𝑟𝑡

𝜋𝑡+2

𝑟𝑡+1

…

NB this graph is accurate for full information feedback; bandit is a bit more complicated



Main challenge: dependence between consecutive time steps

TEMPORAL DEPENDENCES

𝜋𝑡

𝑟𝑡−1

𝑋𝑡 𝑋𝑡+1

𝐴𝑡

𝑋𝑡+2

𝐴𝑡+1

𝑋𝑡+3

𝐴𝑡+2 …

…

𝜋𝑡+1

𝑟𝑡

𝜋𝑡+2

𝑟𝑡+1

…

NB this graph is accurate for full information feedback; bandit is a bit more complicated

Study this part first, 
worry about the rest later



Main challenge: dependence between consecutive time steps

TEMPORAL DEPENDENCES

𝜋𝑡

𝑟𝑡−1

𝜋𝑡+1

𝑟𝑡

𝜋𝑡+2

𝑟𝑡+1

…

Study this part first, 
worry about the rest later

“Pretend that every policy reaches its stationary distribution immediately!”



Main challenge: dependence between consecutive time steps

TEMPORAL DEPENDENCES

𝜋𝑡

𝑟𝑡−1

𝜋𝑡+1

𝑟𝑡

𝜋𝑡+2

𝑟𝑡+1

…

Study this part first, 
worry about the rest later

“Pretend that every policy reaches its stationary distribution immediately!”

Def: stationary distribution of policy 𝜋:

𝜇𝜋 𝑥, 𝑎 = lim
𝐾→∞

1

𝐾
σ𝑘=1
𝐾 𝕀 𝑋𝑘=𝑥,𝐴𝑘=𝑎



Main challenge: dependence between consecutive time steps

TEMPORAL DEPENDENCES

𝜋𝑡

𝑟𝑡−1

𝜋𝑡+1

𝑟𝑡

𝜋𝑡+2

𝑟𝑡+1

…

Study this part first, 
worry about the rest later

“Pretend that every policy reaches its stationary distribution immediately!”

Def: stationary distribution of policy 𝜋:

𝜇𝜋 𝑥, 𝑎 = lim
𝐾→∞

1

𝐾
σ𝑘=1
𝐾 𝕀 𝑋𝑘=𝑥,𝐴𝑘=𝑎

Assumption: 1-step mixing ∀𝜋
𝜈 − 𝜈′ 𝑃𝜋 1 ≤ 𝑒1/𝜏 𝜈 − 𝜈′ 1



•Define 
𝜈𝑡(𝑥, 𝑎) = ℙ 𝑋𝑡 = 𝑥, 𝐴𝑡 = 𝑎 and 𝜈𝑡

∗(𝑥, 𝑎) = ℙ 𝑋𝑡
∗ = 𝑥, 𝐴𝑡

∗ = 𝑎
𝜇𝑡 = 𝜇𝜋𝑡 , stationary distribution induced by policy 𝜋𝑡
𝜇∗ = 𝜇𝜋∗ , stationary distribution induced by policy 𝜋∗

REGRET DECOMPOSITION



•Define 
𝜈𝑡(𝑥, 𝑎) = ℙ 𝑋𝑡 = 𝑥, 𝐴𝑡 = 𝑎 and 𝜈𝑡

∗(𝑥, 𝑎) = ℙ 𝑋𝑡
∗ = 𝑥, 𝐴𝑡

∗ = 𝑎
𝜇𝑡 = 𝜇𝜋𝑡 , stationary distribution induced by policy 𝜋𝑡
𝜇∗ = 𝜇𝜋∗ , stationary distribution induced by policy 𝜋∗

•Rewrite regret as

ℜ𝔢𝔤𝑇 𝜋∗ =෍

𝑡=1

𝑇

𝔼 𝑟𝑡 𝑋𝑡
∗, 𝜋∗ 𝑋𝑡

∗ − 𝑟𝑡 𝑋𝑡 , 𝐴𝑡 =෍

𝑡=1

𝑇

⟨𝜈𝑡
∗ − 𝜈𝑡 , 𝑟𝑡⟩

REGRET DECOMPOSITION



•Define 
𝜈𝑡(𝑥, 𝑎) = ℙ 𝑋𝑡 = 𝑥, 𝐴𝑡 = 𝑎 and 𝜈𝑡

∗(𝑥, 𝑎) = ℙ 𝑋𝑡
∗ = 𝑥, 𝐴𝑡

∗ = 𝑎
𝜇𝑡 = 𝜇𝜋𝑡 , stationary distribution induced by policy 𝜋𝑡
𝜇∗ = 𝜇𝜋∗ , stationary distribution induced by policy 𝜋∗

•Rewrite regret as

ℜ𝔢𝔤𝑇 𝜋∗ =෍

𝑡=1

𝑇

𝔼 𝑟𝑡 𝑋𝑡
∗, 𝜋∗ 𝑋𝑡

∗ − 𝑟𝑡 𝑋𝑡 , 𝐴𝑡 =෍

𝑡=1

𝑇

⟨𝜈𝑡
∗ − 𝜈𝑡 , 𝑟𝑡⟩

=෍

𝑡=1

𝑇

𝜈𝑡
∗ − 𝜇∗, 𝑟𝑡 +෍

𝑡=1

𝑇

𝜇∗ − 𝜇𝑡 , 𝑟𝑡 +෍

𝑡=1

𝑇

𝜇𝑡 − 𝜈𝑡 , 𝑟𝑡

REGRET DECOMPOSITION



•Define 
𝜈𝑡(𝑥, 𝑎) = ℙ 𝑋𝑡 = 𝑥, 𝐴𝑡 = 𝑎 and 𝜈𝑡

∗(𝑥, 𝑎) = ℙ 𝑋𝑡
∗ = 𝑥, 𝐴𝑡

∗ = 𝑎
𝜇𝑡 = 𝜇𝜋𝑡 , stationary distribution induced by policy 𝜋𝑡
𝜇∗ = 𝜇𝜋∗ , stationary distribution induced by policy 𝜋∗

•Rewrite regret as

ℜ𝔢𝔤𝑇 𝜋∗ =෍

𝑡=1

𝑇

𝔼 𝑟𝑡 𝑋𝑡
∗, 𝜋∗ 𝑋𝑡

∗ − 𝑟𝑡 𝑋𝑡 , 𝐴𝑡 =෍

𝑡=1

𝑇

⟨𝜈𝑡
∗ − 𝜈𝑡 , 𝑟𝑡⟩

=෍

𝑡=1

𝑇

𝜈𝑡
∗ − 𝜇∗, 𝑟𝑡 +෍

𝑡=1

𝑇

𝜇∗ − 𝜇𝑡 , 𝑟𝑡 +෍

𝑡=1

𝑇

𝜇𝑡 − 𝜈𝑡 , 𝑟𝑡

REGRET DECOMPOSITION

“stationarized regret”



•Define 
𝜈𝑡(𝑥, 𝑎) = ℙ 𝑋𝑡 = 𝑥, 𝐴𝑡 = 𝑎 and 𝜈𝑡

∗(𝑥, 𝑎) = ℙ 𝑋𝑡
∗ = 𝑥, 𝐴𝑡

∗ = 𝑎
𝜇𝑡 = 𝜇𝜋𝑡 , stationary distribution induced by policy 𝜋𝑡
𝜇∗ = 𝜇𝜋∗ , stationary distribution induced by policy 𝜋∗

•Rewrite regret as

ℜ𝔢𝔤𝑇 𝜋∗ =෍

𝑡=1

𝑇

𝔼 𝑟𝑡 𝑋𝑡
∗, 𝜋∗ 𝑋𝑡

∗ − 𝑟𝑡 𝑋𝑡 , 𝐴𝑡 =෍

𝑡=1

𝑇

⟨𝜈𝑡
∗ − 𝜈𝑡 , 𝑟𝑡⟩

=෍

𝑡=1

𝑇

𝜈𝑡
∗ − 𝜇∗, 𝑟𝑡 +෍

𝑡=1

𝑇

𝜇∗ − 𝜇𝑡 , 𝑟𝑡 +෍

𝑡=1

𝑇

𝜇𝑡 − 𝜈𝑡 , 𝑟𝑡

REGRET DECOMPOSITION

“stationarized regret”“comparator drift” “learner drift”



•For the comparator, fast mixing is guaranteed by assumption:

෍

𝑡=1

𝑇

𝜈𝑡
∗ − 𝜇∗, 𝑟𝑡 ≤෍

𝑡=1

𝑇

𝜈𝑡
∗ − 𝜇∗ 1 ≤෍

𝑡=1

𝑇

𝑒−𝑡/𝜏 𝜈1
∗ − 𝜇∗ 1 ≤ 2𝜏 + 2

THE DRIFT TERMS



•For the comparator, fast mixing is guaranteed by assumption:

෍

𝑡=1

𝑇

𝜈𝑡
∗ − 𝜇∗, 𝑟𝑡 ≤෍

𝑡=1

𝑇

𝜈𝑡
∗ − 𝜇∗ 1 ≤෍

𝑡=1

𝑇

𝑒−𝑡/𝜏 𝜈1
∗ − 𝜇∗ 1 ≤ 2𝜏 + 2

•The other term is small if the policies change slowly:

THE DRIFT TERMS

Lemma
If max

𝑥
𝜋𝑡 ⋅ 𝑥 − 𝜋𝑡−1 ⋅ 𝑥 1 ≤ 𝜀 for all 𝑡, then

෍

𝑡=1

𝑇

𝜇𝑡 − 𝜈𝑡 1 ≤ 𝜏 + 1 2𝜀𝑇 + 2𝑒−𝑇/𝜏

“𝜈𝑡 tracks 𝜇𝑡 if policies change slowly”



ALGORITHMS FOR MDPS WITH 
ADVERSARIAL REWARDS



ALGORITHMS FOR MDPS WITH 
ADVERSARIAL REWARDS

Local-to-global regret 
decomposition

Reduction to online 
linear optimization



ALGORITHMS FOR MDPS WITH 
ADVERSARIAL REWARDS

Reduction to online 
linear optimization

Local-to-global regret 
decomposition



• Idea by Even-Dar, Kakade and Mansour (2005,2009) based on 
the performance difference lemma:

LOCAL-TO-GLOBAL 
REGRET DECOMPOSITION

Lemma
Let 𝜋, 𝜋′ be two arbitrary policies, 𝑟 a reward 

function and 𝑄𝜋 and 𝑉𝜋 be the value 
functions corresponding to 𝑟 and 𝜋. Then,

𝜇𝜋′ − 𝜇𝜋, 𝑟 = 𝜇𝜋′ , 𝑄
𝜋 − 𝑉𝜋



Apply with 𝑟 = 𝑟𝑡 , 𝜋 = 𝜋𝑡 and 𝜋′ = 𝜋∗:

𝜇∗ − 𝜇𝑡 , 𝑟 =෍

𝑥

𝜇∗(𝑥)෍

𝑎

𝜋∗ 𝑎 𝑥 − 𝜋𝑡 𝑎 𝑥 𝑄𝑡 𝑥, 𝑎

LOCAL-TO-GLOBAL 
REGRET DECOMPOSITION



Apply with 𝑟 = 𝑟𝑡 , 𝜋 = 𝜋𝑡 and 𝜋′ = 𝜋∗:

𝜇∗ − 𝜇𝑡 , 𝑟 =෍

𝑥

𝜇∗(𝑥)෍

𝑎

𝜋∗ 𝑎 𝑥 − 𝜋𝑡 𝑎 𝑥 𝑄𝑡 𝑥, 𝑎

LOCAL-TO-GLOBAL 
REGRET DECOMPOSITION

Q-function of 𝜋𝑡 with 
reward function 𝑟𝑡



Apply with 𝑟 = 𝑟𝑡 , 𝜋 = 𝜋𝑡 and 𝜋′ = 𝜋∗:

𝜇∗ − 𝜇𝑡 , 𝑟 =෍

𝑥

𝜇∗(𝑥)෍

𝑎

𝜋∗ 𝑎 𝑥 − 𝜋𝑡 𝑎 𝑥 𝑄𝑡 𝑥, 𝑎

Stationarized regret can be written as:

෍

𝑡=1

𝑇

𝜇∗ − 𝜇𝑡 , 𝑟 =෍

𝑡=1

𝑇

෍

𝑥

𝜇∗(𝑥)෍

𝑎

𝜋∗ 𝑎 𝑥 − 𝜋𝑡 𝑎 𝑥 𝑄𝑡 𝑥, 𝑎

LOCAL-TO-GLOBAL 
REGRET DECOMPOSITION

Q-function of 𝜋𝑡 with 
reward function 𝑟𝑡



Apply with 𝑟 = 𝑟𝑡 , 𝜋 = 𝜋𝑡 and 𝜋′ = 𝜋∗:

𝜇∗ − 𝜇𝑡 , 𝑟 =෍

𝑥

𝜇∗(𝑥)෍

𝑎

𝜋∗ 𝑎 𝑥 − 𝜋𝑡 𝑎 𝑥 𝑄𝑡 𝑥, 𝑎

Stationarized regret can be written as:

෍

𝑡=1

𝑇

𝜇∗ − 𝜇𝑡 , 𝑟 =෍

𝑥

𝜇∗(𝑥)෍

𝑡=1

𝑇

෍

𝑎

𝜋∗ 𝑎 𝑥 − 𝜋𝑡 𝑎 𝑥 𝑄𝑡 𝑥, 𝑎

LOCAL-TO-GLOBAL 
REGRET DECOMPOSITION

Q-function of 𝜋𝑡 with 
reward function 𝑟𝑡



Apply with 𝑟 = 𝑟𝑡 , 𝜋 = 𝜋𝑡 and 𝜋′ = 𝜋∗:

𝜇∗ − 𝜇𝑡 , 𝑟 =෍

𝑥

𝜇∗(𝑥)෍

𝑎

𝜋∗ 𝑎 𝑥 − 𝜋𝑡 𝑎 𝑥 𝑄𝑡 𝑥, 𝑎

Stationarized regret can be written as:

෍

𝑡=1

𝑇

𝜇∗ − 𝜇𝑡 , 𝑟 =෍

𝑥

𝜇∗(𝑥)෍

𝑡=1

𝑇

෍

𝑎

𝜋∗ 𝑎 𝑥 − 𝜋𝑡 𝑎 𝑥 𝑄𝑡 𝑥, 𝑎

LOCAL-TO-GLOBAL 
REGRET DECOMPOSITION

Local regret in state 𝑥 with 
reward function 𝑄𝑡(𝑥,⋅)

Q-function of 𝜋𝑡 with 
reward function 𝑟𝑡



Apply with 𝑟 = 𝑟𝑡 , 𝜋 = 𝜋𝑡 and 𝜋′ = 𝜋∗:

𝜇∗ − 𝜇𝑡 , 𝑟 =෍

𝑥

𝜇∗(𝑥)෍

𝑎

𝜋∗ 𝑎 𝑥 − 𝜋𝑡 𝑎 𝑥 𝑄𝑡 𝑥, 𝑎

Stationarized regret can be written as:

෍

𝑡=1

𝑇

𝜇∗ − 𝜇𝑡 , 𝑟 =෍

𝑥

𝜇∗(𝑥)෍

𝑡=1

𝑇

෍

𝑎

𝜋∗ 𝑎 𝑥 − 𝜋𝑡 𝑎 𝑥 𝑄𝑡 𝑥, 𝑎

LOCAL-TO-GLOBAL 
REGRET DECOMPOSITION

Q-function of 𝜋𝑡 with 
reward function 𝑟𝑡

Local regret in state 𝑥 with 
reward function 𝑄𝑡(𝑥,⋅)

Algorithm idea:
run a local regret-minimization 
algorithm in each state 𝑥 with 

reward function 𝑄𝑡(𝑥,⋅)!



THE MDP-EXPERT ALGORITHM
MDP-E
For each round 𝑡 = 1,2, … , 𝑇

• Observe state 𝑋𝑡
• Take action 𝐴𝑡 ∼ 𝜋𝑡(⋅ |𝑋𝑡)
• Observe reward function 𝑟𝑡
• Calculate value functions as solution to

𝑄𝑡 𝑥, 𝑎 = 𝑟𝑡 − 𝜇𝑡 , 𝑟𝑡 + σ𝑥′𝑃 𝑥′ 𝑥, 𝑎 𝑉𝑡 𝑥
′

• For all 𝑥, feed 𝑄𝑡 𝑥,⋅ to expert algorithm 𝔄𝔩𝔤 𝑥



THE MDP-EXPERT ALGORITHM
MDP-E
For each round 𝑡 = 1,2, … , 𝑇

• Observe state 𝑋𝑡
• Take action 𝐴𝑡 ∼ 𝜋𝑡(⋅ |𝑋𝑡)
• Observe reward function 𝑟𝑡
• Calculate value functions as solution to

𝑄𝑡 𝑥, 𝑎 = 𝑟𝑡 − 𝜇𝑡 , 𝑟𝑡 + σ𝑥′𝑃 𝑥′ 𝑥, 𝑎 𝑉𝑡 𝑥
′

• For all 𝑥, feed 𝑄𝑡 𝑥,⋅ to expert algorithm 𝔄𝔩𝔤 𝑥
• Example: 𝔄𝔩𝔤 = Exponential weights

𝜋𝑡+1 𝑎 𝑥 ∝ 𝜋𝑡 𝑎 𝑥 ⋅ 𝑒𝜂𝑄𝑡 𝑥,𝑎



GUARANTEES FOR MDP-E
Theorem

(Even-Dar et al., 2009, Neu et al., 2014)
If 𝔄𝔩𝔤 𝑥 guarantees a regret bound of 𝐵𝑇 for rewards 

bounded in 0,1 , the stationarized regret of MDP-E satisfies

෍

𝑡=1

𝑇

𝜇∗ − 𝜇𝑡 , 𝑟 ≤ 𝜏𝐵𝑇

Proof is obvious given the regret decomposition.



GUARANTEES FOR MDP-E
Theorem

(Even-Dar et al., 2009, Neu et al., 2014)
If 𝔄𝔩𝔤 𝑥 guarantees a regret bound of 𝐵𝑇 for rewards 

bounded in 0,1 , the stationarized regret of MDP-E satisfies

෍

𝑡=1

𝑇

𝜇∗ − 𝜇𝑡 , 𝑟 ≤ 𝜏𝐵𝑇

Theorem
If 𝔄𝔩𝔤 𝑥 =EWA, the regret of MDP-E satisfies

ℜ𝔢𝔤𝑇 = 𝑂 𝜏3𝑇 log 𝒜

Proof is obvious given the regret decomposition.



Addressed in Neu, György, Szepesvári and Antos (2010,2014): 
replace 𝑟𝑡 by an unbiased estimator 

Ƹ𝑟𝑡 𝑥, 𝑎 =
𝑟𝑡 𝑥, 𝑎

𝜇𝑡
𝑁 𝑥, 𝑎

𝕀 𝑋𝑡 , 𝐴𝑡 = 𝑥, 𝑎 ,

with 𝜇𝑡
𝑁 𝑥, 𝑎 = ℙ 𝑋𝑡 , 𝐴𝑡 = 𝑥, 𝑎 ℋ𝑡−𝑁

BANDIT FEEDBACK



Addressed in Neu, György, Szepesvári and Antos (2010,2014): 
replace 𝑟𝑡 by an unbiased estimator 

Ƹ𝑟𝑡 𝑥, 𝑎 =
𝑟𝑡 𝑥, 𝑎

𝜇𝑡
𝑁 𝑥, 𝑎

𝕀 𝑋𝑡 , 𝐴𝑡 = 𝑥, 𝑎 ,

with 𝜇𝑡
𝑁 𝑥, 𝑎 = ℙ 𝑋𝑡 , 𝐴𝑡 = 𝑥, 𝑎 ℋ𝑡−𝑁

BANDIT FEEDBACK

Remember Exp3?



Addressed in Neu, György, Szepesvári and Antos (2010,2014): 
replace 𝑟𝑡 by an unbiased estimator 

Ƹ𝑟𝑡 𝑥, 𝑎 =
𝑟𝑡 𝑥, 𝑎

𝜇𝑡
𝑁 𝑥, 𝑎

𝕀 𝑋𝑡 , 𝐴𝑡 = 𝑥, 𝑎 ,

with 𝜇𝑡
𝑁 𝑥, 𝑎 = ℙ 𝑋𝑡 , 𝐴𝑡 = 𝑥, 𝑎 ℋ𝑡−𝑁

BANDIT FEEDBACK

Theorem
If 𝔄𝔩𝔤 𝑥 =EWA, the regret of MDP-Exp3 satisfies

ℜ𝔢𝔤𝑇 = 𝑂 𝜏3𝑇 𝒜 log 𝒜 /𝛽

Assumption: 𝜇𝜋 𝑥 ≥ 𝛽 for all 𝜋, 𝑥

Remember Exp3?



ALGORITHMS FOR MDPS WITH 
ADVERSARIAL REWARDS

Local-to-global regret 
decomposition

Reduction to online 
linear optimization



Notice: stationarized regret = regret in an OLO problem!

෍

𝑡=1

𝑇

𝜇∗ − 𝜇𝑡 , 𝑟𝑡

ONLINE LINEAR OPTIMIZATION



Notice: stationarized regret = regret in an OLO problem!

෍

𝑡=1

𝑇

𝜇∗ − 𝜇𝑡 , 𝑟𝑡

ONLINE LINEAR OPTIMIZATION

Algorithm idea:
run an OLO algorithm with the set of all 
stationary distributions as decision set!

𝒰 = 𝜇 ∈ Δ𝒳×𝒜:෍

𝑎

𝜇 𝑥, 𝑎 = ෍

𝑥′,𝑎′

𝑃 𝑥 𝑥′, 𝑎′ 𝜇 𝑥′, 𝑎′



• In each round, update stationary distribution

𝜇𝑡+1 = argmax
𝜇∈𝒰

𝜇, 𝑟𝑡 −
1

𝜂
𝐷 𝜇 𝜇𝑡

and extract policy 𝜋𝑡+1 𝑎 𝑥 ∝ 𝜇𝑡+1(𝑥, 𝑎)

ONLINE MIRROR DESCENT



• In each round, update stationary distribution

𝜇𝑡+1 = argmax
𝜇∈𝒰

𝜇, 𝑟𝑡 −
1

𝜂
𝐷 𝜇 𝜇𝑡

and extract policy 𝜋𝑡+1 𝑎 𝑥 ∝ 𝜇𝑡+1(𝑥, 𝑎)

•Choosing the regularizer:

• Relative entropy: 𝐷 𝜇 𝜈 = σ𝑥,𝑎 𝜇 𝑥, 𝑎 log
𝜇 𝑥,𝑎

𝜈(𝑥,𝑎)

⇒ “Online Relative Entropy Policy Search” (Zimin and Neu, 2013, Dick, 
György and Szepesvári, 2014)

• Conditional relative entropy: 𝐷 𝜇 𝜈 = σ𝑥,𝑎 𝜇 𝑥, 𝑎 log
𝜋𝜇 𝑎|𝑥

𝜋𝜈(𝑎|𝑥)

⇒ “Regularized Bellman updates” (Neu, Jonsson and Gómez, 2017)

ONLINE MIRROR DESCENT



• In each round, update stationary distribution

𝜇𝑡+1 = argmax
𝜇∈𝒰

𝜇, 𝑟𝑡 −
1

𝜂
𝐷 𝜇 𝜇𝑡

and extract policy 𝜋𝑡+1 𝑎 𝑥 ∝ 𝜇𝑡+1(𝑥, 𝑎)

•Choosing the regularizer:

• Relative entropy: 𝐷 𝜇 𝜈 = σ𝑥,𝑎 𝜇 𝑥, 𝑎 log
𝜇 𝑥,𝑎

𝜈(𝑥,𝑎)

⇒ “Online Relative Entropy Policy Search” (Zimin and Neu, 2013, Dick, 
György and Szepesvári, 2014)

• Conditional relative entropy: 𝐷 𝜇 𝜈 = σ𝑥,𝑎 𝜇 𝑥, 𝑎 log
𝜋𝜇 𝑎|𝑥

𝜋𝜈(𝑎|𝑥)

⇒ “Regularized Bellman updates” (Neu, Jonsson and Gómez, 2017)

ONLINE MIRROR DESCENT



THE ONLINE REPS ALGORITHM
O-REPS
For each round 𝑡 = 1,2, … , 𝑇

• Observe state 𝑋𝑡
• Take action 𝐴𝑡 ∼ 𝜋𝑡(⋅ |𝑋𝑡)
• Observe reward function 𝑟𝑡
• Calculate value functions as solution to

min
𝑉

logσ𝑥,𝑎 𝜇𝑡 𝑥, 𝑎 𝑒
𝜂 𝑟𝑡 𝑥,𝑎 +σ

𝑥′
𝑃(𝑥′|𝑥,𝑎)𝑉(𝑥′)−𝑉 𝑥

• Update stationary distribution as

𝜇𝑡+1 𝑥, 𝑎 = 𝜇𝑡 𝑥, 𝑎 𝑒
𝜂 𝑟𝑡 𝑥,𝑎 +σ

𝑥′
𝑃(𝑥′|𝑥,𝑎)𝑉(𝑥′)−𝑉 𝑥

Algorithm inspired by Peters, Mülling and Altün (2010)



THE ONLINE REPS ALGORITHM
O-REPS
For each round 𝑡 = 1,2, … , 𝑇

• Observe state 𝑋𝑡
• Take action 𝐴𝑡 ∼ 𝜋𝑡(⋅ |𝑋𝑡)
• Observe reward function 𝑟𝑡
• Calculate value functions as solution to

min
𝑉

logσ𝑥,𝑎 𝜇𝑡 𝑥, 𝑎 𝑒
𝜂 𝑟𝑡 𝑥,𝑎 +σ

𝑥′
𝑃(𝑥′|𝑥,𝑎)𝑉(𝑥′)−𝑉 𝑥

• Update stationary distribution as

𝜇𝑡+1 𝑥, 𝑎 = 𝜇𝑡 𝑥, 𝑎 𝑒
𝜂 𝑟𝑡 𝑥,𝑎 +σ

𝑥′
𝑃(𝑥′|𝑥,𝑎)𝑉(𝑥′)−𝑉 𝑥

Algorithm inspired by Peters, Mülling and Altün (2010)

Unconstrained 
convex minimization



GUARANTEES FOR O-REPS

Theorem
(Zimin and Neu, 2013, Dick et al. 2014)

The stationarized regret of O-REPS satisfies

෍

𝑡=1

𝑇

𝜇∗ − 𝜇𝑡 , 𝑟 ≤ 𝑇 log 𝒳 𝒜

Theorem
The regret of O-REPS satisfies

ℜ𝔢𝔤𝑇 = 𝑂 𝜏𝑇 log 𝒳 𝒜

Proof is based on standard OLO analysis.



Addressed in Zimin and Neu (2013) in episodic MDPs: 
replace 𝑟𝑡 by an unbiased estimator 

Ƹ𝑟𝑡 𝑥, 𝑎 =
𝑟𝑡 𝑥, 𝑎

𝑞𝑡 𝑥, 𝑎
𝕀 𝑥, 𝑎 visited in episode 𝑡 ,

with 𝑞𝑡 𝑥, 𝑎 = ℙ 𝑥, 𝑎 visited in episode 𝑡 ℋ𝑡−1

BANDIT FEEDBACK



Addressed in Zimin and Neu (2013) in episodic MDPs: 
replace 𝑟𝑡 by an unbiased estimator 

Ƹ𝑟𝑡 𝑥, 𝑎 =
𝑟𝑡 𝑥, 𝑎

𝑞𝑡 𝑥, 𝑎
𝕀 𝑥, 𝑎 visited in episode 𝑡 ,

with 𝑞𝑡 𝑥, 𝑎 = ℙ 𝑥, 𝑎 visited in episode 𝑡 ℋ𝑡−1

BANDIT FEEDBACK

Theorem
If 𝔄𝔩𝔤 𝑥 =EWA, the regret of MDP-Exp3 satisfies

ℜ𝔢𝔤𝑇 = 𝑂 𝐻 𝑇 𝒳 𝒜 log 𝒳 𝒜



ALGORITHMS FOR MDPS WITH 
ADVERSARIAL REWARDS

Local-to-global regret 
decomposition

Reduction to online 
linear optimization



ALGORITHMS FOR MDPS WITH 
ADVERSARIAL REWARDS

Local-to-global regret 
decomposition

Reduction to online 
linear optimization

Which one 
should I use?



MDP-E O-REPS

Full information 𝜏3𝑇 log 𝒜 𝜏𝑇 log 𝒳 𝒜

Bandit feedback 𝜏3 𝒜 𝑇 log 𝒜 /𝛽 ???

Full information
(episodic case)

𝐻2 𝑇 log 𝒜 𝐻 𝑇 log 𝒳 𝒜

Bandit feedback
(episodic case)

𝐻2 𝒜 𝑇 log 𝒜 /𝛽 𝐻 𝒳 𝒜 𝑇 log 𝒳 𝒜

COMPARISON OF GUARANTEES



MDP-E O-REPS

Full information 𝜏3𝑇 log 𝒜 𝜏𝑇 log 𝒳 𝒜

Bandit feedback 𝜏3 𝒜 𝑇 log 𝒜 /𝛽 ???

Full information
(episodic case)

𝐻2 𝑇 log 𝒜 𝐻 𝑇 log 𝒳 𝒜

Bandit feedback
(episodic case)

𝐻2 𝒜 𝑇 log 𝒜 /𝛽 𝐻 𝒳 𝒜 𝑇 log 𝒳 𝒜

COMPARISON OF GUARANTEES

+ MDP-E works well with 
function approximation 

for Q-function

+ O-REPS can easily 
handle model constraints 

and extensions



MDP-E only needs a good approximation of the action-value 
function ෠𝑄𝑡 ≈ 𝑄𝜋𝑡 to define its policy

𝜋𝑡+1 𝑎 𝑥 ∝ exp 𝜂෍

𝑘=1

𝑡

෠𝑄𝑘 𝑥, 𝑎

•POLITEX (Abbasi-Yadkori et al., 2019):
use LSPE to estimate 𝑄𝜋𝑡 with linear FA
regret = 𝑂(𝑇3/4 + 𝜀0𝑇)

•OPPO (Cai et al., 2019)
use LSPE to estimate 𝑄𝜋𝑡 with realizable linear FA
regret = 𝑂 𝑇

MDP-E WITH 
FUNCTION APPROXIMATION



MDP-E only needs a good approximation of the action-value 
function ෠𝑄𝑡 ≈ 𝑄𝜋𝑡 to define its policy

𝜋𝑡+1 𝑎 𝑥 ∝ exp 𝜂෍

𝑘=1

𝑡

෠𝑄𝑘 𝑥, 𝑎

•POLITEX (Abbasi-Yadkori et al., 2019):
use LSPE to estimate 𝑄𝜋𝑡 with linear FA
regret = 𝑂(𝑇3/4 + 𝜀0𝑇)

•OPPO (Cai et al., 2019)
use LSPE to estimate 𝑄𝜋𝑡 with realizable linear FA
regret = 𝑂 𝑇

MDP-E WITH 
FUNCTION APPROXIMATION



MDP-E only needs a good approximation of the action-value 
function ෠𝑄𝑡 ≈ 𝑄𝜋𝑡 to define its policy

𝜋𝑡+1 𝑎 𝑥 ∝ exp 𝜂෍

𝑘=1

𝑡

෠𝑄𝑘 𝑥, 𝑎

•POLITEX (Abbasi-Yadkori et al., 2019):
use LSPE to estimate 𝑄𝜋𝑡 with linear FA
regret = 𝑂(𝑇3/4 + 𝜀0𝑇)

•OPPO (Cai et al., 2019)
use LSPE to estimate 𝑄𝜋𝑡 with realizable linear FA
regret = 𝑂 𝑇

MDP-E WITH 
FUNCTION APPROXIMATION

+ MDP-E is essentially identical to the 
“Trust-Region Policy Optimization” (TRPO) 

algorithm of Schulman et al. (2015), as shown 
by Neu, Jonsson and Gómez (2017)!!!



O-REPS can easily accommodate uncertainties in the transition 
model by extending the decision set:

O-REPS WITH UNCERTAIN MODELS

𝒰 = 𝜇 ∈ Δ𝒳×𝒜:෍

𝑎

𝜇 𝑥, 𝑎 = ෍

𝑥′,𝑎′

𝑃 𝑥 𝑥′, 𝑎′ 𝜇 𝑥′, 𝑎′ , 𝑃 ∈ 𝒫



O-REPS can easily accommodate uncertainties in the transition 
model by extending the decision set:

O-REPS WITH UNCERTAIN MODELS

𝒰 = 𝜇 ∈ Δ𝒳×𝒜:෍

𝑎

𝜇 𝑥, 𝑎 = ෍

𝑥′,𝑎′

𝑃 𝑥 𝑥′, 𝑎′ 𝜇 𝑥′, 𝑎′ , 𝑃 ∈ 𝒫

Confidence set of 
transition models



O-REPS can easily accommodate uncertainties in the transition 
model by extending the decision set:

O-REPS WITH UNCERTAIN MODELS

𝒰 = 𝜇 ∈ Δ𝒳×𝒜:෍

𝑎

𝜇 𝑥, 𝑎 = ෍

𝑥′,𝑎′

𝑃 𝑥 𝑥′, 𝑎′ 𝜇 𝑥′, 𝑎′ , 𝑃 ∈ 𝒫

Confidence set of 
transition modelsUC-O-REPS by Rosenberg and Mansour (2019)

Extended to bandit feedback by Jin et al. (2020):

Ƹ𝑟𝑡 𝑥, 𝑎 =
𝑟𝑡 𝑥, 𝑎

𝑢𝑡 𝑥, 𝑎
𝕀 𝑥, 𝑎 visited in episode 𝑡 ,

with 𝑢𝑡 𝑥, 𝑎 > 𝑞𝑡 𝑥, 𝑎 = ℙ 𝑥, 𝑎 visited in episode 𝑡 ℋ𝑡−1 w.h.p.



OUTLOOK



•Open problems:
• Lower bounds? Right scaling with 𝜏? Is uniform mixing necessary?

• Large state spaces and function approximation?

• Practical algorithms?

OUTLOOK



•Open problems:
• Lower bounds? Right scaling with 𝜏? Is uniform mixing necessary?

• Large state spaces and function approximation?

• Practical algorithms?

OUTLOOK

Relevance to practice of RL?



•Open problems:
• Lower bounds? Right scaling with 𝜏? Is uniform mixing necessary?

• Large state spaces and function approximation?

• Practical algorithms?

OUTLOOK

Relevance to practice of RL?
• Online learning algorithms are robust! Main tool: regularization
• Better understanding of regularization tools ⇒ better algorithms!
• Remember: TRPO = MDP-E!



Thanks!!!



• Yu, J. Y., Mannor, S., & Shimkin, N. (2009). Markov decision processes with 
arbitrary reward processes. Mathematics of Operations Research, 34(3), 737-757. 

• Abbasi-Yadkori, Y., Bartlett, P. L., Kanade, V., Seldin, Y., & Szepesvári, Cs. (2013). 
Online learning in Markov decision processes with adversarially chosen transition 
probability distributions. In Advances in neural information processing 
systems (pp. 2508-2516).

• Gajane, P., Ortner, R., & Auer, P. (2019). Variational Regret Bounds for 
Reinforcement Learning. In Uncertainty in Artificial Intelligence.

• Cheung, W. C., Simchi-Levi, D., & Zhu, R. (2020). Reinforcement Learning for 
Non-Stationary Markov Decision Processes: The Blessing of (More) Optimism. 
In International Conference on Machine Learning.

• Even-Dar, E., Kakade, S. M., & Mansour, Y. (2005). Experts in a Markov decision 
process. In Advances in neural information processing systems (pp. 401-408).

• Even-Dar, E., Kakade, S. M., & Mansour, Y. (2009). Online Markov decision 
processes. Mathematics of Operations Research, 34(3), 726-736.

REFERENCES



• Neu, G., Antos, A., György, A., & Szepesvári, C. (2010). Online Markov decision 
processes under bandit feedback. In Advances in Neural Information Processing 
Systems (pp. 1804-1812).

• Peters, J., Mülling, K., & Altun, Y. (2010). Relative entropy policy search. 
In AAAI (Vol. 10, pp. 1607-1612).

• Zimin, A., & Neu, G. (2013). Online learning in episodic Markovian decision 
processes by relative entropy policy search. In Advances in neural information 
processing systems (pp. 1583-1591).

• Dick, T., György, A., & Szepesvári, Cs. (2014). Online Learning in Markov 
Decision Processes with Changing Cost Sequences. In International Conference 
on Machine Learning (pp. 512-520).

• Abbasi-Yadkori, Y., Bartlett, P., Bhatia, K., Lazic, N., Szepesvári, Cs., & Weisz, G. 
(2019). POLITEX: Regret bounds for policy iteration using expert prediction. 
In International Conference on Machine Learning (pp. 3692-3702).

• Cai, Q., Yang, Z., Jin, C., & Wang, Z. (2019). Provably efficient exploration in 
policy optimization. arXiv preprint arXiv:1912.05830.

REFERENCES



• Neu, G., Jonsson, A., & Gómez, V. (2017). A unified view of entropy-regularized 

Markov decision processes. arXiv preprint arXiv:1705.07798.

• Rosenberg, A., & Mansour, Y. (2019, May). Online Convex Optimization in 

Adversarial Markov Decision Processes. In International Conference on Machine 

Learning (pp. 5478-5486).

• Rosenberg, A., & Mansour, Y. (2019). Online stochastic shortest path with bandit 

feedback and unknown transition function. In Advances in Neural Information 

Processing Systems (pp. 2212-2221).

• Jin, C., Jin, T., Luo, H., Sra, S., & Yu, T. (2020). Learning adversarial Markov 

decision processes with bandit feedback and unknown transition. In International 

Conference on Machine Learning (pp. 1369-1378).

REFERENCES


