
Theory of Reinforcement Learning
Aug. 19 – Dec. 18, 2020

Reinforcement Learning
Part 1: Control Systems & RL

Sean Meyn

Department of Electrical and Computer Engineering University of Florida

Inria International Chair Inria, Paris

Thanks to to our sponsors: NSF and ARO

https://simons.berkeley.edu/programs/rl20/
http://ccc.centers.ufl.edu/

Besides NSF, Thanks to ...

Vivek Borkar Adithya Devraj Ana Bušić

Metivier

Van Roy Tsitsiklis
BertsekasKonda

Priouret

Kushner

Surana

Huang

Ruppert Polyak

Szepesvari

Benveniste
Yin

Nedic Yu

Colombino
 Dall’Anese

BernsteinChen & Chen Barooah

Raman

Max
P.E. Caines

Prashant Mehta Eric Moulines Many Others

Part 1: Control Fundamentals
Outline

1 Resources

2 Background

3 What Control Can Offer

4 Optimal Control and RL

5 Where to go from here?

6 References

Resources

Resources

Videos from Simons RTDM, 2018

Feedback Control Theory: Architectures and Tools for
Real-Time Decision Making [essential prerequisite]

https://simons.berkeley.edu/talks/murray-control-1

Hidden Theory Part I (SA foundations)
https://www.youtube.com/watch?v=dhEF5pfYmvc

Hidden Theory Part II (Zap Q-learning)
https://www.youtube.com/watch?v=Y3w8f1xIb6s

Markov Chains
and

Stochastic Stability

S. P. Meyn and R. L. Tweedie

August 2008 Pre-publication version for on-line viewing. Monograph to appear Februrary 2009

π
(f
)

<
∞

∆V (x) ≤ −f(x) + bIC(x)

‖Pn(x, ·)− π‖f → 0

su
p

C
E
x [S

τ
C
(f
)]

<
∞

Lecture notes online: Feedback systems and reinforcement learning
simons.berkeley.edu/sites/default/files/docs/16101/monographrlsimonsinstitutebootcampseptember2020.pdf

[1] K. J. Astrom and R. M. Murray. Feedback Systems: An Introduction for Scientists and
Engineers. Princeton University Press, USA, 2008 (recent edition on-line).

[25] D. Huang, W. Chen, P. Mehta, S. Meyn, and A. Surana. Feature selection for neuro-
dynamic programming. In F. Lewis, editor, Reinforcement Learning and Approximate Dynamic
Programming for Feedback Control. Wiley, 2011.

[26] A. M. Devraj, A. Bušić, and S. Meyn. Fundamental design principles for reinforcement
learning algorithms. In Handbook on Reinforcement Learning and Control. Springer, 2020

1 / 35

https://simons.berkeley.edu/talks/murray-control-1
https://www.youtube.com/watch?v=dhEF5pfYmvc
https://www.youtube.com/watch?v=Y3w8f1xIb6s
http://www.meyn.ece.ufl.edu/archive/spm_files/book.html
simons.berkeley.edu/sites/default/files/docs/16101/monographrlsimonsinstitutebootcampseptember2020.pdf

Resources

Apologies

π will always be an invariant measure
Markov Chains

and
Stochastic Stability

S. P. Meyn and R. L. Tweedie

August 2008 Pre-publication version for on-line viewing. Monograph to appear Februrary 2009

π
(f
)

<
∞

∆V (x) ≤ −f(x) + bIC(x)

‖Pn(x, ·)− π‖f → 0

su
p

C
E
x [S

τ
C
(f
)]

<
∞

φ and φ̃ will be policies (feedback)

Control engineers minimize cost c(x, u) (rarely receive rewards)
x state, u input (action)

I don’t mean to offend!
If I seem critical, it is simply my opinion, and

I don’t have all the answers
My opinion may be stupid

2 / 35

Resources

Apologies

π will always be an invariant measure
Markov Chains

and
Stochastic Stability

S. P. Meyn and R. L. Tweedie

August 2008 Pre-publication version for on-line viewing. Monograph to appear Februrary 2009

π
(f
)

<
∞

∆V (x) ≤ −f(x) + bIC(x)

‖Pn(x, ·)− π‖f → 0

su
p

C
E
x [S

τ
C
(f
)]

<
∞

φ and φ̃ will be policies (feedback)

Control engineers minimize cost c(x, u) (rarely receive rewards)
x state, u input (action)

I don’t mean to offend!
If I seem critical, it is simply my opinion, and

I don’t have all the answers
My opinion may be stupid

2 / 35

Resources

Apologies

π will always be an invariant measure
Markov Chains

and
Stochastic Stability

S. P. Meyn and R. L. Tweedie

August 2008 Pre-publication version for on-line viewing. Monograph to appear Februrary 2009

π
(f
)

<
∞

∆V (x) ≤ −f(x) + bIC(x)

‖Pn(x, ·)− π‖f → 0

su
p

C
E
x [S

τ
C
(f
)]

<
∞

φ and φ̃ will be policies (feedback)

Control engineers minimize cost c(x, u) (rarely receive rewards)
x state, u input (action)

I don’t mean to offend!
If I seem critical, it is simply my opinion, and

I don’t have all the answers
My opinion may be stupid

2 / 35

Background

Background RL as defined in the cloud

Reinforcement Learning
Intelligent actors optimize through interactions with their environment

Reinforcement learning (RL) is an area of
machine learning concerned with how software
agents ought to take actions in an environment
so as to maximize some notion of cumulative
reward –Wikipedia

Learn as we
Trade stocks?
Drive cars?
Manage the grid?

3 / 35

Background RL as defined in the cloud

Reinforcement Learning
Intelligent actors optimize through interactions with their environment

Reinforcement learning (RL) is an area of
machine learning concerned with how software
agents ought to take actions in an environment
so as to maximize some notion of cumulative
reward –Wikipedia

Examples:

Stock trading

Autonomous cars

Smart Buildings and Smart Grids

Learn as we
Trade stocks?
Drive cars?
Manage the grid?

3 / 35

Background RL as defined in the cloud

Reinforcement Learning
Intelligent actors optimize through interactions with their environment?

Examples:

Stock trading

Autonomous cars

Smart Buildings and Smart Grids

What are we talking about?

Learn as we
Trade stocks?
Drive cars?
Manage the grid?

3 / 35

Background RL as defined in the cloud

Reinforcement Learning
Intelligent actors optimize through interactions with their environment?

Examples:

Stock trading

Autonomous cars

Smart Buildings and Smart Grids

What are we talking about?

Learn as we
Trade stocks?
Drive cars?
Manage the grid?

3 / 35

Background RL as defined in the cloud

Reinforcement Learning
Intelligent actors optimize through interactions with their environment?

Examples:

Stock trading

Autonomous cars

Smart Buildings and Smart Grids

What are we talking about?

Learn as we
Trade stocks?
Drive cars? model free!

Manage the grid?

3 / 35

Background RL as defined in the cloud

Reinforcement Learning
Intelligent actors optimize through interactions with their environment?

Examples:

Stock trading

Autonomous cars

Smart Buildings and Smart Grids

What are we talking about?

Learn as we
Trade stocks?
Drive cars? model free!

Manage the grid?

RL is an emerging science, evolving alongside decision and control theory

3 / 35

Background Challenge: unrealistic expectations

Reinforcement Learning
Dreams of Model Free Control well before my graduate student days

“Typical” Adaptive Control System: MIT Rule

Early Dreams
of

Model Free Control

(NASA Report by Staff engineers at Edwards AFB, Nov, 1970)

Conclusions after 65 flight tests:
• Nearly invariant response at essentially all conditions
• accurate a priori knowledge of aerodynamic characteristics not needed (model-free)
• aircraft configuration changes compensated for
• redundancy (dual) provided a reliable and fail safe system

Fr
om

 a
 tu

to
ria

l b
y

E
rik

 Y
ds

tie
,

C
M

U

RL is an emerging science, evolving alongside decision and control theory

4 / 35

Background Challenge: unrealistic expectations

Reinforcement Learning
Dreams of Model Free Control well before my graduate student days

Early Dreams
of

Model Free Control

Conclusions after 65 flight tests:
• Nearly invariant response at essentially all conditions
• accurate a priori knowledge of aerodynamic characteristics not needed
• aircraft configuration changes compensated for
• redundancy (dual) provided a reliable and fail safe system

Problems: Gain changes due to disturbance inputs
Parameter drift and bursting
Lack of robustness in the presence of constraints (wind-up)

RL is an emerging science, evolving alongside decision and control theory

4 / 35

Background Challenge: unrealistic expectations

Reinforcement Learning
Dreams of Model Free Control well before my graduate student days

Early Dreams
of

Model Free Control

Conclusions after 65 flight tests:
• Nearly invariant response at essentially all conditions
• accurate a priori knowledge of aerodynamic characteristics not needed
• aircraft configuration changes compensated for
• redundancy (dual) provided a reliable and fail safe system

Problems: Gain changes due to disturbance inputs
Parameter drift and bursting
Lack of robustness in the presence of constraints (wind-up)
https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-052-DFRC.html

RL is an emerging science, evolving alongside decision and control theory

4 / 35

https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-052-DFRC.html

What Control Can Offer

What Control Can Offer Control theory in 2020

Control theory: goals and architectures Murray tutorial, 2018

Process

Process: car, plane, pancreas
 bike sharing
 wall street, semi-conductor manufacturing
 power grid, transportation network

 Inputs: throttle, wheel position, insulin rate,
 truck dispatch, commands to generators and batteries

Measurements: speed and position, insulin, glucose, blood pressure,
 camera and driver reports, frequency, phase, voltage

ΣΣ
yu

nd

m
ea

su
re

m
en

ts

In
pu

ts

disturbances Sensor
noise

Approximating J? and/or u? can be addressed using RL
Yellow boxes may be built around optimization (MPC/RHC):

J?(x) = min
u

{∫ T

0
c(xt, ut) dt+ V0(XT)

}
Many optimization problems to solve, because there are many objectives

5 / 35

https://simons.berkeley.edu/talks/murray-control-1

What Control Can Offer Control theory in 2020

Control theory: goals and architectures Murray tutorial, 2018

Process

Process: car, plane, pancreas
 bike sharing
 wall street, semi-conductor manufacturing
 power grid, transportation network

Goal: Choose inputs so that z behaves
as desired, in an evolving uncertain world

Inputs: throttle, wheel position, insulin rate,
 truck dispatch, commands to generators and batteries

Measurements: speed and position, insulin, glucose, blood pressure,
 camera and driver reports, frequency, phase, voltage

ΣΣ
yu

nd

z

m
ea

su
re

m
en

ts

In
pu

ts

disturbances Sensor
noise

Richard M. Murray, Caltech CDSSimons Institute, 24 Jan 2018

Transient: initial response to input

• Step response: rise time, overshoot, settling time, etc

Steady state: response after the transients have died out

• Frequency response: magnitude and phase for sinusoids

Safety: constraints that the system should never violate

Liveness: conditions that system should satisfy repeatedly

Control System Specifications Power to Fan Speed

Power to Temperature

Frequency (Hz)

Time (sec)

1
600

1
4

0

0

−20

20

−40

−60

0 10 20 30Po
w

er
 tr

ac
ki

ng
 e

rr
or

M
ag

ni
tu

de
 (d

B)

Compensator A

Compensator B

Approximating J? and/or u? can be addressed using RL
Yellow boxes may be built around optimization (MPC/RHC):

J?(x) = min
u

{∫ T

0
c(xt, ut) dt+ V0(XT)

}
Many optimization problems to solve, because there are many objectives

5 / 35

https://simons.berkeley.edu/talks/murray-control-1

What Control Can Offer Control theory in 2020

Control theory: goals and architectures Murray tutorial, 2018

Process

Process: car, plane, pancreas
 bike sharing
 wall street, semi-conductor manufacturing
 power grid, transportation network

Goal: Choose inputs so that z behaves
as desired, in an evolving uncertain world

Inputs: throttle, wheel position, insulin rate,
 truck dispatch, commands to generators and batteries

Measurements: speed and position, insulin, glucose, blood pressure,
 camera and driver reports, frequency, phase, voltage

ΣΣ
yu

nd

z

m
ea

su
re

m
en

ts

In
pu

ts

disturbances Sensor
noise

Approximating J? and/or u? can be addressed using RL

Strategies: Open loop control, assuming perfect model z = Gzuu
Invert dynamics:

u = G−1
zu zdes

Yellow boxes may be built around optimization (MPC/RHC):

J?(x) = min
u

{∫ T

0
c(xt, ut) dt+ V0(XT)

}
Many optimization problems to solve, because there are many objectives

5 / 35

https://simons.berkeley.edu/talks/murray-control-1

What Control Can Offer Control theory in 2020

Control theory: goals and architectures Murray tutorial, 2018

Compensator
(or “controller”) Process

Observer

ΣΣΣΣ
yue

nd

z ref

−+

ẑ

d: disturbances

n: measurement noise

z: internal process we care about

y: measurements

Approximating J? and/or u? can be addressed using RL

Strategies: Open loop control, assuming perfect model z = Gzuu
Invert dynamics:

u = G−1
zu zdes

Classical control: Choose u = Hẑdes +Gcy so that

u ≈ G−1
zu zdes

Murray [Simons, 2018] called this purely reactive

Yellow boxes may be built around optimization (MPC/RHC):

J?(x) = min
u

{∫ T

0
c(xt, ut) dt+ V0(XT)

}
Many optimization problems to solve, because there are many objectives

5 / 35

https://simons.berkeley.edu/talks/murray-control-1

What Control Can Offer Control theory in 2020

Control theory: goals and architectures Murray tutorial, 2018

Compensator
(or “controller”) Process

Observer

ΣΣΣΣ
yue

nd

z ref

−+

ẑ

d: disturbances

n: measurement noise

z: internal process we care about

y: measurements

∆∆: un-modeled dynamics

Approximating J? and/or u? can be addressed using RL

Strategies: Classical control: Choose u = Hẑdes +Gcy so that

u ≈ G−1
zu zdes

Typical control education: design H, Gc and observer so that desired spec-
ifications are met, based on

Process model

d, n,∆ in some bounded class

Yellow boxes may be built around optimization (MPC/RHC):

J?(x) = min
u

{∫ T

0
c(xt, ut) dt+ V0(XT)

}
Many optimization problems to solve, because there are many objectives

5 / 35

https://simons.berkeley.edu/talks/murray-control-1

What Control Can Offer Control theory in 2020

Control theory: goals and architectures Murray tutorial, 2018

Trajectory
Generation State

Feedback Process

ObserverEnvironment

ΣΣΣΣ
yue

nd

xref ufb

uff

−+

x̂

z ref
∆

Approximating J? and/or u? can be addressed using RL

Strategies: Classical control: u = Hẑdes +Gcy

Consider the steps taken when you plan to drive across town.
There is a reactive component. What else?

Yellow boxes may be built around optimization (MPC/RHC):

J?(x) = min
u

{∫ T

0
c(xt, ut) dt+ V0(XT)

}
Many optimization problems to solve, because there are many objectives

5 / 35

https://simons.berkeley.edu/talks/murray-control-1

What Control Can Offer Control theory in 2020

Control theory: goals and architectures Murray tutorial, 2018

Trajectory
Generation State

Feedback Process

ObserverEnvironment

ΣΣΣΣ
yue

nd

xref ufb

uff

−+

x̂

z ref
∆

Approximating J? and/or u? can be addressed using RL

Consider the steps taken when you plan to drive across town.
There is a reactive component. What else?

Yellow boxes may be built around optimization (MPC/RHC):

J?(x) = min
u

{∫ T

0
c(xt, ut) dt+ V0(XT)

}
Many optimization problems to solve, because there are many objectives

5 / 35

https://simons.berkeley.edu/talks/murray-control-1

What Control Can Offer Control theory in 2020

Control theory: goals and architectures Murray tutorial, 2018

Trajectory
Generation State

Feedback Process

ObserverEnvironment

ΣΣΣΣ
yue

nd

xref ufb

uff

−+

x̂

z ref
∆

Approximating J? and/or u? can be addressed using RL

Just as in RL, the definition of state depends on goals and observations

Consider the steps taken when you plan to drive across town.
There is a reactive component. What else?

Yellow boxes may be built around optimization (MPC/RHC):

J?(x) = min
u

{∫ T

0
c(xt, ut) dt+ V0(XT)

}
Many optimization problems to solve, because there are many objectives

5 / 35

https://simons.berkeley.edu/talks/murray-control-1

What Control Can Offer Control theory in 2020

Control theory: goals and architectures Murray tutorial, 2018

Trajectory
Generation State

Feedback Process

ObserverEnvironment

ΣΣΣΣ
yue

nd

xref ufb

uff

−+

x̂

z ref
∆

Approximating J? and/or u? can be addressed using RL
Just as in RL, the definition of state depends on goals and observations

Consider the steps taken when you plan to drive across town.
There is a reactive component. What else?

Yellow boxes may be built around optimization (MPC/RHC):

J?(x) = min
u

{∫ T

0
c(xt, ut) dt+ V0(XT)

}
Many optimization problems to solve, because there are many objectives

5 / 35

https://simons.berkeley.edu/talks/murray-control-1

What Control Can Offer Adaptive control theory in 1990

An Incomplete History of Adaptive Control
ECE 517: Adaptive and Nonlinear Control---Lecture 1, Maxim Raginsky, Fall 2020

Adaptation

Dynamic process by which the controller adjusts
its interaction with a system in order to carry out
an objective (or reach a goal) w/o exact

*

knowledge of the system.

Common analytical tool: ODE Method
[stochastic approximation of Robbins & Monro]

• [Tsitsiklis, 1994] and [Jaakola, Jordan, and Singh, 1994] [14, 15]

• [Wittenmark, 1975], [Ljung, 1977] [7, 8]

Adaptive Control

Adaptation dynamic process by which the controller
adjusts its interaction with a systemin order to carry out an objective or
reach a goal w o exact knowledge ofthe system

Some incomplete history
19505 gain scheduling

early Model Reference Adaptive Control
MRAC

1958 R Kalman self tuning controller
regulator for the linear quadraticproblem

19605 stability of adaptive controllers
Lyapunov stabilityadaptation learning Feldbaum TsypkiD

1966 Parks Lyapunov redesign approach to
MRAC

19705 Stability analysis Narendra Morse

19805 limitations Rohrs et al sensitivity toUnmodeled dynamics
1983 Morse's conjecture X axtbu

a C IR
b Fo

cannot stabilize w o knowledge of sign b
1983 Nussbaum disproves Morse's conjecture
1984 Willems Byrnes simplified Nussbaum's

construction
exploration us exploitation

See Liberzon’s lecture notes: http://liberzon.csl.illinois.edu/teaching/16ece517notes.pdf

Recent survey: [Matni et al, 2019] From self-tuning regulators to reinforcement learning and back again.

6 / 35

http://maxim.ece.illinois.edu/
http://liberzon.csl.illinois.edu/teaching/16ece517notes.pdf

What Control Can Offer Adaptive control theory in 1990

An Incomplete History of Adaptive Control
ECE 517: Adaptive and Nonlinear Control---Lecture 1, Maxim Raginsky, Fall 2020

Adaptation

Dynamic process by which the controller adjusts
its interaction with a system in order to carry out
an objective (or reach a goal) w/o exact*
knowledge of the system.

*For example: MDP or linear system with bound
on dimension
Assumed for analysis and not implementation

Adaptive control and RL have nearly identical
roots and goals

Common analytical tool: ODE Method
[stochastic approximation of Robbins & Monro]

• [Tsitsiklis, 1994] and [Jaakola, Jordan, and Singh, 1994] [14, 15]

• [Wittenmark, 1975], [Ljung, 1977] [7, 8]

Adaptive Control

Adaptation dynamic process by which the controller
adjusts its interaction with a systemin order to carry out an objective or
reach a goal w o exact knowledge ofthe system

Some incomplete history
19505 gain scheduling

early Model Reference Adaptive Control
MRAC

1958 R Kalman self tuning controller
regulator for the linear quadraticproblem

19605 stability of adaptive controllers
Lyapunov stabilityadaptation learning Feldbaum TsypkiD

1966 Parks Lyapunov redesign approach to
MRAC

19705 Stability analysis Narendra Morse

19805 limitations Rohrs et al sensitivity toUnmodeled dynamics
1983 Morse's conjecture X axtbu

a C IR
b Fo

cannot stabilize w o knowledge of sign b
1983 Nussbaum disproves Morse's conjecture
1984 Willems Byrnes simplified Nussbaum's

construction
exploration us exploitation

More history to be found in Lecture 4

See Liberzon’s lecture notes:
http://liberzon.csl.illinois.edu/teaching/16ece517notes.pdf

Recent survey: [Matni et al, 2019] From self-tuning regulators to reinforcement learning and back again.

6 / 35

http://maxim.ece.illinois.edu/
http://liberzon.csl.illinois.edu/teaching/16ece517notes.pdf

What Control Can Offer Adaptive control theory in 1990

An Incomplete History of Adaptive Control
Adaptive control and RL have nearly identical roots and goals

Common analytical tool: ODE Method
[stochastic approximation of Robbins & Monro]

• [Tsitsiklis, 1994] and [Jaakola, Jordan, and Singh, 1994] [14, 15]

• [Wittenmark, 1975], [Ljung, 1977] [7, 8]

Adaptive Control

Adaptation dynamic process by which the controller
adjusts its interaction with a systemin order to carry out an objective or
reach a goal w o exact knowledge ofthe system

Some incomplete history
19505 gain scheduling

early Model Reference Adaptive Control
MRAC

1958 R Kalman self tuning controller
regulator for the linear quadraticproblem

19605 stability of adaptive controllers
Lyapunov stabilityadaptation learning Feldbaum TsypkiD

1966 Parks Lyapunov redesign approach to
MRAC

19705 Stability analysis Narendra Morse

19805 limitations Rohrs et al sensitivity toUnmodeled dynamics
1983 Morse's conjecture X axtbu

a C IR
b Fo

cannot stabilize w o knowledge of sign b
1983 Nussbaum disproves Morse's conjecture
1984 Willems Byrnes simplified Nussbaum's

construction
exploration us exploitation

See Liberzon’s lecture notes: http://liberzon.csl.illinois.edu/teaching/16ece517notes.pdf

Recent survey: [Matni et al, 2019] From self-tuning regulators to reinforcement learning and back again.

6 / 35

http://liberzon.csl.illinois.edu/teaching/16ece517notes.pdf

NaN

hrs0 6 12 18 24 30 36 42 48
0

20

40

60

80

100

0

5

10

15

20

25

1e2
1e3
1e4
1e5
1e6

Battery
 SoC %

Temp (C)Training time
Smart
Meter

HEMS s/w

Crt. load 1

Crt. load 2

Xbat

Xfr

UI

Xin

Non crt.

Iterations
Q(0)-learning

Optimal Control and RL

Optimal Control and RL Example: climb up a hill

Dynamic Programming and RL Xk+1 = F(Xk, Uk)

Example from gym.openai.com: get up the hill efficiently

State: Xk denotes position and velocity (why?)
Input (or action): Uk is force

Value function: J?(x) = min
actions

τ∑
k=0

c(Xk, Uk)

DP eqn: J?(X0) = min
U0

Recall Bellman or Bellman-Ford

Q-learning is all about approximating Q?

If we know Q?, we obtain U∗k = φ∗(Xk)

7 / 35

Optimal Control and RL Example: climb up a hill

Dynamic Programming and RL Xk+1 = F(Xk, Uk)

Example from gym.openai.com: get up the hill efficiently

−1.25−1.00−0.75−0.50−0.25 0.00 0.25 0.50

−0.06
−0.04

−0.02
0.00

0.02
0.04

0.06

0

10

20

30

40

50

60

70

J∗(z, v)

Position z
Velocity v

State: Xk denotes position and velocity
Input (or action): Uk is force

Value function: J?(x) = min
actions

τ∑
k=0

c(Xk, Uk)

c : cost function

τ : time to reach the hill top

Similar to a control favorite: Swinging up a pendulum by energy control [2]

DP eqn: J?(X0) = min
U0

Recall Bellman or Bellman-Ford

Q-learning is all about approximating Q?

If we know Q?, we obtain U∗
k = φ∗(Xk)

7 / 35

Optimal Control and RL Example: climb up a hill

Dynamic Programming and RL Xk+1 = F(Xk, Uk)

Example from gym.openai.com: get up the hill efficiently

−1.25−1.00−0.75−0.50−0.25 0.00 0.25 0.50

−0.06
−0.04

−0.02
0.00

0.02
0.04

0.06

0

10

20

30

40

50

60

70

J∗(z, v)

Position z
Velocity v

State: Xk denotes position and velocity
Input (or action): Uk is force

Value function: J?(x) = min
actions

τ∑
k=0

c(Xk, Uk)

c : cost function

τ : time to reach the hill top

DP eqn: J?(X0) = min
U0

{c(X0, U0) + J?(X1)}
Recall Bellman or Bellman-Ford

Q-learning is all about approximating Q?

If we know Q?, we obtain U∗k = φ∗(Xk)

7 / 35

Optimal Control and RL Example: climb up a hill

Dynamic Programming and RL Xk+1 = F(Xk, Uk)

Example from gym.openai.com: get up the hill efficiently

−1.25−1.00−0.75−0.50−0.25 0.00 0.25 0.50

−0.06
−0.04

−0.02
0.00

0.02
0.04

0.06

0

10

20

30

40

50

60

70

J∗(z, v)

Position z
Velocity v

State: Xk denotes position and velocity
Input (or action): Uk is force

Value function: J?(x) = min
actions

τ∑
k=0

c(Xk, Uk)

c : cost function

τ : time to reach the hill top

DP eqn: J?(X0) = min
U0

{c(X0, U0) + J?(X1)︸ ︷︷ ︸
Q?(X0,U0)

}

Recall Bellman or Bellman-Ford

Q-learning is all about approximating Q?

If we know Q?, we obtain U∗k = φ∗(Xk)

7 / 35

Optimal Control and RL Example: climb up a hill

Dynamic Programming and RL Xk+1 = F(Xk, Uk)

Example from gym.openai.com: get up the hill efficiently

−1.25−1.00−0.75−0.50−0.25 0.00 0.25 0.50

−0.06
−0.04

−0.02
0.00

0.02
0.04

0.06

0

10

20

30

40

50

60

70

J∗(z, v)

Position z
Velocity v

State: Xk denotes position and velocity
Input (or action): Uk is force

Value function: J?(x) = min
actions

τ∑
k=0

c(Xk, Uk)

c : cost function

τ : time to reach the hill top

DP eqn: J?(X0) = min
U0

{c(X0, U0) + J?(X1)︸ ︷︷ ︸
Q?(X0,U0)

}

Recall Bellman or Bellman-Ford

Q-learning is all about approximating Q?

If we know Q?, we obtain U∗k = φ∗(Xk)
7 / 35

Optimal Control and RL Example: heating and ventilation in a Florida office building

Control Design for Heating and Ventilation

Re
tu

rn
 a

ir

Exhaust
air

Chilled
water

Hot
water

Co
ol

in
g a

nd
de

hu
m

id
ify

in
g c

oi
l

Re
he

at
in

g c
oi

l

Disturbance d

T z W z

ṁSA

Zone

Fan
TSA

WSA
TCA

WCA
TMA

WMA
TOA

WOA

Outdoor
air

Mixed
air

Conditioned
air

Supply
air

ṁOA
ṁ

R
A

Eight dimensional state space and four dimensional input space

Joint work with N. S. Raman, P. Barooah @ UF MAE, A. Devraj @ Stanford

See final page of references, and bibliography of [94]

8 / 35

Optimal Control and RL Example: heating and ventilation in a Florida office building

Control Design for Heating and Ventilation

Input: Uk
def
= [msa(k), roa(k), Tca(k), Tsa(k)]T

1 Supply air flow rate (msa)

2 Outdoor air ratio (roa)

3 Conditioned air temperature (Tca)

4 Supply air temperature (Tsa)

State: Xk
def
= [Tz(k),Wz(k), Toa(k),Woa(k), U(k − 1)]T

1 Zone air temperature (Tz)

2 Zone air humidity ratio (Wz)

3 Outdoor air temperature (Toa)

4 Outdoor air humidity ratio (Woa)

5 Control inputs from the previous time step

6 ... forecast of occupancy, weather, ... Exercise: make a list of useful data

Quadratic basis: + Zap Q-learning

Qθ(x, u) = (x, u)TMθ(x, u) + (x, u)TLθ + kθ

=
∑
i

θiψi(x, u)

Initial results are great ...

Return air

Ex
ha

us
t

ai
r

 Ch
ill

ed
w

at
er

H
ot

w
at

er

Cooling and
dehumidifying coil

Reheating coil

Di
stu

rb
an

ce
 d

T
z

W
z

ṁ
S
AZo
ne

Fa
n

T
S
A

W
S
A

T
C
A

W
C
A

T
M

A

W
M

A
T

O
A

W
O
A

Ou
td

oo
r

ai
r

M
ixe

d
ai

r
Co

nd
iti

on
ed

ai
r

Su
pp

ly
ai

r

ṁ
O
A

ṁ
RA

9 / 35

Optimal Control and RL Example: heating and ventilation in a Florida office building

Control Design for Heating and Ventilation

Input: Uk
def
= [msa(k), roa(k), Tca(k), Tsa(k)]T

State:
Xk

def
= [Tz(k),Wz(k), Toa(k),Woa(k), U(k − 1)]T

Quadratic basis: + Zap Q-learning

Qθ(x, u) = (x, u)TMθ(x, u) + (x, u)TLθ + kθ

=
∑
i

θiψi(x, u)

Initial results are great ...

Return air

Ex
ha

us
t

ai
r

 Ch
ill

ed
w

at
er

H
ot

w
at

er

Cooling and
dehumidifying coil

Reheating coil

Di
stu

rb
an

ce
 d

T
z

W
z

ṁ
S
AZo
ne

Fa
n

T
S
A

W
S
A

T
C
A

W
C
A

T
M

A

W
M

A
T

O
A

W
O
A

Ou
td

oo
r

ai
r

M
ixe

d
ai

r
Co

nd
iti

on
ed

ai
r

Su
pp

ly
ai

r

ṁ
O
A

ṁ
RA

9 / 35

Optimal Control and RL Example: heating and ventilation in a Florida office building

Close Loop Response: Temperature and humidity evolution

10 -3

9 12 15 18 21 24 27 30 hrs

60

65

70

75

80

85

90

9 12 15 18 21 24 27 30 hrs

5

6

7

8

9

10

111e4
1e5
2.5e5

5e5 1e6
7.5e5 2.5e6 Limits

Goal: Maintain temperature / humidity, and minimize energy consumption

Inputs: Air-flow rate, out-door air ratio, conditioned air temperature, supply
air temperature

Approach: Find θ∗ with quadratic basis:

Qθ(x, u) = (x, u)TMθ(x, u) + (x, u)TLθ + kθ

Once we know θ∗, we define Uk = φθ
∗
(Xk) = arg min

u
Qθ
∗
(Xk, u)

10 / 35

Optimal Control and RL Example: heating and ventilation in a Florida office building

Close Loop Response: Temperature and humidity evolution

10 -3

9 12 15 18 21 24 27 30 hrs

60

65

70

75

80

85

90

9 12 15 18 21 24 27 30 hrs

5

6

7

8

9

10

111e4
1e5
2.5e5

5e5 1e6
7.5e5 2.5e6 Limits

Goal: Maintain temperature / humidity, and minimize energy consumption

Inputs: Air-flow rate, out-door air ratio, conditioned air temperature, supply
air temperature

Approach: Find θ∗ with quadratic basis:

Qθ(x, u) = (x, u)TMθ(x, u) + (x, u)TLθ + kθ

Once we know θ∗, we define Uk = φθ
∗
(Xk) = arg min

u
Qθ
∗
(Xk, u)

10 / 35

Optimal Control and RL Example: heating and ventilation in a Florida office building

Algorithm learns: Cooling reduces humidity

Zone humidity low Zone humidity high

Conditioned air temperature (oF)

10

15

20

25

20

30

40

50

60

Q-learning solution: zone is humid =⇒ conditioned air temperature reduced

Once we know θ∗, we define Uk = φθ
∗
(Xk)

11 / 35

Optimal Control and RL Example: heating and ventilation in a Florida office building

Algorithm learns: Humid air can be expensive

50
1

55

6

60

0.5 4

65

2
0 0

85
1

90

6

95

0.5 4

100

2
0 0

Mild temperature and dry
outdoor weather

Mild temperature and humid
outdoor weather

Outdoor air
ratio

Supply air
flow rate (kg/s)

Supply air
flow rate (kg/s)

Outdoor air
ratio

Q-learning solution: humid exterior =⇒ outdoor air in-flow rate reduced

Once we know θ∗, we define Uk = φθ
∗
(Xk)

12 / 35

Optimal Control and RL How to approximate Q??

From DP to Q-learning Xk+1 = F(Xk, Uk)

J
?
(x) = min

u

∞∑
k=0

c(Xk, Uk)

Value function: J?(x) = min
u

∞∑
k=0

c(Xk, Uk) , X0 = x ∈ X

DP eqn: J?(X0) = min
U0

{c(X0, U0) + J?(X1)︸ ︷︷ ︸
Q?(X0,U0)

}

Magic: Denote Q?(x) = minuQ
?(x, u) = J?(x)

=⇒ Fixed point equation for Q-function

Q?(x, u) = c(x, u) + J?(F(x, u)) = c(x, u) +Q?(F(x, u))

Choose approximation among {Qθ(x, u) : θ ∈ Rd}

Bellman error: Eθ(x, u) = −Qθ(x, u) + c(x, u) +Qθ(F(x, u))

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

13 / 35

Optimal Control and RL How to approximate Q??

From DP to Q-learning Xk+1 = F(Xk, Uk) J
?
(x) = min

u

∞∑
k=0

c(Xk, Uk)

DP eqn: J?(X0) = min
U0

{c(X0, U0) + J?(X1)︸ ︷︷ ︸
Q?(X0,U0)

}

Magic: Denote Q?(x) = minuQ
?(x, u) = J?(x)

=⇒ Fixed point equation for Q-function

Q?(x, u) = c(x, u) + J?(F(x, u))

= c(x, u) +Q?(F(x, u))

Choose approximation among {Qθ(x, u) : θ ∈ Rd}

Bellman error: Eθ(x, u) = −Qθ(x, u) + c(x, u) +Qθ(F(x, u))

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

13 / 35

Optimal Control and RL How to approximate Q??

From DP to Q-learning Xk+1 = F(Xk, Uk) J
?
(x) = min

u

∞∑
k=0

c(Xk, Uk)

DP eqn: J?(X0) = min
U0

{c(X0, U0) + J?(X1)︸ ︷︷ ︸
Q?(X0,U0)

}

Magic: Denote Q?(x) = minuQ
?(x, u) = J?(x)

=⇒ Fixed point equation for Q-function

Q?(x, u) = c(x, u) + J?(F(x, u)) = c(x, u) +Q?(F(x, u))

Choose approximation among {Qθ(x, u) : θ ∈ Rd}

Bellman error: Eθ(x, u) = −Qθ(x, u) + c(x, u) +Qθ(F(x, u))

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

13 / 35

Optimal Control and RL How to approximate Q??

From DP to Q-learning Xk+1 = F(Xk, Uk) J
?
(x) = min

u

∞∑
k=0

c(Xk, Uk)

DP eqn: J?(X0) = min
U0

{c(X0, U0) + J?(X1)︸ ︷︷ ︸
Q?(X0,U0)

}

Magic: Denote Q?(x) = minuQ
?(x, u) = J?(x)

=⇒ Fixed point equation for Q-function

Q?(x, u) = c(x, u) + J?(F(x, u)) = c(x, u) +Q?(F(x, u))

Choose approximation among {Qθ(x, u) : θ ∈ Rd}

Bellman error: Eθ(x, u) = −Qθ(x, u) + c(x, u) +Qθ(F(x, u))

For example, θi is a “weight” in a neural network or

Qθ(x, u) =
∑
i

θiψi(x, u)

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

13 / 35

Optimal Control and RL How to approximate Q??

From DP to Q-learning Xk+1 = F(Xk, Uk) J
?
(x) = min

u

∞∑
k=0

c(Xk, Uk)

DP eqn: J?(X0) = min
U0

{c(X0, U0) + J?(X1)︸ ︷︷ ︸
Q?(X0,U0)

}

Magic: Denote Q?(x) = minuQ
?(x, u) = J?(x)

=⇒ Fixed point equation for Q-function

Q?(x, u) = c(x, u) + J?(F(x, u)) = c(x, u) +Q?(F(x, u))

Choose approximation among {Qθ(x, u) : θ ∈ Rd}

Bellman error: Eθ(x, u) = −Qθ(x, u) + c(x, u) +Qθ(F(x, u))

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

13 / 35

Optimal Control and RL How to approximate Q??

From DP to Q-learning Xk+1 = F(Xk, Uk)

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Goal: find θ∗ such that Eθ∗(Xk, Uk) ≈ 0

Optimization Criterion:

L(θ)
def
= E∞[Eθ(X,U)2] = lim

T→∞

1

T

T−1∑
k=0

Eθ(Xk, Uk)
2

assuming this exists for each θ

Input: stable feedback + mixture of sinusoids, Uk = φ(Xk) + ξk

Find zeros of f̄(θ) = −∇θL(θ)

Algorithm design:
Step 1: consider an ODE: d

dtθt = atf̄(θt) stable?

Step 2: translate

θn+1 = θn − αn+1∇θ{Eθ(Xn, Un)2}
∣∣∣
θ=θn

14 / 35

Optimal Control and RL How to approximate Q??

From DP to Q-learning Xk+1 = F(Xk, Uk)

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Optimization Criterion:

L(θ)
def
= E∞[Eθ(X,U)2] = lim

T→∞

1

T

T−1∑
k=0

Eθ(Xk, Uk)
2

assuming this exists for each θ

Input: stable feedback + mixture of sinusoids, Uk = φ(Xk) + ξk

Find zeros of f̄(θ) = −∇θL(θ)

Algorithm design:
Step 1: consider an ODE: d

dtθt = atf̄(θt) stable?

Step 2: translate

θn+1 = θn − αn+1∇θ{Eθ(Xn, Un)2}
∣∣∣
θ=θn

14 / 35

Optimal Control and RL How to approximate Q??

From DP to Q-learning Xk+1 = F(Xk, Uk)

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Optimization Criterion:

L(θ)
def
= E∞[Eθ(X,U)2] = lim

T→∞

1

T

T−1∑
k=0

Eθ(Xk, Uk)
2

assuming this exists for each θ

Input: stable feedback + mixture of sinusoids, Uk = φ(Xk) + ξk
Just one option

Find zeros of f̄(θ) = −∇θL(θ)

Algorithm design:
Step 1: consider an ODE: d

dtθt = atf̄(θt) stable?

Step 2: translate

θn+1 = θn − αn+1∇θ{Eθ(Xn, Un)2}
∣∣∣
θ=θn

14 / 35

Optimal Control and RL How to approximate Q??

From DP to Q-learning Xk+1 = F(Xk, Uk)

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Optimization Criterion:

L(θ)
def
= E∞[Eθ(X,U)2] = lim

T→∞

1

T

T−1∑
k=0

Eθ(Xk, Uk)
2

assuming this exists for each θ

Input: stable feedback + mixture of sinusoids, Uk = φ(Xk) + ξk

Find zeros of f̄(θ) = −∇θL(θ)

Algorithm design:
Step 1: consider an ODE: d

dtθt = atf̄(θt) stable?

Step 2: translate

θn+1 = θn − αn+1∇θ{Eθ(Xn, Un)2}
∣∣∣
θ=θn

14 / 35

Optimal Control and RL How to approximate Q??

From DP to Q-learning Xk+1 = F(Xk, Uk)

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Optimization Criterion:

L(θ)
def
= E∞[Eθ(X,U)2] = lim

T→∞

1

T

T−1∑
k=0

Eθ(Xk, Uk)
2

assuming this exists for each θ

Input: stable feedback + mixture of sinusoids, Uk = φ(Xk) + ξk

Find zeros of f̄(θ) = −∇θL(θ)

Algorithm design:
Step 1: consider an ODE: d

dtθt = atf̄(θt) stable?

Step 2: translate

θn+1 = θn − αn+1∇θ{Eθ(Xn, Un)2}
∣∣∣
θ=θn

14 / 35

Optimal Control and RL How to approximate Q??

Q-learning for Markovian Models Xk+1 = F(Xk, Uk,Wk+1)

Galerkin relaxation (or projected DP equation)

With the introduction of (i.i.d.) noise:

Xk+1 = F(Xk, Uk,Wk+1)

a controlled Markovian model.

The DP equation is nearly identical, but gradient descent fails

Q-learning

Find zeros of f̄(θ) = E∞[ζkEθ(Xk, Xk+1, Uk)], θ ∈ Rd

Eθ(Xk, Xk+1, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

ζk ∈ Rd : “eligibility vector”

Design principle unchanged:
Step 1: consider an ODE: d

dtθt = −Gtf̄(θt) (matrix gain part of design)
Step 2: translate to a discrete time algorithm based on measurements.

15 / 35

Optimal Control and RL How to approximate Q??

Q-learning for Markovian Models Xk+1 = F(Xk, Uk,Wk+1)

Galerkin relaxation (or projected DP equation)

With the introduction of (i.i.d.) noise:

Xk+1 = F(Xk, Uk,Wk+1)

a controlled Markovian model.

The DP equation is nearly identical, but gradient descent fails

Q-learning

Find zeros of f̄(θ) = E∞[ζkEθ(Xk, Xk+1, Uk)], θ ∈ Rd

Eθ(Xk, Xk+1, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

ζk ∈ Rd : “eligibility vector”

Design principle unchanged:
Step 1: consider an ODE: d

dtθt = −Gtf̄(θt) (matrix gain part of design)
Step 2: translate to a discrete time algorithm based on measurements.

15 / 35

Optimal Control and RL How to approximate Q??

Q-learning for Markovian Models Xk+1 = F(Xk, Uk,Wk+1)

Galerkin relaxation (or projected DP equation)

With the introduction of (i.i.d.) noise:

Xk+1 = F(Xk, Uk,Wk+1)

The DP equation is nearly identical, but gradient descent fails

Q-learning

Find zeros of f̄(θ) = E∞[ζkEθ(Xk, Xk+1, Uk)], θ ∈ Rd

Eθ(Xk, Xk+1, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

ζk ∈ Rd : “eligibility vector”

Design principle unchanged:
Step 1: consider an ODE: d

dtθt = −Gtf̄(θt) (matrix gain part of design)
Step 2: translate to a discrete time algorithm based on measurements.

15 / 35

Optimal Control and RL How to approximate Q??

Q-learning for Markovian Models Xk+1 = F(Xk, Uk,Wk+1)

Galerkin relaxation (or projected DP equation)

With the introduction of (i.i.d.) noise:

Xk+1 = F(Xk, Uk,Wk+1)

The DP equation is nearly identical, but gradient descent fails

Q-learning

Find zeros of f̄(θ) = E∞[ζkEθ(Xk, Xk+1, Uk)], θ ∈ Rd

Eθ(Xk, Xk+1, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

ζk ∈ Rd : “eligibility vector”

Design principle unchanged:
Step 1: consider an ODE: d

dtθt = −Gtf̄(θt) (matrix gain part of design)
Step 2: translate to a discrete time algorithm based on measurements.

15 / 35

Optimal Control and RL How to approximate Q??

Q-learning for Markovian Models Xk+1 = F(Xk, Uk,Wk+1)

Galerkin relaxation (or projected DP equation)

With the introduction of (i.i.d.) noise:

Xk+1 = F(Xk, Uk,Wk+1)

The DP equation is nearly identical, but gradient descent fails

Q-learning

Find zeros of f̄(θ) = E∞[ζkEθ(Xk, Xk+1, Uk)], θ ∈ Rd

Eθ(Xk, Xk+1, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

ζk ∈ Rd : “eligibility vector”

f̄(θ∗) = 0

Design principle unchanged:
Step 1: consider an ODE: d

dtθt = −Gtf̄(θt) (matrix gain part of design)
Step 2: translate to a discrete time algorithm based on measurements.

15 / 35

Optimal Control and RL How to approximate Q??

Q-learning for Markovian Models Xk+1 = F(Xk, Uk,Wk+1)

Galerkin relaxation (or projected DP equation)

With the introduction of (i.i.d.) noise:

Xk+1 = F(Xk, Uk,Wk+1)

The DP equation is nearly identical, but gradient descent fails

Q-learning

Find zeros of f̄(θ) = E∞[ζkEθ(Xk, Xk+1, Uk)], θ ∈ Rd

Eθ(Xk, Xk+1, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

ζk ∈ Rd : “eligibility vector”

Design principle unchanged:
Step 1: consider an ODE: d

dtθt = −Gtf̄(θt) (matrix gain part of design)
Step 2: translate to a discrete time algorithm based on measurements.

15 / 35

Where to go from here?

Where to go from here?

Control Theory Offers Useful Tricks and Lessons
Summary

Aspects of control philosophy we have covered:

Every control problem is multi-objective. We want to minimize fuel,
get to our destination on time, minimize risk, ...

Design is hierarchical, both in time and space (an approach to
distributed control)

If you have a model, use it! But recognize that no model is perfect.

As every MLer knows: test in many non-ideal scenarios.

Other tricks from the trade:

Controlled Lyapunov functions

Model reduction techniques many built on theory of singular perturbations.

Mean field game approximations for multi-agent systems

0 1 2 3 4 5 6 7 8 9 100 1 2 3 4 5 6 7 8 9 10

−0.06

0

0.06

0

1

-1 x 104

(individual state)

(ensemble state)

Agent 5 is barely controllable

Agent 4

16 / 35

Where to go from here?

Control Theory Offers Useful Tricks and Lessons
Summary

Aspects of control philosophy we have covered:

Every control problem is multi-objective. We want to minimize fuel, get to our destination
on time, minimize risk, ...

Design is hierarchical, both in time and space (an approach to distributed control)

If you have a model, use it! But recognize that no model is perfect.

As every MLer knows: test in many non-ideal scenarios.

Other tricks from the trade:

Controlled Lyapunov functions

Model reduction techniques many built on theory of singular perturbations.

Fluid models for networks, and their workload relaxations [CTCN]
Feature selection for neuro-dynamic programming, 2011 [25]

Mean field game approximations for multi-agent systems

0 1 2 3 4 5 6 7 8 9 100 1 2 3 4 5 6 7 8 9 10

−0.06

0

0.06

0

1

-1 x 104

(individual state)

(ensemble state)

Agent 5 is barely controllable

Agent 4

16 / 35

Where to go from here?

Control Theory Offers Useful Tricks and Lessons
Summary

Aspects of control philosophy we have covered:

Every control problem is multi-objective. We want to minimize fuel, get to our destination
on time, minimize risk, ...

Design is hierarchical, both in time and space (an approach to distributed control)

If you have a model, use it! But recognize that no model is perfect.

As every MLer knows: test in many non-ideal scenarios.

Other tricks from the trade:

Controlled Lyapunov functions

Model reduction techniques many built on theory of singular perturbations.

Mean field game approximations for multi-agent systems

0 1 2 3 4 5 6 7 8 9 100 1 2 3 4 5 6 7 8 9 10

−0.06

0

0.06

0

1

-1 x 104

(individual state)

(ensemble state)

Agent 5 is barely controllable

Agent 4

16 / 35

Where to go from here?

Control & RL to Come

• Every Optimization Problem Is a Quadratic Program Chapters 3 & 5

The complex nonlinear Bellman equation has been a road block in Q-learning
Estimating the Q-function should be easy: it is the solution to an LP or QP

• The ODE Method Chapter 4

• Gradient Free Optimization and Policy Gradient RL Chapter 4

• Real-Time System Optimization with Applications to Power Systems

“We examine the problem of real-time
optimization of networked systems and
develop online algorithms that steer the
system towards the optimal system
trajectory...”

Andrey Bernstein [96, 97, 98]

(National Renewable Energy Laboratory)

17 / 35

Where to go from here?

Control & RL to Come

• Every Optimization Problem Is a Quadratic Program Chapters 3 & 5

• The ODE Method Chapter 4 [Basics of Algorithm Design and Analysis]

Don’t start with an algorithm!

I see a noisy Euler approximation of the ODE:

d

dt
xt = q(t, xt)

ODE Method: design the vector field q first, then translate to create an algorithm

Approximate policy iteration is a simple application

• Gradient Free Optimization and Policy Gradient RL Chapter 4

• Real-Time System Optimization with Applications to Power Systems

“We examine the problem of real-time
optimization of networked systems and
develop online algorithms that steer the
system towards the optimal system
trajectory...”

Andrey Bernstein [96, 97, 98]

(National Renewable Energy Laboratory)

17 / 35

Where to go from here?

Control & RL to Come

• Every Optimization Problem Is a Quadratic Program Chapters 3 & 5

• The ODE Method Chapter 4

• Gradient Free Optimization and Policy Gradient RL Chapter 4

Quasi-stochastic approximation (QSA) recipe:

d

dt
sΘt = atf̄(sΘt) ⇐= Design for your goals

d

dt
Θt = atf(Θt,ξt) ⇐= QSA (cts time is simplest)

θn+1 = θn + an+1f(θn,ξn+1) ⇐= Euler/Runge-Kutta

https://en.wikipedia.org/wiki/Runge-Kutta_methods

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

E[Jθ(X)]

θ

X uniformly distributed
on the state space

θ∗

avg

N

θ∗
N = 103

Θ

Θ

n

avg

NΘ

50

60

70

80

90

0 200 400 600 800 1000 n
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
Typical trajectory

qPG for Mountain Car: objective
function, and typical behavior of
estimates

QSA much more reliable than stochastic methods. Lots of theory to explain why
• Real-Time System Optimization with Applications to Power Systems

“We examine the problem of real-time
optimization of networked systems and
develop online algorithms that steer the
system towards the optimal system
trajectory...”

Andrey Bernstein [96, 97, 98]

(National Renewable Energy Laboratory)

17 / 35

https://en.wikipedia.org/wiki/Runge-Kutta_methods

Where to go from here?

Control & RL to Come

• Every Optimization Problem Is a Quadratic Program Chapters 3 & 5

• The ODE Method Chapter 4

• Gradient Free Optimization and Policy Gradient RL Chapter 4

Quasi-stochastic approximation (QSA) recipe:

d

dt
sΘt = atf̄(sΘt) ⇐= Design for your goals

d

dt
Θt = atf(Θt,ξt) ⇐= QSA (cts time is simplest)

θn+1 = θn + an+1f(θn,ξn+1) ⇐= Euler/Runge-Kutta

https://en.wikipedia.org/wiki/Runge-Kutta_methods

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

E[Jθ(X)]

θ

X uniformly distributed
on the state space

θ∗

avg

N

θ∗
N = 103

Θ

Θ

n

avg

NΘ

50

60

70

80

90

0 200 400 600 800 1000 n
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
Typical trajectory

qPG for Mountain Car: objective
function, and typical behavior of
estimates

QSA much more reliable than stochastic methods. Lots of theory to explain why

• Real-Time System Optimization with Applications to Power Systems

“We examine the problem of real-time
optimization of networked systems and
develop online algorithms that steer the
system towards the optimal system
trajectory...”

Andrey Bernstein [96, 97, 98]

(National Renewable Energy Laboratory)

17 / 35

https://en.wikipedia.org/wiki/Runge-Kutta_methods

Where to go from here?

Control & RL to Come

• Every Optimization Problem Is a Quadratic Program Chapters 3 & 5

• The ODE Method Chapter 4

• Gradient Free Optimization and Policy Gradient RL Chapter 4

• Real-Time System Optimization with Applications to Power Systems

“We examine the problem of real-time
optimization of networked systems and
develop online algorithms that steer the
system towards the optimal system
trajectory...”

Andrey Bernstein [96, 97, 98]

(National Renewable Energy Laboratory)

17 / 35

References

Markov Chains
and

Stochastic Stability

S. P. Meyn and R. L. Tweedie

August 2008 Pre-publication version for on-line viewing. Monograph to appear Februrary 2009

π
(f
)

<
∞

∆V (x) ≤ −f(x) + bIC(x)

‖Pn(x, ·)− π‖f → 0

su
p

C
E
x [S

τ
C
(f
)]

<
∞

References

18 / 35

References

Control Background I

[1] K. J. Åström and R. M. Murray. Feedback Systems: An Introduction for Scientists and
Engineers. Princeton University Press, USA, 2008 (recent edition on-line).

[2] K. J. Åström and K. Furuta. Swinging up a pendulum by energy control. Automatica,
36(2):287 – 295, 2000.

[3] K. J. Astrom and B. Wittenmark. Adaptive Control. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2nd edition, 1994.

[4] M. Krstic, P. V. Kokotovic, and I. Kanellakopoulos. Nonlinear and adaptive control
design. John Wiley & Sons, Inc., 1995.

[5] K. J. Åström. Theory and applications of adaptive control—a survey. Automatica,
19(5):471–486, 1983.

[6] K. J. Åström. Adaptive control around 1960. IEEE Control Systems Magazine,
16(3):44–49, 1996.

[7] B. Wittenmark. Stochastic adaptive control methods: a survey. International Journal of
Control, 21(5):705–730, 1975.

[8] L. Ljung. Analysis of recursive stochastic algorithms. IEEE Transactions on Automatic
Control, 22(4):551–575, 1977.

19 / 35

References

Control Background II

[9] N. Matni, A. Proutiere, A. Rantzer, and S. Tu. From self-tuning regulators to
reinforcement learning and back again. In Proc. of the IEEE Conf. on Dec. and Control,
pages 3724–3740, 2019.

20 / 35

References

RL Background I

[10] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press. On-line
edition at http://www.cs.ualberta.ca/~sutton/book/the-book.html, Cambridge,
MA, 2nd edition, 2018.

[11] C. Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers, 2010.

[12] R. S. Sutton.Learning to predict by the methods of temporal differences. Mach. Learn.,
3(1):9–44, 1988.

[13] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-4):279–292, 1992.

[14] J. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine Learning,
16:185–202, 1994.

[15] T. Jaakola, M. Jordan, and S. Singh. On the convergence of stochastic iterative dynamic
programming algorithms. Neural Computation, 6:1185–1201, 1994.

[16] J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function
approximation. IEEE Trans. Automat. Control, 42(5):674–690, 1997.

[17] J. N. Tsitsiklis and B. Van Roy. Optimal stopping of Markov processes: Hilbert space
theory, approximation algorithms, and an application to pricing high-dimensional financial
derivatives. IEEE Trans. Automat. Control, 44(10):1840–1851, 1999.

21 / 35

http://www.cs.ualberta.ca/~sutton/book/the-book.html

References

RL Background II

[18] D. Choi and B. Van Roy. A generalized Kalman filter for fixed point approximation and
efficient temporal-difference learning. Discrete Event Dynamic Systems: Theory and
Applications, 16(2):207–239, 2006.

[19] S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference
learning. Mach. Learn., 22(1-3):33–57, 1996.

[20] J. A. Boyan. Technical update: Least-squares temporal difference learning. Mach. Learn.,
49(2-3):233–246, 2002.

[21] A. Nedic and D. Bertsekas. Least squares policy evaluation algorithms with linear function
approximation. Discrete Event Dyn. Systems: Theory and Appl., 13(1-2):79–110, 2003.

[22] C. Szepesvári. The asymptotic convergence-rate of Q-learning. In Proceedings of the 10th
Internat. Conf. on Neural Info. Proc. Systems, 1064–1070. MIT Press, 1997.

[23] E. Even-Dar and Y. Mansour. Learning rates for Q-learning. Journal of Machine Learning
Research, 5(Dec):1–25, 2003.

[24] M. G. Azar, R. Munos, M. Ghavamzadeh, and H. Kappen. Speedy Q-learning. In
Advances in Neural Information Processing Systems, 2011.

22 / 35

References

RL Background III

[25] D. Huang, W. Chen, P. Mehta, S. Meyn, and A. Surana. Feature selection for
neuro-dynamic programming. In F. Lewis, editor, Reinforcement Learning and
Approximate Dynamic Programming for Feedback Control. Wiley, 2011.

[26] A. M. Devraj, A. Bušić, and S. Meyn. Fundamental design principles for reinforcement
learning algorithms. In Handbook on Reinforcement Learning and Control. Springer, 2020.

[27] S. P. Meyn. Control Techniques for Complex Networks. Cambridge University Press, 2007.
See last chapter on simulation and average-cost TD learning

DQN:

[28] M. Riedmiller. Neural fitted Q iteration – first experiences with a data efficient neural
reinforcement learning method. In J. Gama, R. Camacho, P. B. Brazdil, A. M. Jorge, and
L. Torgo, editors, Machine Learning: ECML 2005, pages 317–328, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

[29] S. Lange, T. Gabel, and M. Riedmiller. Batch reinforcement learning. In Reinforcement
learning, pages 45–73. Springer, 2012.

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A.
Riedmiller. Playing Atari with deep reinforcement learning. ArXiv, abs/1312.5602, 2013.

23 / 35

References

RL Background IV

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. A. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level
control through deep reinforcement learning. Nature, 518:529–533, 2015.

Actor Critic / Policy Gradient

[32] P. J. Schweitzer. Perturbation theory and finite Markov chains. J. Appl. Prob., 5:401–403,
1968.

[33] C. D. Meyer, Jr. The role of the group generalized inverse in the theory of finite Markov
chains. SIAM Review, 17(3):443–464, 1975.

[34] P. W. Glynn. Stochastic approximation for Monte Carlo optimization. In Proceedings of
the 18th conference on Winter simulation, pages 356–365, 1986.

[35] R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[36] T. Jaakkola, S. P. Singh, and M. I. Jordan. Reinforcement learning algorithm for partially
observable Markov decision problems. In Advances in neural information processing
systems, pages 345–352, 1995.

24 / 35

References

RL Background V

[37] X.-R. Cao and H.-F. Chen. Perturbation realization, potentials, and sensitivity analysis of
Markov processes. IEEE Transactions on Automatic Control, 42(10):1382–1393, Oct
1997.

[38] P. Marbach and J. N. Tsitsiklis. Simulation-based optimization of Markov reward
processes. IEEE Trans. Automat. Control, 46(2):191–209, 2001.

[39] V. R. Konda and J. N. Tsitsiklis. Actor-critic algorithms. In Advances in neural
information processing systems, pages 1008–1014, 2000.

[40] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. In Advances in neural information
processing systems, pages 1057–1063, 2000.

[41] P. Marbach and J. N. Tsitsiklis. Simulation-based optimization of Markov reward
processes. IEEE Trans. Automat. Control, 46(2):191–209, 2001.

[42] S. M. Kakade. A natural policy gradient. In Advances in neural information processing
systems, pages 1531–1538, 2002.

25 / 35

References

RL Background VI

[43] H. Mania, A. Guy, and B. Recht. Simple random search provides a competitive approach
to reinforcement learning. In Advances in Neural Information Processing Systems, pages
1800–1809, 2018.

MDPs, LPs and Convex Q:

[44] A. S. Manne. Linear programming and sequential decisions. Management Sci.,
6(3):259–267, 1960.

[45] C. Derman. Finite State Markovian Decision Processes, volume 67 of Mathematics in
Science and Engineering. Academic Press, Inc., 1970.

[46] V. S. Borkar. Convex analytic methods in Markov decision processes. In Handbook of
Markov decision processes, volume 40 of Internat. Ser. Oper. Res. Management Sci.,
pages 347–375. Kluwer Acad. Publ., Boston, MA, 2002.

[47] D. P. de Farias and B. Van Roy. The linear programming approach to approximate
dynamic programming. Operations Res., 51(6):850–865, 2003.

[48] D. P. de Farias and B. Van Roy. A cost-shaping linear program for average-cost
approximate dynamic programming with performance guarantees. Math. Oper. Res.,
31(3):597–620, 2006.

26 / 35

References

RL Background VII

[49] P. G. Mehta and S. P. Meyn. Q-learning and Pontryagin’s minimum principle. In Proc. of
the IEEE Conf. on Dec. and Control, pages 3598–3605, Dec. 2009.

[50] P. G. Mehta and S. P. Meyn. Convex Q-learning, part 1: Deterministic optimal control.
ArXiv e-prints:2008.03559, 2020.

Gator Nation:

[51] A. M. Devraj and S. P. Meyn. Fastest convergence for Q-learning. ArXiv , July 2017
(extended version of NIPS 2017).

[52] A. M. Devraj. Reinforcement Learning Design with Optimal Learning Rate. PhD thesis,
University of Florida, 2019.

[53] A. M. Devraj and S. P. Meyn. Q-learning with Uniformly Bounded Variance: Large
Discounting is Not a Barrier to Fast Learning. arXiv e-prints 2002.10301, and to appear
AISTATS, Feb. 2020.

[54] A. M. Devraj, A. Bušić, and S. Meyn. On matrix momentum stochastic approximation
and applications to Q-learning. In Allerton Conference on Communication, Control, and
Computing, pages 749–756, Sep 2019.

27 / 35

https://arxiv.org/abs/1707.03770

References

Stochastic Miscellanea I

[55] S. Asmussen and P. W. Glynn. Stochastic Simulation: Algorithms and Analysis, volume 57
of Stochastic Modelling and Applied Probability. Springer-Verlag, New York, 2007.

[56] P. W. Glynn and S. P. Meyn. A Liapounov bound for solutions of the Poisson equation.
Ann. Probab., 24(2):916–931, 1996.

[57] S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Cambridge
University Press, Cambridge, second edition, 2009. Published in the Cambridge
Mathematical Library.

[58] R. Douc, E. Moulines, P. Priouret, and P. Soulier. Markov Chains. Springer, 2018.

28 / 35

References

Stochastic Approximation I

[59] V. S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Hindustan
Book Agency and Cambridge University Press, Delhi, India & Cambridge, UK, 2008.

[60] A. Benveniste, M. Métivier, and P. Priouret. Adaptive algorithms and stochastic
approximations, volume 22 of Applications of Mathematics (New York). Springer-Verlag,
Berlin, 1990. Translated from the French by Stephen S. Wilson.

[61] V. S. Borkar and S. P. Meyn. The ODE method for convergence of stochastic
approximation and reinforcement learning. SIAM J. Control Optim., 38(2):447–469, 2000.

[62] M. Benäım. Dynamics of stochastic approximation algorithms. In Séminaire de
Probabilités, XXXIII, pages 1–68. Springer, Berlin, 1999.

[63] J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression
function. Ann. Math. Statist., 23(3):462–466, 09 1952.

[64] D. Ruppert. A Newton-Raphson version of the multivariate Robbins-Monro procedure.
The Annals of Statistics, 13(1):236–245, 1985.

[65] D. Ruppert. Efficient estimators from a slowly convergent Robbins-Monro processes.
Technical Report Tech. Rept. No. 781, Cornell University, School of Operations Research
and Industrial Engineering, Ithaca, NY, 1988.

29 / 35

References

Stochastic Approximation II

[66] B. T. Polyak. A new method of stochastic approximation type. Avtomatika i
telemekhanika, 98–107, 1990 (in Russian). Translated in Automat. Remote Control, 51
1991.

[67] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging.
SIAM J. Control Optim., 30(4):838–855, 1992.

[68] V. R. Konda and J. N. Tsitsiklis. Convergence rate of linear two-time-scale stochastic
approximation. Ann. Appl. Probab., 14(2):796–819, 2004.

[69] E. Moulines and F. R. Bach. Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. In Advances in Neural Information Processing Systems
24, 451–459. Curran Associates, Inc., 2011.

[70] S. Chen, A. M. Devraj, A. Bušić, and S. Meyn. Explicit Mean-Square Error Bounds for
Monte-Carlo and Linear Stochastic Approximation. arXiv e-prints, 2002.02584, Feb. 2020.

[71] W. Mou, C. Junchi Li, M. J. Wainwright, P. L. Bartlett, and M. I. Jordan. On Linear
Stochastic Approximation: Fine-grained Polyak-Ruppert and Non-Asymptotic
Concentration. arXiv e-prints, page arXiv:2004.04719, Apr. 2020.

30 / 35

References

Optimization and ODEs I

[72] W. Su, S. Boyd, and E. Candes. A differential equation for modeling nesterov’s
accelerated gradient method: Theory and insights. In Advances in neural information
processing systems, pages 2510–2518, 2014.

[73] B. Shi, S. S. Du, W. Su, and M. I. Jordan. Acceleration via symplectic discretization of
high-resolution differential equations. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 5744–5752. Curran Associates, Inc., 2019.

[74] B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[75] Y. Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k2). In Soviet Mathematics Doklady, 1983.

31 / 35

References

QSA and Extremum Seeking Control I

[76] S. Chen, A. Bernstein, A. Devraj, and S. Meyn. Accelerating optimization and
reinforcement learning with quasi-stochastic approximation. arXiv:In preparation, 2020.

[77] B. Lapeybe, G. Pages, and K. Sab. Sequences with low discrepancy generalisation and
application to Robbins-Monro algorithm. Statistics, 21(2):251–272, 1990.

[78] S. Laruelle and G. Pagès. Stochastic approximation with averaging innovation applied to
finance. Monte Carlo Methods and Applications, 18(1):1–51, 2012.

[79] S. Shirodkar and S. Meyn. Quasi stochastic approximation. In Proc. of the 2011 American
Control Conference (ACC), pages 2429–2435, July 2011.

[80] A. Bernstein, Y. Chen, M. Colombino, E. Dall’Anese, P. Mehta, and S. Meyn. Optimal
rate of convergence for quasi-stochastic approximation. arXiv:1903.07228, 2019.

[81] A. Bernstein, Y. Chen, M. Colombino, E. Dall’Anese, P. Mehta, and S. Meyn.
Quasi-stochastic approximation and off-policy reinforcement learning. In Proc. of the
IEEE Conf. on Dec. and Control, pages 5244–5251, Mar 2019.

[82] Y. Chen, A. Bernstein, A. Devraj, and S. Meyn. Model-Free Primal-Dual Methods for
Network Optimization with Application to Real-Time Optimal Power Flow. In Proc. of
the American Control Conf., pages 3140–3147, Sept. 2019.

32 / 35

References

QSA and Extremum Seeking Control II

[83] S. Bhatnagar and V. S. Borkar. Multiscale chaotic spsa and smoothed functional
algorithms for simulation optimization. Simulation, 79(10):568–580, 2003.

[84] S. Bhatnagar, M. C. Fu, S. I. Marcus, and I.-J. Wang. Two-timescale simultaneous
perturbation stochastic approximation using deterministic perturbation sequences. ACM
Transactions on Modeling and Computer Simulation (TOMACS), 13(2):180–209, 2003.

[85] M. Le Blanc. Sur l’electrification des chemins de fer au moyen de courants alternatifs de
frequence elevee [On the electrification of railways by means of alternating currents of
high frequency]. Revue Generale de l’Electricite, 12(8):275–277, 1922.

[86] Y. Tan, W. H. Moase, C. Manzie, D. Nešić, and I. M. Y. Mareels. Extremum seeking from
1922 to 2010. In Proceedings of the 29th Chinese Control Conference, pages 14–26, July
2010.

[87] P. F. Blackman. Extremum-seeking regulators. In An Exposition of Adaptive Control.
Macmillan, 1962.

[88] J. Sternby. Adaptive control of extremum systems. In H. Unbehauen, editor, Methods and
Applications in Adaptive Control, pages 151–160, Berlin, Heidelberg, 1980. Springer
Berlin Heidelberg.

33 / 35

References

QSA and Extremum Seeking Control III

[89] J. Sternby. Extremum control systems–an area for adaptive control? In Joint Automatic
Control Conference, number 17, page 8, 1980.

[90] K. B. Ariyur and M. Krstić. Real Time Optimization by Extremum Seeking Control. John
Wiley & Sons, Inc., New York, NY, USA, 2003.

[91] M. Krstić and H.-H. Wang. Stability of extremum seeking feedback for general nonlinear
dynamic systems. Automatica, 36(4):595 – 601, 2000.

[92] S. Liu and M. Krstic. Introduction to extremum seeking. In Stochastic Averaging and
Stochastic Extremum Seeking, Communications and Control Engineering. Springer,
London, 2012.

[93] O. Trollberg and E. W. Jacobsen. On the convergence rate of extremum seeking control.
In European Control Conference (ECC), pages 2115–2120. 2014.

34 / 35

References

Selected Applications I

[94] N. S. Raman, A. M. Devraj, P. Barooah, and S. P. Meyn. Reinforcement learning for
control of building HVAC systems. In American Control Conference, July 2020.

[95] K. Mason and S. Grijalva. A review of reinforcement learning for autonomous building
energy management. arXiv.org, 2019. arXiv:1903.05196.

News from Andrey@NREL:

[96] A. Bernstein and E. Dall’Anese. Real-time feedback-based optimization of distribution
grids: A unified approach. IEEE Transactions on Control of Network Systems,
6(3):1197–1209, 2019.

[97] A. Bernstein, E. Dall’Anese, and A. Simonetto. Online primal-dual methods with
measurement feedback for time-varying convex optimization. IEEE Transactions on Signal
Processing, 67(8):1978–1991, 2019.

[98] Y. Chen, A. Bernstein, A. Devraj, and S. Meyn. Model-free primal-dual methods for
network optimization with application to real-time optimal power flow. In 2020 American
Control Conference (ACC), pages 3140–3147, 2020.

35 / 35

	Resources
	Background
	RL as defined in the cloud
	Challenge: unrealistic expectations

	What Control Can Offer
	Control theory in 2020
	Adaptive control theory in 1990

	Optimal Control and RL
	Example: climb up a hill
	Example: heating and ventilation in a Florida office building
	How to approximate Q?

	Where to go from here?
	References

