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Risk neutral T-stage stochastic programming problem:

min f1(z1) +E [ZtT:Q Jt (wt”gt)}

Zl',‘]_,CUQ('),...,ZUT(')
S.t. x1 € X1, 1t € X(xp_1,&), t=2,...,T.

The optimization is aimed at minimization of the total cost
on average, and performed over the set of policies (also called
strategies, decision rules) © = (wl,a;g(g[Q]),...,:cT(g[T])), sat-
isfying the feasibility constraints.

The values of the decision vector z; € R™ may depend on
the information (history) ) = (&1, ..,&) available up to time
t, but not on the future observations. The data process
& eR¥, ¢ =1,2, ... is modeled as random (stochastic), first
stage decision x1 is deterministic, made before observing any
realization of the random data process (&7 is deterministic,
used for uniformity of notation).



In the linear case, the costs fi(xt, &) = ctTa:t are linear and

Xe(xp_1,&) i={x¢: Byzp_ 1+ Ay = by, 2 > 0}, t=2,...,T.
That is

min clT:cl + E [Zfzz ctTa:t}
3317332(')5“'733T(')
S.t. Ai1xq1 = b1, 1 > O,

tht—l—l_Atxt:bta xy > 0, t=2,...,T,

where components of (¢, by, B, A¢) are functions of &, t =
2. T.



What does it mean to solve the stochastic programming prob-
lem?

Is it computationally feasible to solve such problems?

What is a value of solving multistage problem?

How do we know probability distribution of the data process?

Why do we minimize (optimise) on average?

What does it mean that our solution is time consistent?

Why do we optimize the total cost?



In order to solve stochastic programming problems numeri-
cally the (continuous) distribution of the data process should
be discretized by generating a finite number of realizations
of the data process (the scenarios approach). Size of the de-
terministic equivalent problem is proportional to the number
of generated scenarios.

If the number of realizations (scenarios) of the process &
is finite, then the above (linear) problem can be written as
one large (linear) programming problem (the deterministic
equivalent).



The two stage (T = 2) case,

min c—lra:' + E [cgy]
s.t. Aijx =101, x >0,

Box + Aoy = by, y > 0.

When the number of scenarios (realizations) ¢1,.... &% of the
second stage random variable is finite with the respective
probabilities p;. > 0, the deterministic equivalent:
e min 1 x4+ Sreq pr(c®) Tk
S.t. A1z = b1, x > 0,
Bfx + Aky, =tk 4. >0, k=1,... K.

Here x is the first stage decision, y1,...,yx are second stage
decisions - one copy for every scenario, and (c*, bk, Bk AF) is
realization of the respective parameters for scenario 5’“.



Distributionally robust - risk averse approach

wn;'(ﬂ) filx) + RIfo(y,8)] st. € X1, yec ().

Functional R(-) is defined on a space of random variables
R(Z) = sup Ep|Z],
Pem
where I is a specified set of probability measures (distribu-
tions).

Alternative formulation

min f1(z) + R[Q(z,&)]

reEX]

where Q(x, &) is the optimal value of the second stage prob-
lem:

min fo(y, &) st.ye Xo(x,§).



Relatively complete recourse: for every =z € A7 the second
stage problem has feasible solution for almost every ¢.

Without the relatively complete recourse it could happen that
for some x € X1 and a realization of the random vector £ the
second stage problem is infeasible and Q(x,£) = 4+ 0.

Time consistency question: are the two formulations equiv-
alent? By solving the first formulation we obtain solution x
and y(£). Is it true that y(&) is an optimal solution of the
second stage problem for x = x and a.e. £7 Should we recal-
culate the second stage decision after observing realization
of the random vector &7



The functional R(-) is monotone, i.e., if Z,Z' are random
variables such that Z > Z’, then R(Z) > R(Z'). It is said
that R is strictly monotone, if Z > Z' and Z # Z’, then
R(Z) > R(Z").

For example let Q = {wq,...,wm} be finite and Z,7" : Q — R.
Then 9 is a subset of

m
m:{pERmI sz':].,pZO}.

Suppose that 9t is convex and closed. The functional

m
R(Z) = sup > p;iZ(w;)

is strictly monotone iff for every p € 91 it follows that p; > O,

1=1,...,m.



Computational complexity of solving two-stage linear stochas-
tic programs (deterministic point of view).

Suppose that the components of the second stage random
vector £ = (&1,...,&4) € R? are independent and discretized
with m discretization points per component ¢&;, 1 = 1,...,d.
Then the total number of scenarios is m¢.

The approximate solutions, with a sufficiently high accuracy,
of linear two-stage stochastic programs with fixed recourse
are #P-hard even if the random problem data is governed by
independent uniform distributions (Dyer and Stougie (2006),
Hanasusanto, Kuhn and Wiesemann (2016)).



Sample complexity of solving stochastic programs
Static (two stage) stochastic problem

min {f(2) = E[F(z, )]}

Generate an iid sample ¢J, j = 1,...,N, of random vector &
and approximate the expectation E[F(x,£)] by the respective
sample average.

N

fy(@) =+ > F(a, )

=1
This leads to the following so-called Sample Average Approx-
imation (SAA) of the ‘true’ problem

min fn ().



Rate of convergence: For fixed xz by the Central Limit Theo-
rem, N1/2 (fN(a:) — f(:p)) converges in distribution to normal

N(0,02%(z)) with o2(z) = Var[F(z,¢)]. That is, fa(z) con-
verges to f(z) at a rate of O,(N~1/2).

Under certain regularity conditions

Oy = inf fn(z)+op(N7V/2),

where X* is the set of optimal solutions of the true problem
and 9, is the optimal value of the SAA problem. In particular
if the true problem has unique optimal solution z*, then

Oy = fn(*) + op(N"L/2).



LLarge Deviations type bounds.

Suppose that € > 6 > 0, the set X C R" is of finite diameter
D and

\F(g;’,g) _ F(az,g)\ < L|2 —z||, ',z € X anda.e. £

Then (under certain regularity conditions) for the sample size

2
N> (O(l)LD) 10 (O(l)l;L) + 1o (1)] |

€—0 € — «

we are guaranteed that Pr (3]5\, C 85) > 1—a. Here 8 and &°
are the sets of d-optimal and s-optimal solutions of the SAA
and true problems respectively (Shapiro (2003)).

How to extend these type of results to distributionally robust
- risk averse settings?



Sample complexity of 7T-stage stochastic programs

In order for the optimal value and solutions of the SAA prob-
lem to converge to their true counterparts all sample sizes
No, ..., N7 should tend to infinity. Furthermore, available es-
timates of the sample sizes required for a first stage solution
of the SAA problem to be e-optimal for the true problem,
with a given confidence (probability), sums up to a number
of scenarios which grows as O(e—2(T-1)) with decrease of
the error level € > 0. This indicates that from the point of
view of the number of scenarios, complexity of multistage
programming problems grows exponentially with increase of
the number of stages (Shapiro, Nemirovski (2005)).



These are upper bounds for sample complexity, which guar-
antee (under certain regularity conditions) that for obtained
estimates of the sample sizes, the SAA problem provides an
e-optimal solution of the true problem with high probability.
Are these bounds tight?

Can Central Limit Theorem type results be formulated for
the multistage programs?

How to extend this to distributionally robust - risk averse
settings?



Dynamic programming equations approach

Recall that & 1= (&1, ..,&) denotes history of the data pro-
cess. Going recursively backwards in time. At stage 1" con-
sider

1, = inf : :
Qr(zr_1,&T) LN fr(xr, &1)

At stagest =1 —1,...,2, consider

_ = inf E
Qt(zt—1,&4) LA fe(zt, &) -I-\ € [Qt+1£$t,€[t+1])17
Qi 1(xt:,¢y)

where E|£[t] iSs the conditional expectation. At the first stage
solve:

Min fi(z1) + E[Q2(z1,&2)].

r1€EX]



Suppose that the random data process is stagewise indepen-
dent, i.e., §&41 is independent of §[t], t=1,.... 7T — 1. Then

Qr(zr—1) = B¢, [Qr(zr-1,&7)] = E[QT(271,£7)]

does not depend on {p_1). By induction going backward in
time it is possible to show that the expected value cost-to-go
functions

Qit1(xt) = E[Qeg-1(x¢t, §44-1)]
do not depend on &py, and an optimal policy zt = z¢(Z¢—1, &)

IS given by

r+ € arg min : .
T xtegft(:it_l,&) fi(xt, &) + Qig1(2t)



Difficulties in solving dynamic programming equations
(stagewise independent case)

e Computing the expectation E[Q;41(x¢, &41)] - discretize
(marginal) distribution of &4, e.g., by sampling (the
SAA approach).

e At every stage t, in order to compute the cost-to-go
function Q:(x;_1,&) there is a need to solve optimiza-
tion problem

min ft(xe, &) + Qpq1 ().

1 €EX (x4—1,8¢)



Curse of dimensionality of dynamic programming

One of the main difficulties in solving the dynamic program-
ming equations (of the SAA problem) is how to represent the
cost-to-go functions Q;4(x;) in a computationally feasible
way.

For dimension of x; say greater than 3 and large number of
stages it is practically impossible to solve the dynamic pro-
gramming equations with high accuracy. Several alternatives
were suggested in the literature.



Approximate dynamic programming

Basic idea is to approximate the cost-to-go functions 9;(-) by
a class of computationally manageable functions. Consider

min fi(z1) + E [Zthg ft (zt, St)]

21,220+, 27 ()
S.t. Aq1x1 = b1, 1 > 0,
Bixy 1+ Ay =by, x4 >0, t =2,...,T.

If the functions f; (x4, &) are convex in x4+, then the cost-to-go
functions are convex in x¢+. Then it is natural to approximate
Q+(-) by piecewise linear functions given by maximum of cut-
ting hyperplanes.



Stochastic Dual Dynamic Programming (SDDP) method
(Kelley (1960), Birge (1985), Pereira and Pinto (1991))

Consider the stagewise independent case. For trial decisions

xe, t=1,....,T — 1, at the backward step of the SDDP algo-

rithm, piecewise linear approximations Q;(-) of the cost-to-go

functions Q;(-) are constructed by solving problems
M]%Qﬂt(cg)-rwt + Qt_|_1(act) S.t. Bgft—l -+ A‘th = bj, xy > 0,
r+ERM™

7 = 1,..., N¢, and their duals, going backward in time t =

T,..,1.



By construction

() > (), t=2,...,T.

Therefore the optimal value of

Min chl + QQ(CEl) s.t. Ajx1 = b7, x1 >0
x1€R"1L

gives a lower bound for the optimal value vy of the SAA
problem.

We also have that
w0 > E[on].

T herefore on average vy is also a lower bound for the optimal
value of the true problem.



The approximate cost-to-go functions »,...,Q27 and a fea-
sible first stage solution x1 define a feasible policy. That
is for a realization (sample path) &1,...,&p of the data pro-
Cess, Ty = :Et({;‘[t]) are computed recursively int=2,...,T as a
solution of

C'C\/|>'r(‘) it + Qg () st By 1 + Ay = by,
t—

In the forward step of the SDDP algorithm M sample paths

(scenarios) are generated and the corresponding x4, t = 2, ..., T,
are used as trial points in the next iteration of the backward

step. At the same time this allows to construct a statistical

upper bound for the optimal value of the corresponding mul-

tistage problem - SAA or the “true’” problem depending from

what data process the random scenarios were generated.



Convergence of the SDDP algorithm

It is possible to show that, under mild regularity conditions,
the SDDP algorithm converges as the number of iterations
go to infinity. However, the convergence can be very slow.

What is the convergence rate of SDDP algorithm as the
number of stages increases?

In what situations the method works? Nobody solved the
“curse of dimensionality” problem.

In the two stage case (T' = 2) this becomes just Kelley's
cutting plane method. How more efficient regularized type
algorithms can be adapted to the multistage setting?

When the data process is not stagewise independent, how to
use Markovian structure of the data process in an efficient
way?



Distributionally robust - risk averse approach to multistage
programming

Consider a set 9t of probability measures on sample space
(€2, F) and functional
R(Z) := sup Ep[Z]
Pem
defined on a linear space Z of F-measurable functions (ran-

dom variables) Z : Q2 — R.

Popular approaches to define the ambiguity set 2: (i) by
distributions in some sense close to a specified reference dis-
tribution P, or (ii) by moment constraints.



In case (i), the set M is assumed to consist of probability
measures absolutely continuous with respect to P, and

A= {¢:dP/dP, P € M},

is the corresponding set of densities.

In that case it is assumed that Z = L,(2,F,P), the set
2A of densities is a subset of its dual space A C Z*, Z* =
Lq(2, F,P), and

(€.2) = | C(@)Z(w)dP(w)
is well defined for Z € Z and ( € Z*.
In case of moment constraints there is no reference proba-

bility measure and the above duality framework cannot be
applied.



The functional ‘R : Z — R satisfies the following conditions
(i) Subadditivity:

R(Z1+ Z2) < R(Z1) +R(Zp), Z1,Z> € Z.

(ii) Monotonicity: If Z1,7Z> € Z and Zq1 = Z», then R(Z1) >
R(Z>).

(iii) Translation Equivariance: If a € R and Z € Z, then
R(Z+a)=R(Z) + a.

(iv) Positive Homogeneity:

R(aZ) =aR(Z), Z€ Z, a> 0.

Conversely if R : Z — R satisfies these conditions, then by
Fenchel - Moreau Theorem it can be represented in the dual
form (Ruszczynski and Shapiro, 2006). Functionals R : Z —
R satisfying these conditions (axioms) were called coherent
risk measures in Artzner, Delbaen, Eber and Heath (1999).



Expectation operator has the following property (recall that
{1 is deterministic, so E., =E)

E[Z] = E)¢, [E|€2[ E|§[T—1] [Z]H '

Consider the nested functional

SR(Z) = sup E sup E [---sup]E Z”
(2) PEM P PeMm PlEf2) PeMm Plg[T_l][ !

= R [RK[Q][ R|€[T—1] [Z]H , £ € Z.

Note that

R(Z) = ;gg’ﬁEP _Eplﬁ[z]["'Eplﬁ[T—n[Z]”

< sup Ep|supE [---supE [Z”=9%Z.
Pem P | Pcn P‘S[Q] Pcm P|§[T_1] ] ( )

Rigourous definition of the conditional functional (?)

le[t] (Z2) = ;ggﬁ IEPIS[t] 7]



Nested functional R(-) satisfies the axioms (i) - (iv) and hence
can be represented in the dual form

R(Z) = sup Ep[Z]
Pem

for some set M of probability measures.

In general M #~ M even in the rectangular case when
M={P=PFPoX---XPp:PeM, t=1,...,T}

where M, is a set of marginal distributions of &;.

Constructive description of the set M?



Minimization of nested risk functionals
min f1(z1) + R S, fi(aT, &),
mell

where 1 is the set of feasible policies and (R|§1 = R since &4
is deterministic) R(:) 1= Ry¢, |- -R|§[T_1](.)].

Note that unlike the expectation, the risk functional R does
not have the decomposition property, i.e. R(-) &= R(-).

Since R(:) = SUP o5 Ep[-], we can write this risk averse prob-
lem as
min sup Ep f1(@1) + S5, £ (T, )]
S pem
The dual of this problem is

max inf Ep[fl(fﬂl) + Yies filaT »ft)}
PEMTE



For the nested formulation it is possible to write dynamic pro-
gramming equations with the respective cost-to-go (value)
functions Q:(x;_1, §[t]) given by the optimal value of the prob-

lem
min - ci(xt, &) + SE%EPEMJ[Qt—I—l(xta£[t—|-1])]

T1E Xy

\

Rv
30
S.t. Btmt—l —+ Ativt = by.

At the first stage the following problem is supposed to be

solved
min  c1(z1) + sup Ep[Va(z1,£)]
r1€EX] PeMm
S.t. Aqx1 = b1.



In the rectangular (stagewise independence) case these equa-
tions simplify to

min Ct(mbgt) + sSup EP [Q (wtag )]
21 EX; Pyt €My i1 Let+1 t+1

7

~~

R
S.t. Btl‘t—l + Aixy = by.

It is possible to extend the SDDP method to nested risk
functionals. Assuming the stagewise independence, replace
E[Q¢41(xt, &4-1)] in the respective dynamic programming equa-
tions with R[Q;41(xt, &+1)] (Shapiro, Tekaya, da Costa, Pereira
Soares (2013)).



Periodical infinite horizon multistage programs
Shapiro and Ding (2019)
Infinite horizon problem with discount factor v € (0, 1):

7rT1’1€i|r_|1 fi(z1) + R [Zfig =17 (fL‘t,ﬁt)} ,

where R is the nested functional and I is the set of policies
satisfying the feasibility constraints

rt € Xy, Biry_ 1 + Agxy = by

Suppose that the data process &; is stagewise independent,
and the problem has periodic structure with period m € N:

e The random vectors & and &, have the same distribution,
with support = C RY, for ¢ > 2 (recall that &7 is deterministic).
e The functions b:(-), Bi(-), A:(-) and f:(-,-) have period m,
i.e., are the same fort=7and t=7+m, t = 2,..., and the
sets A; are nonempty and &; = Xy, for all ¢.



Under these assumptions the value functions Q;(-) and Q;4 ()
of the dynamic equations are the same for all ¢t > 2. This
leads to the following periodical variant of Bellman equations
for the value functions Q5(:),..., Qnm41(-):

Qr(xr—1) = R[Q+(z-1,&r)],
Qr(zr-1,6r) = inf { fr(@r, &) +7Qr 41 (@) ; },

TrEX BTiUT—l + Arxzr = br
forr=2,...m+1, and Qm_|_2 replaced by O, for r = m 4 1.
Consequently for t > m+ 2 the corresponding value functions
are defined recursively as Q:(-,&) = Qi+—m(-, &), and hence

Qt() — Qt—m(')-



In order to show that Bellman equations have a solution the
standard approach is to show that the corresponding operator
IS @ contraction mapping and hence has a unique fixed point.
That is, suppose for the sake of simplicity that the period

length m = 1 (in that case we remove the subscript ¢t from
the data). Bellman equation takes the form

Q(z) = RIQ(x, )],
Q(z,&) = inf {f(2/,&) +7Q(@") : B(§)z + Az’ =b(&)} .
r’eXx



Let B(X) be the space of bounded functions g : X — R with

the sup-norm |lg|| = supgcxy |lg(x)|. Consider mapping ¥ :
B(X) — B(X) defined as

@ (z) = R[Wy(z,8)],

Wyl &) = inf {f(.€) +79(z") : BE)z + Az = b(©))}.

Then Q(-) is a solution of Bellman equation if Q is a fixed
point of €. The mapping ¥ is a contraction mapping, i.e.,

1Z(9) — (@) <Allg —d'll, Vg,9" € B(X).

This can be extended to period m > 1, and also to risk verse
problems with expectation operator E replaced by a coherent
law invariant risk measure p with the respective conditional
analogues.



Sample complexity of Bellman equations

Consider the case of the period length m = 1 and expectation
functional R = E. Let P be true distribution of the random
vector £ and Py = N1 Zé\le 553- be its empirical counterpart
based on sample ¢1,....¢N. Let Q and Qpn be solutions of
Bellman equations associated with P and ]3N, respectively.
Then

10— Onll < (1 =7 [EplW (e, Ol — Ep, [W(@. ]|

where ||gllco = sup ey |g(x)| is the sup-norm,
W(w,&) = inf {£(=',€) +7Q(") : BE)z+ A(©)2' =b(&)

and Ep [W(z,§)] =N~ 2L, W(x,&).

What happens with sample complexity as the discount factor
v approaches one?



Duals of periodical linear programs

Dual approach to construction of upper bounds was initiated
in Leclére, Carpentier, Chancelier, Lenoir, Pacaud (2019),
we follow here the approach of Guigues, Shapiro, Cheng
(2019)

Consider linear (risk neutral) multistage stochastic program

: T T
min E |37 ¢ 2
s.t. Aqxq1 = bq,

Bixy 1+ Az = by, t =2,...,T.

Dualization of the the feasibility constraints



The Lagrangian

T
L(z,m) =E | Y ¢ ot + 7 (bt — Bywy_1 — Age)
t=1
in variables x = (:1:1(5[1]), c e ,CBT(f[T])) and m = (7T1(§[1]), . 77TT(€[T])>
with the convention that zg = 0. Dualization of the feasibility
constraints leads to the following dual

T

max ]E[ > thwt}
t=1

S.t. A,}_WT < cr,

T T —
Al m1 + B, [Bt wt] <c¢q1,t=2,..,T

The optimization is over policies m = wt(g[t]), t=1,...,T.



Dynamic programming equations for the dual problem

Assume the stagewise independence condition and finite num-
ber of scenarios N; per stage and respective probabilities Ptj-
At the last stage t = T we have the following problem

Nt

I — S
oM, FTTI = 2 prsbiiTy

j=1
S.t. AC—ZEJTFT] < CTj5 73 =1,..., Np,
N
-
A%—_le_l + Z ijBTjWTj < cr-—1.

j=1
The optimal value Vp(wp_1,ép_1) and an optimal solution
(771, .-, 7TTN,) OF that problem are functions of vectors mp_1

and cp_1 and matrix Ap_1q.



And so on going backward in time we can write the respective
dynamic programming equations fort =17 —-1,...,2, as

Ny
-
_max Y py [btjﬂ'tj + V75+1(7th,§tj)]
t17°"77TtNt le
N .
st.  AlLim_1+ Y piBymy < o1,
j=1

with Vi(m;_1,&_1) being the optimal value of the above prob-
lem. Finally at the first stage the following problem should
be solved

max bi 1 4 Va(my, £1).



The Brazilian hydro power operation planning problem

The Brazilian power system generation is hydro dominated
(about 75% of the installed capacity) and characterized by
large reservoirs presenting multi-year regulation capability, ar-
ranged in complex cascades over several river basins. The
hydro plants use store water in the reservoirs to produce en-
ergy in the future, replacing fuel costs from the thermal units.
Since the water inflows depend on rainfalls, the amount of
future inflows is uncertain and cannot be predicted with a
high accuracy.

The purpose of hydrothermal system operation planning is
to define an operation strategy which, for each stage of the
planning period, given the system state at the beginning of
the stage, produces generation targets for each plant.



The Brazilian hydro power operation planning problem is a
multistage, large scale (more than 200 power plants, of which
141 are hydro plants), stochastic optimization problem. On
a high level, planning is for 5 years on monthly basis together
with 5 additional years to smooth out the end of horizon
effect. This results in 120-stage stochastic programming
problem. Four energy equivalent reservoirs are considered,
one in each one of the four interconnected main regions, SE,
S, N and NE. The resulting policy obtained with the aggre-
gate representation can be further refined, so as to provide
decisions for each of the hydro and thermal power plants.
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Comparison of the classical and periodical SDDP (with 8
state variables, period m = 12), Shapiro and Ding (2019)
Stored energy (in average value and 0.9 quantile) by periodi-
cal SDDP (on the left) and classical SDDP (on the right) for
the SAA discretization problem (100 samples per stage) and
the true problem (on the bottom) for the risk neutral case
with discount factor v = 0.8




Individual stage costs (in average value and 0.9 quantile) by
periodical SDDP (on the left) and classical SDDP (on the
right) for the SAA discretization problem (on the above) and
the true problem (on the bottom) for the risk neutral case
with discount factor v = 0.9906 (this v corresponds to the
annual discount rate of 12%, that is 1/y12 =1.12)

25 avg 100 25 avg 100

=== q500

=== q500

o 20 40 60 B0 100 120 o 20 40 60 BO 100 120

25 avg 100 25 avg 100

avg 300 avg 300
20 q300 20 q300
— avg 500 — avg 500
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Dual bounds for periodical problem
Shapiro and Cheng (2020)

Hydro-thermal problem with 4 state variables, 50 samples per
stage, discount factor v = 0.9906 and period m = 12. Evo-
lution of deterministic bounds of primal and dual periodical
programs.



Values

Evolution of deterministic bounds(samples sizes per stage 50, y = 0.9906)
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