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Risk neutral T -stage stochastic programming problem:

min
x1,x2(·),...,xT (·)

f1(x1) + E
[∑T

t=2 ft (xt, ξt)
]

s.t. x1 ∈ X1, xt ∈ Xt(xt−1, ξt), t = 2, . . . , T.

The optimization is aimed at minimization of the total cost

on average, and performed over the set of policies (also called

strategies, decision rules) π = (x1, x2(ξ[2]), ..., xT (ξ[T ])), sat-

isfying the feasibility constraints.

The values of the decision vector xt ∈ Rnt may depend on

the information (history) ξ[t] := (ξ1, .., ξt) available up to time

t, but not on the future observations. The data process

ξt ∈ Rdt, t = 1,2, ..., is modeled as random (stochastic), first

stage decision x1 is deterministic, made before observing any

realization of the random data process (ξ1 is deterministic,

used for uniformity of notation).
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In the linear case, the costs ft(xt, ξt) := c>t xt are linear and

Xt(xt−1, ξt) := {xt : Btxt−1 +Atxt = bt, xt ≥ 0} , t = 2, ..., T.

That is

min
x1,x2(·),...,xT (·)

c>1 x1 + E
[∑T

t=2 c
>
t xt

]
s.t. A1x1 = b1, x1 ≥ 0,

Btxt−1 +Atxt = bt, xt ≥ 0, t = 2, . . . , T,

where components of (ct, bt, Bt, At) are functions of ξt, t =

2, ..., T .
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What does it mean to solve the stochastic programming prob-

lem?

Is it computationally feasible to solve such problems?

What is a value of solving multistage problem?

How do we know probability distribution of the data process?

Why do we minimize (optimise) on average?

What does it mean that our solution is time consistent?

Why do we optimize the total cost?
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In order to solve stochastic programming problems numeri-

cally the (continuous) distribution of the data process should

be discretized by generating a finite number of realizations

of the data process (the scenarios approach). Size of the de-

terministic equivalent problem is proportional to the number

of generated scenarios.

If the number of realizations (scenarios) of the process ξt
is finite, then the above (linear) problem can be written as

one large (linear) programming problem (the deterministic

equivalent).
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The two stage (T = 2) case,

min
x,y(·)

c>1 x+ E
[
c>2 y

]
s.t. A1x = b1, x ≥ 0,

B2x+A2y = b2, y ≥ 0.

When the number of scenarios (realizations) ξ1, ..., ξK of the

second stage random variable is finite with the respective

probabilities pk > 0, the deterministic equivalent:

min
x,y1,...,yK

c>1 x+
∑K
k=1 pk(ck)>yk

s.t. A1x = b1, x ≥ 0,
Bkx+Akyk = bk, yk ≥ 0, k = 1, . . . ,K.

Here x is the first stage decision, y1, ..., yK are second stage

decisions - one copy for every scenario, and (ck, bk, Bk, Ak) is

realization of the respective parameters for scenario ξk.
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Distributionally robust - risk averse approach

min
x,y(·)

f1(x) +R [f2 (y, ξ)] s.t. x ∈ X1, y ∈ X2(x, ξ).

Functional R(·) is defined on a space of random variables

R(Z) = sup
P∈M

EP [Z],

where M is a specified set of probability measures (distribu-

tions).

Alternative formulation

min
x∈X1

f1(x) +R[Q(x, ξ)]

where Q(x, ξ) is the optimal value of the second stage prob-

lem:

min
y
f2(y, ξ) s.t. y ∈ X2(x, ξ).
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Relatively complete recourse: for every x ∈ X1 the second

stage problem has feasible solution for almost every ξ.

Without the relatively complete recourse it could happen that

for some x ∈ X1 and a realization of the random vector ξ the

second stage problem is infeasible and Q(x, ξ) = +∞.

Time consistency question: are the two formulations equiv-

alent? By solving the first formulation we obtain solution x̄

and ȳ(ξ). Is it true that ȳ(ξ) is an optimal solution of the

second stage problem for x = x̄ and a.e. ξ? Should we recal-

culate the second stage decision after observing realization

of the random vector ξ?

7



The functional R(·) is monotone, i.e., if Z,Z′ are random

variables such that Z ≥ Z′, then R(Z) ≥ R(Z′). It is said

that R is strictly monotone, if Z ≥ Z′ and Z 6= Z′, then

R(Z) > R(Z′).

For example let Ω = {ω1, ..., ωm} be finite and Z,Z′ : Ω → R.

Then M is a subset of

∆m =

p ∈ Rm :
m∑
i=1

pi = 1, p ≥ 0

 .
Suppose that M is convex and closed. The functional

R(Z) = sup
p∈M

m∑
i=1

piZ(ωi)

is strictly monotone iff for every p ∈M it follows that pi > 0,

i = 1, ...,m.
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Computational complexity of solving two-stage linear stochas-

tic programs (deterministic point of view).

Suppose that the components of the second stage random

vector ξ = (ξ1, ..., ξd) ∈ Rd are independent and discretized

with m discretization points per component ξi, i = 1, ..., d.

Then the total number of scenarios is md.

The approximate solutions, with a sufficiently high accuracy,

of linear two-stage stochastic programs with fixed recourse

are #P -hard even if the random problem data is governed by

independent uniform distributions (Dyer and Stougie (2006),

Hanasusanto, Kuhn and Wiesemann (2016)).
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Sample complexity of solving stochastic programs

Static (two stage) stochastic problem

min
x∈X
{f(x) = E[F (x, ξ)]} .

Generate an iid sample ξj, j = 1, ..., N , of random vector ξ

and approximate the expectation E[F (x, ξ)] by the respective

sample average.

f̂N(x) =
1

N

N∑
j=1

F (x, ξj).

This leads to the following so-called Sample Average Approx-

imation (SAA) of the ‘true’ problem

min
x∈X

f̂N(x).
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Rate of convergence: For fixed x by the Central Limit Theo-

rem, N1/2
(
f̂N(x)− f(x)

)
converges in distribution to normal

N(0, σ2(x)) with σ2(x) = Var[F (x, ξ)]. That is, f̂N(x) con-

verges to f(x) at a rate of Op(N−1/2).

Under certain regularity conditions

ϑ̂N = inf
x∈X ∗

f̂N(x) + op(N
−1/2),

where X ∗ is the set of optimal solutions of the true problem

and ϑ̂N is the optimal value of the SAA problem. In particular

if the true problem has unique optimal solution x∗, then

ϑ̂N = f̂N(x∗) + op(N
−1/2).
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Large Deviations type bounds.

Suppose that ε > δ ≥ 0, the set X ⊂ Rn is of finite diameter

D and∣∣∣F (x′, ξ)− F (x, ξ)
∣∣∣ ≤ L‖x′ − x‖, x′, x ∈ X and a.e. ξ.

Then (under certain regularity conditions) for the sample size

N ≥
(
O(1)LD

ε− δ

)2 [
n log

(
O(1)DL

ε− δ

)
+ log

(
1

α

)]
,

we are guaranteed that Pr
(
ŜδN ⊂ S

ε
)
≥ 1−α. Here ŜδN and Sε

are the sets of δ-optimal and ε-optimal solutions of the SAA

and true problems respectively (Shapiro (2003)).

How to extend these type of results to distributionally robust

- risk averse settings?
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Sample complexity of T -stage stochastic programs

In order for the optimal value and solutions of the SAA prob-

lem to converge to their true counterparts all sample sizes

N2, ..., NT should tend to infinity. Furthermore, available es-

timates of the sample sizes required for a first stage solution

of the SAA problem to be ε-optimal for the true problem,

with a given confidence (probability), sums up to a number

of scenarios which grows as O(ε−2(T−1)) with decrease of

the error level ε > 0. This indicates that from the point of

view of the number of scenarios, complexity of multistage

programming problems grows exponentially with increase of

the number of stages (Shapiro, Nemirovski (2005)).
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These are upper bounds for sample complexity, which guar-

antee (under certain regularity conditions) that for obtained

estimates of the sample sizes, the SAA problem provides an

ε-optimal solution of the true problem with high probability.

Are these bounds tight?

Can Central Limit Theorem type results be formulated for

the multistage programs?

How to extend this to distributionally robust - risk averse

settings?
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Dynamic programming equations approach

Recall that ξ[t] := (ξ1, .., ξt) denotes history of the data pro-

cess. Going recursively backwards in time. At stage T con-

sider

QT (xT−1, ξT ) := inf
xT∈XT (xT−1,ξT )

fT (xT , ξT ).

At stages t = T − 1, ...,2, consider

Qt(xt−1, ξ[t]) := inf
xt∈Xt(xt−1,ξt)

ft(xt, ξt) + E|ξ[t]

[
Qt+1(xt, ξ[t+1])

]
︸ ︷︷ ︸

Qt+1(xt,ξ[t])

,

where E|ξ[t]
is the conditional expectation. At the first stage

solve:

Min
x1∈X1

f1(x1) + E[Q2(x1, ξ2)].
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Suppose that the random data process is stagewise indepen-

dent, i.e., ξt+1 is independent of ξ[t], t = 1, ..., T − 1. Then

QT (xT−1) := E|ξ[T−1]
[QT (xT−1, ξT )] = E[QT (xT−1, ξT )]

does not depend on ξ[T−1]. By induction going backward in

time it is possible to show that the expected value cost-to-go

functions

Qt+1(xt) = E[Qt+1(xt, ξt+1)]

do not depend on ξ[t], and an optimal policy x̄t = x̄t(x̄t−1, ξt)

is given by

x̄t ∈ arg min
xt∈Xt(x̄t−1,ξt)

ft(xt, ξt) +Qt+1(xt).
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Difficulties in solving dynamic programming equations

(stagewise independent case)

• Computing the expectation E[Qt+1(xt, ξt+1)] - discretize

(marginal) distribution of ξt+1, e.g., by sampling (the

SAA approach).

• At every stage t, in order to compute the cost-to-go

function Qt(xt−1, ξt) there is a need to solve optimiza-

tion problem

min
xt∈Xt(xt−1,ξt)

ft(xt, ξt) +Qt+1(xt).
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Curse of dimensionality of dynamic programming

One of the main difficulties in solving the dynamic program-

ming equations (of the SAA problem) is how to represent the

cost-to-go functions Qt+1(xt) in a computationally feasible

way.

For dimension of xt say greater than 3 and large number of

stages it is practically impossible to solve the dynamic pro-

gramming equations with high accuracy. Several alternatives

were suggested in the literature.
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Approximate dynamic programming

Basic idea is to approximate the cost-to-go functions Qt(·) by

a class of computationally manageable functions. Consider

min
x1,x2(·),...,xT (·)

f1(x1) + E
[∑T

t=2 ft (xt, ξt)
]

s.t. A1x1 = b1, x1 ≥ 0,
Btxt−1 +Atxt = bt, xt ≥ 0, t = 2, . . . , T.

If the functions ft (xt, ξt) are convex in xt, then the cost-to-go

functions are convex in xt. Then it is natural to approximate

Qt(·) by piecewise linear functions given by maximum of cut-

ting hyperplanes.
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Stochastic Dual Dynamic Programming (SDDP) method

(Kelley (1960), Birge (1985), Pereira and Pinto (1991))

Consider the stagewise independent case. For trial decisions

x̄t, t = 1, ..., T − 1, at the backward step of the SDDP algo-

rithm, piecewise linear approximations Qt(·) of the cost-to-go

functions Qt(·) are constructed by solving problems

Min
xt∈Rnt

(cjt)
Txt + Qt+1(xt) s.t. Bjt x̄t−1 +A

j
txt = b

j
t , xt ≥ 0,

j = 1, ..., Nt, and their duals, going backward in time t =

T, ...,1.
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By construction

Qt(·) ≥ Qt(·), t = 2, ..., T.

Therefore the optimal value of

Min
x1∈Rn1

cT1x1 + Q2(x1) s.t. A1x1 = b1, x1 ≥ 0

gives a lower bound for the optimal value v̂N of the SAA

problem.

We also have that

v0 ≥ E[v̂N ].

Therefore on average v̂N is also a lower bound for the optimal

value of the true problem.
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The approximate cost-to-go functions Q2, ...,QT and a fea-

sible first stage solution x̄1 define a feasible policy. That

is for a realization (sample path) ξ1, ..., ξT of the data pro-

cess, x̄t = x̄t(ξ[t]) are computed recursively in t = 2, ..., T as a

solution of

Min
xt≥0

cTt xt + Qt+1(xt) s.t. Btx̄t−1 +Atxt = bt.

In the forward step of the SDDP algorithm M sample paths

(scenarios) are generated and the corresponding x̄t, t = 2, ..., T ,

are used as trial points in the next iteration of the backward

step. At the same time this allows to construct a statistical

upper bound for the optimal value of the corresponding mul-

tistage problem - SAA or the “true” problem depending from

what data process the random scenarios were generated.
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Convergence of the SDDP algorithm

It is possible to show that, under mild regularity conditions,

the SDDP algorithm converges as the number of iterations

go to infinity. However, the convergence can be very slow.

What is the convergence rate of SDDP algorithm as the

number of stages increases?

In what situations the method works? Nobody solved the

“curse of dimensionality” problem.

In the two stage case (T = 2) this becomes just Kelley’s

cutting plane method. How more efficient regularized type

algorithms can be adapted to the multistage setting?

When the data process is not stagewise independent, how to

use Markovian structure of the data process in an efficient

way?
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Distributionally robust - risk averse approach to multistage

programming

Consider a set M of probability measures on sample space

(Ω,F) and functional

R(Z) := sup
P∈M

EP [Z]

defined on a linear space Z of F-measurable functions (ran-

dom variables) Z : Ω→ R.

Popular approaches to define the ambiguity set M: (i) by

distributions in some sense close to a specified reference dis-

tribution P, or (ii) by moment constraints.
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In case (i), the set M is assumed to consist of probability

measures absolutely continuous with respect to P, and

A = {ζ : dP/dP, P ∈M},

is the corresponding set of densities.

In that case it is assumed that Z = Lp(Ω,F ,P), the set

A of densities is a subset of its dual space A ⊂ Z∗, Z∗ =

Lq(Ω,F ,P), and

〈ζ, Z〉 =
∫

Ω
ζ(ω)Z(ω)dP(ω)

is well defined for Z ∈ Z and ζ ∈ Z∗.

In case of moment constraints there is no reference proba-

bility measure and the above duality framework cannot be

applied.
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The functional R : Z → R satisfies the following conditions

(i) Subadditivity:

R(Z1 + Z2) ≤ R(Z1) +R(Z2), Z1, Z2 ∈ Z.

(ii) Monotonicity: If Z1, Z2 ∈ Z and Z1 � Z2, then R(Z1) ≥
R(Z2).

(iii) Translation Equivariance: If a ∈ R and Z ∈ Z, then

R(Z + a) = R(Z) + a.

(iv) Positive Homogeneity:

R(αZ) = αR(Z), Z ∈ Z, α > 0.

Conversely if R : Z → R satisfies these conditions, then by

Fenchel - Moreau Theorem it can be represented in the dual

form (Ruszczyński and Shapiro, 2006). Functionals R : Z →
R satisfying these conditions (axioms) were called coherent

risk measures in Artzner, Delbaen, Eber and Heath (1999).
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Expectation operator has the following property (recall that

ξ1 is deterministic, so E|ξ1
= E)

E[Z] = E|ξ1

[
E|ξ2

[
· · · E|ξ[T−1]

[Z]
]]
.

Consider the nested functional

R(Z) := sup
P∈M

EP

[
sup
P∈M

EP |ξ[2]

[
· · · sup

P∈M
EP |ξ[T−1]

[Z]
]]

= R
[
R|ξ[2]

[
· · · R|ξ[T−1]

[Z]
]]
, Z ∈ Z.

Note that

R(Z) = sup
P∈M

EP
[
EP |ξ[2]

[
· · · EP |ξ[T−1]

[Z]
]]

≤ sup
P∈M

EP

[
sup
P∈M

EP |ξ[2]

[
· · · sup

P∈M
EP |ξ[T−1]

[Z]
]]

= R(Z).

Rigourous definition of the conditional functional (?)

R|ξ[t]
(Z) = sup

P∈M
EP |ξ[t]

[Z]
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Nested functional R(·) satisfies the axioms (i) - (iv) and hence

can be represented in the dual form

R(Z) = sup
P∈M̂

EP [Z]

for some set M̂ of probability measures.

In general M 6= M̂ even in the rectangular case when

M = {P = P2 × · · · × PT : Pt ∈Mt, t = 1, ..., T}

where Mt is a set of marginal distributions of ξt.

Constructive description of the set M̂?
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Minimization of nested risk functionals

min
π∈Π

f1(x1) + R
[∑T

t=2 ft(x
π
t , ξt)

]
,

where Π is the set of feasible policies and (R|ξ1
= R since ξ1

is deterministic) R(·) := R|ξ1

[
· · ·R|ξ[T−1]

(·)
]
.

Note that unlike the expectation, the risk functional R does

not have the decomposition property, i.e. R(·) 6= R(·).

Since R(·) = sup
P∈M̂ EP [·], we can write this risk averse prob-

lem as

min
π∈Π

sup
P∈M̂

EP
[
f1(x1) +

∑T
t=2 ft(x

π
t , ξt)

]
.

The dual of this problem is

max
P∈M̂

inf
π∈Π

EP
[
f1(x1) +

∑T
t=2 ft(x

π
t , ξt)

]
.

29



For the nested formulation it is possible to write dynamic pro-

gramming equations with the respective cost-to-go (value)

functions Qt(xt−1, ξ[t]) given by the optimal value of the prob-

lem

min
xt∈Xt

ct(xt, ξt) + sup
P∈M

EP |ξ[t]︸ ︷︷ ︸
R|ξ[t]

[Qt+1(xt, ξ[t+1])]

s.t. Btxt−1 +Atxt = bt.

At the first stage the following problem is supposed to be

solved

min
x1∈X1

c1(x1) + sup
P∈M

EP [V2(x1, ξ2)]

s.t. A1x1 = b1.
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In the rectangular (stagewise independence) case these equa-

tions simplify to

min
xt∈Xt

ct(xt, ξt) + sup
Pt+1∈Mt+1

EPt+1︸ ︷︷ ︸
R

[Qt+1(xt, ξt+1)]

s.t. Btxt−1 +Atxt = bt.

It is possible to extend the SDDP method to nested risk

functionals. Assuming the stagewise independence, replace

E[Qt+1(xt, ξt+1)] in the respective dynamic programming equa-

tions with R[Qt+1(xt, ξt+1)] (Shapiro, Tekaya, da Costa, Pereira

Soares (2013)).
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Periodical infinite horizon multistage programs

Shapiro and Ding (2019)

Infinite horizon problem with discount factor γ ∈ (0,1):

min
π∈Π

f1(x1) + R
[∑∞

t=2 γ
t−1ft (xt, ξt)

]
,

where R is the nested functional and Π is the set of policies

satisfying the feasibility constraints

xt ∈ Xt, Btxt−1 +Atxt = bt.

Suppose that the data process ξt is stagewise independent,

and the problem has periodic structure with period m ∈ N:

• The random vectors ξt and ξt+m have the same distribution,

with support Ξ ⊂ Rd, for t ≥ 2 (recall that ξ1 is deterministic).

• The functions bt(·), Bt(·), At(·) and ft(·, ·) have period m,

i.e., are the same for t = τ and t = τ + m, t = 2, ..., and the

sets Xt are nonempty and Xt = Xt+m for all t.
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Under these assumptions the value functions Qt(·) and Qt+m(·)
of the dynamic equations are the same for all t ≥ 2. This

leads to the following periodical variant of Bellman equations

for the value functions Q2(·), ...,Qm+1(·):

Qτ(xτ−1) = R[Qτ(xτ−1, ξτ)],

Qτ(xτ−1, ξτ) = inf
xτ∈Xτ

{
fτ(xτ , ξτ) + γQτ+1(xτ) :
Bτxτ−1 +Aτxτ = bτ

}
,

for τ = 2, ...,m + 1, and Qm+2 replaced by Q2 for τ = m + 1.

Consequently for t ≥ m+ 2 the corresponding value functions

are defined recursively as Qt(·, ξt) = Qt−m(·, ξt), and hence

Qt(·) = Qt−m(·).
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In order to show that Bellman equations have a solution the

standard approach is to show that the corresponding operator

is a contraction mapping and hence has a unique fixed point.

That is, suppose for the sake of simplicity that the period

length m = 1 (in that case we remove the subscript t from

the data). Bellman equation takes the form

Q(x) = R[Q(x, ξ)],

Q(x, ξ) = inf
x′∈X

{
f(x′, ξ) + γQ(x′) : B(ξ)x+A(ξ)x′ = b(ξ)

}
.
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Let B(X ) be the space of bounded functions g : X → R with

the sup-norm ‖g‖ = supx∈X |g(x)|. Consider mapping T :

B(X )→ B(X ) defined as

T(g)(x) = R[Ψg(x, ξ)],

Ψg(x, ξ) = inf
x′∈X

{
f(x′, ξ) + γg(x′) : B(ξ)x+A(ξ)x′ = b(ξ)

}
.

Then Q(·) is a solution of Bellman equation if Q is a fixed

point of T. The mapping T is a contraction mapping, i.e.,

‖T(g)− T(g′)‖ ≤ γ‖g − g′‖, ∀g, g′ ∈ B(X ).

This can be extended to period m ≥ 1, and also to risk verse

problems with expectation operator E replaced by a coherent

law invariant risk measure % with the respective conditional

analogues.
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Sample complexity of Bellman equations

Consider the case of the period length m = 1 and expectation

functional R = E. Let P be true distribution of the random

vector ξ and P̂N = N−1∑N
j=1 δξj be its empirical counterpart

based on sample ξ1, ..., ξN . Let Q and Q̂N be solutions of

Bellman equations associated with P and P̂N , respectively.

Then

‖Q − Q̂N‖ ≤ (1− γ)−1
∥∥∥∥EP [Ψ(x, ξ)]− E

P̂N
[Ψ(x, ξ)]

∥∥∥∥
∞

where ‖g‖∞ = supx∈X |g(x)| is the sup-norm,

Ψ(x, ξ) = inf
x′∈X

{
f(x′, ξ) + γQ(x′) : B(ξ)x+A(ξ)x′ = b(ξ)

}
and E

P̂N
[Ψ(x, ξ)] = N−1∑N

j=1 Ψ(x, ξj).

What happens with sample complexity as the discount factor

γ approaches one?

36



Duals of periodical linear programs

Dual approach to construction of upper bounds was initiated

in Leclére, Carpentier, Chancelier, Lenoir, Pacaud (2019),

we follow here the approach of Guigues, Shapiro, Cheng

(2019)

Consider linear (risk neutral) multistage stochastic program

min
xt≥0

E
[∑T

t=1 c
>
t xt

]
s.t. A1x1 = b1,

Btxt−1 +Atxt = bt, t = 2, ..., T.

Dualization of the the feasibility constraints
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The Lagrangian

L(x, π) = E

 T∑
t=1

c>t xt + π>t (bt −Btxt−1 −Atxt)


in variables x = (x1(ξ[1]), . . . , xT (ξ[T ])) and π = (π1(ξ[1]), . . . , πT (ξ[T ]))

with the convention that x0 = 0. Dualization of the feasibility

constraints leads to the following dual

max
π

E
[ T∑
t=1

b>t πt
]

s.t. A>T πT ≤ cT ,
A>t−1πt−1 + E|ξ[t−1]

[
B>t πt

]
≤ ct−1, t = 2, ..., T.

The optimization is over policies πt = πt(ξ[t]), t = 1, ..., T .
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Dynamic programming equations for the dual problem

Assume the stagewise independence condition and finite num-

ber of scenarios Nt per stage and respective probabilities ptj.

At the last stage t = T we have the following problem

max
πT1,...,πTNT

E[b>T πT ] =
NT∑
j=1

pTjb
>
TjπTj

s.t. A>TjπTj ≤ cTj, j = 1, ..., NT ,

A>T−1πT−1 +
NT∑
j=1

pTjB
>
TjπTj ≤ cT−1.

The optimal value VT (πT−1, ξT−1) and an optimal solution

(π̄T1, . . . , π̄TNT ) of that problem are functions of vectors πT−1

and cT−1 and matrix AT−1.
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And so on going backward in time we can write the respective

dynamic programming equations for t = T − 1, ...,2, as

max
πt1,...,πtNt

Nt∑
j=1

ptj
[
b>tjπtj + Vt+1(πtj, ξtj)

]

s.t. A>t−1πt−1 +
Nt∑
j=1

ptjB
>
tjπtj ≤ ct−1,

with Vt(πt−1, ξt−1) being the optimal value of the above prob-

lem. Finally at the first stage the following problem should

be solved

max
π1

b>1 π1 + V2(π1, ξ1).
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The Brazilian hydro power operation planning problem

The Brazilian power system generation is hydro dominated

(about 75% of the installed capacity) and characterized by

large reservoirs presenting multi-year regulation capability, ar-

ranged in complex cascades over several river basins. The

hydro plants use store water in the reservoirs to produce en-

ergy in the future, replacing fuel costs from the thermal units.

Since the water inflows depend on rainfalls, the amount of

future inflows is uncertain and cannot be predicted with a

high accuracy.

The purpose of hydrothermal system operation planning is

to define an operation strategy which, for each stage of the

planning period, given the system state at the beginning of

the stage, produces generation targets for each plant.
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The Brazilian hydro power operation planning problem is a

multistage, large scale (more than 200 power plants, of which

141 are hydro plants), stochastic optimization problem. On

a high level, planning is for 5 years on monthly basis together

with 5 additional years to smooth out the end of horizon

effect. This results in 120-stage stochastic programming

problem. Four energy equivalent reservoirs are considered,

one in each one of the four interconnected main regions, SE,

S, N and NE. The resulting policy obtained with the aggre-

gate representation can be further refined, so as to provide

decisions for each of the hydro and thermal power plants.

42



Existing  Future 

Load Center 
Total Circuits 
Watershed 
Hydroplant 

± 3,400 km 

± 
3

,4
0

0
 k

m
 

43



Comparison of the classical and periodical SDDP (with 8

state variables, period m = 12), Shapiro and Ding (2019)

Stored energy (in average value and 0.9 quantile) by periodi-

cal SDDP (on the left) and classical SDDP (on the right) for

the SAA discretization problem (100 samples per stage) and

the true problem (on the bottom) for the risk neutral case

with discount factor γ = 0.8
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Individual stage costs (in average value and 0.9 quantile) by

periodical SDDP (on the left) and classical SDDP (on the

right) for the SAA discretization problem (on the above) and

the true problem (on the bottom) for the risk neutral case

with discount factor γ = 0.9906 (this γ corresponds to the

annual discount rate of 12%, that is 1/γ12 = 1.12)
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Dual bounds for periodical problem

Shapiro and Cheng (2020)

Hydro-thermal problem with 4 state variables, 50 samples per

stage, discount factor γ = 0.9906 and period m = 12. Evo-

lution of deterministic bounds of primal and dual periodical

programs.

46





Some references

Shapiro, A. , Dentcheva, D. & Ruszczynski, A. (2014). Lec-

tures on stochastic programming: modeling and theory (2nd).

Philadelphia: SIAM .

Shapiro, A. and Nemirovski, A., On complexity of stochastic

programming problems, Continuous Optimization: Current

Trends and Applications, pp. 111-144, V. Jeyakumar and

A.M. Rubinov (Eds.), Springer, 2005.

Shapiro, A. and Ding, L., Periodical Multistage Stochastic

Programs, SIAM Journal on Optimization, vol. 30, pp. 2083

- 2102, 2020.

Ding, L., Ahmed, S. and Shapiro, A., A Python package for

multi-stage stochastic programming,

http://www.optimization-online.org/DB HTML/2019/05/7199.html

47


