
Feedback Systems and Reinforcement Learning

Sean Meyn

August 26, 2020

2 pre-draft manuscript for Simons RL bootcamp August 26, 2020

Welcome to the Simons Institute RL Bootcamp!

This draft manuscript was conceived in March 2020. During the spring semester I was giving my
stochastic control course, for which the final weeks always focus on topics in RL. Throughout
the semester I was thinking ahead to the Simons RL crash course, and a similar one I was
supposed to present in Berlin before a pandemic altered my travel plans. A publisher living far
away contacted me in May to see if I had any plans for a book: “...someone mentioned that you
were scheduled to deliver lectures on reinforcement learning...” The idea of a book came up,
and I decided this must be destiny. You can learn more about my motivation and goals in the
introduction.

This draft manuscript is a product of handouts I’ve prepared over more than a decade, bits
and pieces of papers and book chapters prepared over an even longer period, and the longest
time ever confined to home without travel.

There were two themes in particular that I felt a need to spell out:

(i) There is an apparent paradox in Q-learning, considering the long history of convex analytic
approaches to dynamic programming, as we will discuss in September lectures. In contrast,
there is nothing convex about the Q-learning algorithms used today. Some would object
that the least-squares techniques, and DQN are based on convex optimization (subject to
linear function approximation). However, the root finding problems they seek to solve are
highly non-linear and not well understood. The paradox was addressed in [142], through
a convex re-formulation of Q-learning. This summer I set to work to make this more
accessible, and show how the ideas are related to standard algorithms in RL.

(ii) Since I was a graduate student, I have enjoyed the idea of ODE methods for algorithm
design—probably first inspired by the ODE method (a phrased coined by Ljung [134, 171])
in applications to adaptive control. We now know that ODE methods have amazing power
in the design of optimization algorithms [193, 224, 181], and they offer enormous insight
for algorithm design in general.

The book chapter [70] and thesis [67] make this case in the context of RL, with much
of the theory built upon the Newton-Raphson flow. This exotic ODE is universally stable,
and provides a new tool for algorithm design.

Much of this theory seems to be highly technical. In particular, [70, 67] assume significant
background in the theory of stochastic processes, mainly as a vehicle to explain the theory of
stochastic approximation: the engine behind the ODE method.

I wrote this book to lift the veil: many aspects of RL can be understood by a student with
only a good grasp of calculus and matrix theory. In particular, there is nothing inherently
stochastic about stochastic approximation, provided you are willing to work with sinusoids or
other deterministic probing signals instead of stochastic processes.

This is my third book, and like the others the writing came with discoveries. While working
on theme (i), my colleague Prashant Mehta and I found that Convex Q-Learning could be made
much more practical by borrowing batch RL concepts that are currently popular. This led
to the new work [143]—you will find text and equations from this paper scattered throughout
Chapters 3 and 5.

Chapter 4 on ODE methods and quasi-stochastic approximation was to be built primarily
on [24, 25]. Over the summer all of this material was generalized to create a complete theory
of convergence and convergence rates for these algorithms, along with a better understanding

Feedback Systems and Reinforcement Learning Draft copy August 26, 2020 3

of their application to both gradient free optimization and policy gradient techniques for RL.
The chapter is currently incomplete because a manuscript is in preparation—to be uploaded to
arXiv in September.

A quote from [66] came to mind while thinking about this preface: “...little more than a
grab-bag of techniques which have been successfully applied to special situations and are therefore
worth trying in sufficiently closely related settings”. The authors were referring to the theory of
Large Deviations: a highly applicable, but highly abstract branch of mathematics. The same
statement applies to the field of reinforcement learning, and control theory, and perhaps any
successful engineering sub-discipline.

We need a big “grab-bag” because one technique cannot possible solve every control problem
in fields ranging from healthcare to supply chains to autonomous vehicles. We need theory for
understanding, but we also need reassurance that tricks from the grab-bag have been successfully
applied in at least a few special situations. For this reason, any book on reinforcement learning
will have its own biases and eccentricities, reflecting on those of the discipline and the author.

I hope this book will be a bit less eccentric when it is finished in 2021!

Sean Meyn — August 26, 2020

Prerequisites for the control-RL crash course on September 3rd:
Please watch at least hour-one of Richard Murray’s crash course on control:
Feedback Control Theory: Architectures and Tools for Real-Time Decision Making
https://simons.berkeley.edu/talks/murray-control-1

https://simons.berkeley.edu/talks/murray-control-1

Contents

Preface 1

1 Introduction 9

1.1 What You Can Find in Here . 9

1.2 What’s Missing? . 12

1.3 Words of Thanks . 13

1.4 Resources . 13

I Fundamentals Without Noise 15

2 Control Crash Course 17

2.1 You Have a Control Problem . 17

2.2 What To Do About It? . 18

2.3 State Space Models . 19

2.4 Stability and Performance . 24

2.5 A Glance Ahead: From Control Theory to RL . 36

2.6 How Can We Ignore Noise? . 39

2.7 Examples . 39

2.8 Exercises . 50

2.9 Notes . 53

3 Optimal Control 55

3.1 Value Function for Total Cost . 55

3.2 Bellman Equation . 56

3.3 Variations . 63

3.4 Inverse Dynamic Programming . 66

3.5 Bellman Equation is a Linear Program . 68

3.6 Linear Quadratic Regulator . 70

3.7 A Second Glance Ahead . 72

3.8 Examples . 73

3.9 Exercises . 74

3.10 Notes . 75

5

6 pre-draft manuscript for Simons RL bootcamp August 26, 2020

4 ODE Methods for Algorithm Design 77

4.1 Ordinary Differential Equations . 77

4.2 A Brief Return to Reality . 79

4.3 Newton-Raphson Flow . 80

4.4 Optimization . 82

4.5 Quasi-Stochastic Approximation . 86

4.6 Gradient-Free Optimization . 99

4.7 Quasi Policy Gradient Algorithms . 103

4.8 Stability of ODEs* . 107

4.9 Convergence theory for QSA* . 113

4.10 Exercises . 120

4.11 Notes . 120

5 Value Function Approximations 123

5.1 Function Approximation Architectures . 124

5.2 Exploration and ODE Approximations . 132

5.3 TD-learning and SARSA . 133

5.4 Projected Dynamic Programming and TD Algorithms 137

5.5 Convex Q-learning . 144

5.6 Safety Constraints . 153

5.7 Examples . 153

5.8 Exercises . 154

5.9 Notes . 154

II Stochastic State Space Models 155

6 Markov Chains 157

6.1 Markov Models are State Space Models . 158

6.2 Simple Examples . 159

6.3 Spectra and Ergodicity . 162

6.4 Poisson’s Equation . 165

6.5 Lyapunov functions . 165

6.6 Simulation: Confidence Bounds & Control Variates 168

6.7 Exercises . 169

7 Markov Decision Processes 177

7.1 Total Cost and Every Other Criterion . 178

7.2 Computational Aspects of MDPs . 180

7.3 Relative DP Equatons . 187

7.4 Inverse Dynamic Programming . 188

7.5 Exercises . 189

7.6 Notes . 192

Feedback Systems and Reinforcement Learning Draft copy August 26, 2020 7

8 Examples 193

8.1 Fluid Models for Policy Approximation . 193

8.2 LQG . 194

8.3 Queues . 194

8.4 Speed scaling . 194

8.5 Contention for resources and instability . 198

8.6 A Queueing Game . 200

8.7 Controlling Rover with Partial Information . 201

8.8 Bandits . 203

8.9 Wall Street . 204

8.10 Exercises . 205

8.11 Notes . 206

III Reinforcement Learning and Stochastic Control 207

9 Stochastic Approximation 209

9.1 Themes . 210

9.2 Stability and Convergence . 216

9.3 Rates of Convergence . 217

9.4 Optimal Rate of Convergence . 220

9.5 Exercises . 224

9.6 Notes . 224

10 Temporal Difference Methods 227

10.1 Function Approximation and Smoothing . 228

10.2 Loss Functions . 229

10.3 Approximate Policy Iteration . 230

10.4 TD(λ) Learning . 231

10.5 SARSA . 234

10.6 Average Cost . 237

10.7 Exercises . 238

10.8 Notes . 238

11 Approximating the Q-Function 239

11.1 Goals and Basic Algorithms . 239

11.2 Variance Matters . 246

11.3 Convex Q-Learning . 249

11.4 Exercises . 251

11.5 Notes . 251

Appendices 253

A Probability Background 255

A.1 Events and Sample Space . 255

A.2 Strong Markov Property . 257

A.3 Martingales and the Law of Large Numbers . 258

8 pre-draft manuscript for Simons RL bootcamp August 26, 2020

B Markov Models 263
B.1 Equilibrium equations . 263
B.2 Communication . 265
B.3 Criteria for stability . 267
B.4 Ergodic theorems and coupling . 271
B.5 Perron-Frobenious Techniques . 281

C Partial Observations and Belief States 289
C.1 POMDP Model . 289
C.2 State estimation . 290
C.3 A fully observed MDP . 291
C.4 Belief state dynamics . 293

D Optimal Control in Continuous Time 297

List of Figures 301

References 303

Index 317

Glossary of Symbols 322

Chapter 1

Introduction

To define reinforcement learning (RL) it is first necessary to define automatic control. Examples
in your every day life may include the cruise control in your car, the thermostat in your air-
conditioning, refrigerator and water heater, and the decision making rules in a modern clothes
drier. There are sensors that gather data, a computer to take the data to understand the state
of the “world” (is the car traveling at the right speed? Are the towels still damp?), and based
on these measurements an algorithm powered by the computer spits out commands to adjust
whatever needs to be adjusted: throttle, fan speed, heating coil current, or ... More exciting
examples include space rockets, artificial organs, and microscopic robots to perform surgery.

The dream of RL is automatic control that is truly automatic: without any knowledge of
physics or biology or medicine, an RL algorithm tunes itself to become a super controller: the
smoothest ride into space, and the most expert micro-surgeon!

The dream is surely beyond reach in most applications, but recent success stories have
inspired industry, scientists, and a new generation of students. DeepMind’s AlphaGo set the
world on fire following the defeat of European Go champion Fan Hui in 2015. On the news
soon after was the astonishing sequel AlphaZero, which learns to play Chess and Go by “self
play” without any help from experts [95, 184]. This is now considered old news, with new
breakthroughs coming seemingly monthly [176].1

1.1 What You Can Find in Here

Reinforcement learning today has two foundations of equal importance:

1. Optimal control: the two most famous RL algorithms, TD- and Q-learning, are all about
approximating the value function that is at the heart of optimal control.

2. Statistics and information theory (especially the topic of exploration, as in bandit theory
— think of the annoying ads on YouTube, which are an example of Google’s exploration:
“will Diana click???”) [175, 131]. Exploration in RL is a rapidly evolving field—it will
surely generate many new books in the years to come.

The big focus of the book is the first foundation, emphasizing the geometry of optimal control,
and why it should not be difficult to create reliable algorithms for learning. We will not ignore

1Dear generous colleague who is reading this intro: Given that I am writing this draft text in July 2020, I
know that most of this essay will be tossed 12 months from now, when I send the finished book to the publishers!

9

10 pre-draft manuscript for Simons RL bootcamp August 26, 2020

the second foundation: motivation and successful heuristics will be explained without diving
deeply into the theory. The reader will learn enough to begin experimenting with homemade
computer code, and have a big library of options for algorithm design; before completing half
of the book, I hope that a student will have a good understanding of why these algorithms are
expected to be useful, and why they sometimes fail.

This is only possible through mastery of several fundamentals:

(i) The philosophical foundations of control design

(ii) The theory of optimal control

(iii) ODEs: stability and convergence. The ODE method: translation to algorithm.

(iv) Basics of machine learning (ML): function approximation & optimization theory.

Any reader who knows the author will wonder why the list is so short! The following topics are
seen as fundamental in RL theory, and are fundamental to much of the author’s research:

(i) Stochastic processes and Markov chains

(ii) Markov decision theory

(iii) Stochastic approximation and convergence of algorithms

Yes, we will get to all of this after Part 1. However, I want to make it clear that there is no
need for probability theory to understand many of the important concepts in RL.

The first half of the book contains RL theory and design techniques without any probability
pre-requisites. This means that we pretend that the world is purely deterministic until we see
the word “Markov” in the second half of the book. Justification comes in part from the control
foundations covered in Chapters 2 and 3. Do you think we modeled the probability of hitting a
seagull when we designed a control system to go to the moon? The models used in traditional
control design are often absurdly simple, but good enough to get insight on how to control a
rocket or a pancreas.

Beyond this, once you understand RL techniques in this simplified setting, it does not take
much work to extend the ideas to more complex settings.

Among the highlights of part 1 of the book are
• Batch RL methods and convex Q-learning. One of the founders of AlphaGo admits that

extension of these techniques is not trivial: “This approach won’t work in more ill-structured
problems like natural-language understanding or robotics, where the state space is more complex
and there isn’t a clear objective function” [95].

There is no question that in applications to controlling building systems, the energy grid,
robotic surgery, or autonomous vehicles, we need to think carefully about more structured
learning and control architectures, designed so that we have a reliable outcome (hopefully with
some guarantees on performance as well as the probability of disaster). The basic RL engine
of AlphaZero is Deep Q-Learning (DQN) [155, 153, 152]; a “batch” Q-learning method that is
easily explained, and offers great flexibility to allow the inclusion of “insights from experts”.
Completely new in this book are convex-analytic approaches to RL that have performance
guarantees not possible with DQN.
• ODE design. The ODE (ordinary differential equation) method has been a workhorse for

algorithm analysis since the introduction of the stochastic approximation technique of Robbins
and Monro in the early 1950s [171]. In this book we flip the narrative, and start off in the
continuous time domain. There is tremendous motivation for this point of view:

Feedback Systems and Reinforcement Learning Draft copy August 26, 2020 11

(i) We will see that an ODE is so much simpler to describe and analyze than the discrete-time
noisy algorithm that is eventually implemented.

(ii) Remarkable discoveries in the optimization literature reinforce the value of this approach:
first design an ODE with desirable properties, and then find a numerical analyst to imple-
ment this on a computer [181]. It is now known that the famous acceleration techniques
of Polyak and Nesterov can be interpreted in this way.

(iii) Zap Q-learning will be one of many algorithms described in the book. It is a particular
ODE design based on the Newton-Raphson flow introduced in the economics literature,
and first analyzed by Smale in the 1970s [186]. The Zap ODE is universally stable and
consistent, and hence when translated with care, provides new techniques for RL design
[49, 71, 70, 67]. The power of Zap design is illustrated in Fig. 1.1 (created for a lecture at
the 2018 Simons RTDM program)

0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

Figure 1.1: Maximum Bellman error {Bn : n ≥ 0} for various Q-learning algorithms.

• Quasi-stochastic approximation. The theory of “stochastic approximation” amounts to
justifying a discrete time algorithm based on an ODE approximation. An understanding of the
general theory requires substantial mathematical background.

The reader will be introduced to stochastic approximation, without any need to know the
meaning of “stochastic”. This is made possible by substituting mixtures of sinusoids for ran-
domness, which is justified by an emerging science [133, 6, 30, 29, 52, 24, 25]. Not only is
this more accessible, but the performance in application to policy gradient methods in RL is
remarkable. Shown below is a figure copied from Chapter 4, comparing exploration using sinu-
soids vs. traditional random “i.i.d.” exploration. The histograms were created based on 1000
independent experiments. The traditional approach labeled “K-W” requires additional training
of many orders of magnitude when compared to QSA.

-1.2
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

-1.2
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

θ θ-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.5
0

20

40

60

80

0

20

40

60

80

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.5

QSA K-W

Histogram
Gaussian approximation

N
um

be
r o

f o
bs

er
va

tio
ns

 in
 i

th
 b

in
Pa

ra
m

et
er

 e
st

im
at

e

Pa
ra

m
et

er
 e

st
im

at
es

N
um

be
r o

f o
bs

er
va

tio
ns

 in
 i

th
 b

in

E[Jθ(X)]

0 1 2 3 4 50 1 2 3 4 5 ×103n×103n

Typical trajectory

θ∗θ∗
Θn Sample trajectoriesΘn

12 pre-draft manuscript for Simons RL bootcamp August 26, 2020

Figure: Error analysis for two policy-gradient algorithms for Mountain Car, using QSA and traditional

randomized exploration.2

1.2 What’s Missing?

The focus of the book is on control fundamentals that are most relevant to reinforcement learning,
and a large collection of tools for RL algorithm design based on these fundamentals.

Important topics that will receive less attention:

(i) Exploration. This is a hot topic for research right now [131, 175, 164]. I feel this field
is too big, and the state of the art is not at all mature (though I might be proven wrong
before December! I look forward to learning more). An exception is within the area of
bandit theory: we will survey the basics of bandits, which motivates much of the modern
exploration theory for RL.

(ii) Machine learning topics. The book will explain the meaning of neural networks and
kernels, but ask the reader to go elsewhere for details.

Sample complexity theory will be covered only briefly. Dear colleauges and participants
at the 2020 Simons Institute RL program: There is no question that sample complexity
theory is the bedrock of classical learning theory, and the theory of bandits. However,
I personally believe that its value in RL is limited: bounds are typically loose, and to-
date they offer little insight for algorithm design. For example, I don’t see how today’s
finite-n bounds will help DeepMind create better algorithms for Go or Chess. I welcome
counter-examples to my perception.

I also believe that the value of asymptotic statistics is under-appreciated. The best way
to make this point is through images. Fig. 1.2 is taken from [73] (many similar plots can
be found in the thesis of A. Devraj [67]).

The histograms show estimation error for a single parameter (one of many) using a
particular implementation of tabular Q-learning. The integer N refers to the run-length
of the algorithm, and the histograms were obtained from 1,000 independent experiments.
The “theoretical density” is what you can obtain from asymptotic statistics theory for
stochastic approximation. This density is easily estimated based on limited data. In
particular, in this experiment, it is clear after N = 104 samples that we have a very good
variance estimate. This can then be used to obtain approximate confidence bounds after
we run to N = 107 (we know how far we have to run once we have a variance estimate).

-2000 -1000 0 1000 2000

10 -3

-1000 0 1000 -1000 0 1000 -1000 0 1000
0

0.5

1

1.5

N = 104N = 103 N = 105 N = 106

Theoretical density Empirical densityData

N
or

m
al

iz
ed

 e
rr

or

Figure 1.2: Comparison of Q-learning and Relative Q-learning algorithms for the stochastic shortest path problem
of [71]. The relative Q-learning algorithm is unaffected by large discounting.

Asymptotic theory is developed for QSA at the close of Chapter 4. Something like finite-
n bounds are also developed, but tight bounds are not possible for complex algorithms, even

2I hope to upload a paper to arXiv in September.

Feedback Systems and Reinforcement Learning Draft copy August 26, 2020 13

though the asymptotic theory is straightforward. The more traditional variance theory for
SA—explaining the histograms in Fig. 1.2—is a focus of Chapter 9.

Variance theory for SA is used to decide run-lengths. It is also used for algorithm design:
for example, adjust variables in an algorithm so that the asymptotic variance is minimized
(Zap stochastic approximation is just one example). Returning to my audience at the
Simons program: outside of the bandits literature, I am not aware of work in the sample
complexity literature that can offer similar value for algorithm design in reinforcement
learning.

1.3 Words of Thanks

1.4 Resources

14 pre-draft manuscript for Simons RL bootcamp August 26, 2020

Part I

Fundamentals Without Noise

15

Chapter 2

Control Crash Course

A single chapter can hardly do justice to the amazing universe of control theory and practice.
The textbook [9] gives a very accessible introduction to the philosophy and practice of control,
and is also full of history. I was fortunate to be at the Simons Institute at Berkeley, California,
when one of the authors presented a two-part survey of ideas in the book.3 These lectures are
a great starting point if you are new to control systems, and will inspire many old-timers.

2.1 You Have a Control Problem

You surely have encountered control problems in your daily life. If you know how to drive, then
you know what it is like to be part of a control system:

y The observations (also called the “output”) refers to the data you process in order to
effectively maneuver the car through traffic: this includes your view of the streets and
lights, and the sounds of angry drivers pleading with you to speed up.

u You apply inputs to the system: steering wheel, brakes and gas pedal are continuously
adjusted based on your observations.

φ This symbol will be used to denote an algorithm that takes in the observations y and
produces the response u. This mapping from y to u is known as a policy or feedback law
(the Greek letter is pronounced “fee”).

ff You are not simply reacting to horns and lights and the lines on the road. You started
off with a plan: get to the farmers market by 9am, while avoiding the traffic downtown
due to the demonstration. This planning is an example of feedforward control. Planning
is based on forecasts, so inevitably plans will change as you gather information en-route:
traffic updates, or an invitation from a close friend to park your car and join the protest.

The feedforward component is typically defined with attention to a reference signal denoted
r. The primary control objective is the tracking problem: construct a policy so that some object
of interest z(k) is approximately equal to r(k) for all k ≥ 0 (in control courses, it is often assumed
that z = y).

The yelling and bumps on the road are collectively known as disturbances. Along with the
reference signal, partial measurements of disturbances and their forecasts are taken into account

3https://simons.berkeley.edu/talks/murray-control-1

17

https://simons.berkeley.edu/talks/murray-control-1

18

in both the feedforward and feedback components of the control system. The final input is often
defined as the sum of two components:

u(k) = uff(k) + ufb(k) (2.1)

where in the shopping problem, uff quantifies the results of planning before heading to the
market (perhaps with updates every 20 minutes), and ufb is the second-by-second operation of
the automobile.

The dream of RL is to mimic and surpass the skill in which humans create an internal
algorithm φ, and use it to skillfully navigate through complex and unpredictable environments.

Fig. 2.1 shows a block diagram typically used in model-based control design, and illustrates
a few common design choices: there is a state to be estimated using an observer, with state
estimates denoted x̂. The block denoted trajectory generation generates two signals: the
feedforward component of the control, and also a reference xref that an internal state should
track (the state is associated with the physical process). It is designed so that x(k) = xref(k)
for all k implies that the tracking problem is solved, and the solution is efficient. The state
feedback is designed to achieve this ideal.

There is a larger “world state” labeled environment for which partial measurements are
available, and forecasts of future events. Forecasts are of course important in the planning
process that is part of trajectory generation.

Design of the three grey blocks is based on models of the process, the sensor noise n, distur-
bances (such as the “input disturbance” d indicated in the figure), and a model of the environ-
ment. The “∆-feedback loop” is a standard way to quantify model uncertainty associated with
the process to be controlled.

Trajectory
Generation State

Feedback Process

ObserverEnvironment

ΣΣΣΣ
yue

nd

xref ufb

uff

−+

x̂

More feedback

r
∆

n

Figure 2.1: Control systems contain purely reactive feedback, as well as planning that is regularly updated. This
represents two layers of feedback, differentiated in part by speed of response to new data.

2.2 What To Do About It?

The vast literature on control solutions is built upon a model of input-output behavior that
is used to design the policy φ. Modeling and control design are each an art-form, with many
possible solutions from vast statistics and control tool chests.

When we say model, we mean a sequence of mappings from inputs to outputs:

y(k) = Gk(u(0), u(1), u(2), . . . , u(k)) , k ≥ 0 (2.2)

Each of the functions Gk may also depend on exogenous variables (outside of our control), such
as the weather and traffic conditions. And here we come to one of the most vital principles of

19

control design: the model must capture essential properties of the system to be controlled, and
simultaneously simple enough to be useful.

For example, aerospace engineers will create absurdly simple models for the design of flight
control systems, and from this create a policy φ designed to work well for the model. Of course,
they do not stop there! The next step is to create an entirely new model for validation, and
simulate under a range of scenarios in order to answer a range of questions: what happens when
the plane is full, empty, or flying through a thunderstorm? How does the control system perform
after an engine detaches from a wing? If one of these tests fails, then the control engineer goes
back to either improve the model, improve the policy, or improve the airplane. That’s right: we
may find that additional sensors to measure pitch angles, or more powerful motors to control
ailerons, flaps or elevators.

Again, I am writing without any knowledge of aerospace engineering! I am describing general
principles for anyone interested in control design:

1. Create a model for control.

2. Design the policy φ based on the model

3. Simulate based on a high-fidelity model, and then revisit steps 1 and 2.

The success of this approach has been tremendous, as can be seen in the history recounted in
[9].

The LTI model The most successful class of absurdly simple models are linear and time
invariant, LTI systems. To keep the discussion simple, assume that the input u(k) and output
y(k) are scalar real numbers. The general scalar LTI system is defined by a sequence of scalars
{bi} (the impulse response), and for a given input sequence u, the model defines y(k) as the
sum

y(k) =

k∑

i=0

biu(k − i) , k ≥ 0 (2.3)

This is in fact too complex in many situations. In particular, where do we find the infinite number
of scalars {bi}? A more tractable sub-class of LTI models are auto-regressive moving-average
(ARMA):

y(k) = −
N∑

i=1

aiy(k − i) +

M∑

i=0

biu(k − i) , k ≥ 0 (2.4)

with scalar coefficients {ai, bi}, N ≥ 1 and M ≥ 0.

A linear input-output model motivates the design of a policy φ that has a similar linear form.
A common design technique based on optimization will be described in the following chapters.

2.3 State Space Models

2.3.1 Sufficient statistic and the nonlinear state space model

In statistics, the term sufficient statistic is used to denote a quantity that summarizes all past
observations. The state serves an analogous role in control theory.

20

A state space model requires the following ingredients: the state space X on which the state
x evolves, an input space (or action space) denoted U on which the input u evolves. We may
have additional constraints coupling the state and the input, which is modeled via

u(k) ∈ U(x) , when x(k) = x ∈ X (2.5)

with U(x) ⊆ U for each x. We might also want to model an observation process y evolving on
a set Y. In the control theory literature it is common to assume that X, U, and Y are subsets
of Euclidean space, while in operations research and reinforcement learning theory it is more
common to assume these are finite sets. Whenever possible, in this book we prefer the control
perspective so that we can more easily search for structure of control solutions: for example, is
an optimal input a continuous function of the state?

Next we require two functions F: X × U → X and G: X × U → Y that define the state
equations:

x(k + 1) = F(x(k), u(k)), x(0) = x0 (2.6a)

y(k) = G(x(k), u(k)) (2.6b)

An LTI model can often be transformed into a state space model in which the two functions
F,G are linear in (x, u).

We might also allow F,G to depend upon the time variable k. It is argued in Section 3.3 that
it is often more convenient to simply assume that the state x(k) includes k as one component.

However, there is one example of a time-dependent model that highlights the role of state as
a sufficient statistic: The general input-output model (2.2) always has a state space description,
in which the state is the full history of inputs:

x(k + 1) = [u(0), u(1), u(2), . . . , u(k)]ᵀ (2.7)

We have x(k+1) = Fk(x(k), u(k)), defined by concatenation; also, y(k) = Gk(x(k), u(k)), where
Gk is defined in (2.2). For this deterministic model in which the the input fully determines the
output, (2.7) is called the (full) history state since it captures all observations up to time k. A
practical state space model can be regarded as a compression of the complete observations.

In many cases we can construct a good policy via state feedback, u(k) = φ(x(k)), for some
φ : Rn → R, but the power of this approach is fully realized only if we are flexible in our definition
of the state. We won’t be using the full history state because of complexity; what’s more, the
“full history” may not be nearly rich enough!

2.3.2 State augmentation and learning

Tracking and disturbance rejection are two of the basic goals in control design. Here we pro-
vide a brief glimpse of two tricks used to simultaneously track the reference r while rejecting
disturbances:

(i) The definition of state is not sacred: invent a state process that simplifies control design

(ii) Unknown quantities, including disturbances and even the state space model, can be
learned based on input-output measurements.

21

For simplicity, suppose that the input and output are scalar valued, and X = Rn. The
state evolution is also influenced by a scalar disturbance d that is outside of our control, which
requires a modification of (2.6a):

x(k + 1) = F(x(k), u(k), d(k)) (2.8)

The ultimate goal is to achieve these three objectives simultaneously:

(a) Tracking : with e(k) = r(k)− y(k),

lim sup
k→∞

|e(k)| = e∞ , with e∞ = 0, or very small (2.9)

(b) Disturbance rejection: The error e∞ is not highly sensitive to the disturbance d.

(c) Tuned transient response (you probably know what kind of acceleration “feels right” when
driving a car).

A common special case is when the reference and disturbance are assumed independent of
time (e.g., driving at constant speed with a steady headwind). In this special case, suppose
in addition that the disturbance is known. We might choose u(k) = φ(x(k), r(0), d(0)), where
the policy φ is designed for success: e∞ = 0. Typically, φ is designed so that the state is also
convergent: x(k)→ x(∞) as k →∞. The limiting values must satisfy

x(∞) = F(x(∞), u(∞), d(0))

u(∞) = φ(x(∞), r(0), d(0))

The outcome e∞ = 0 is expressed as the final constraint:

r(0) = y(∞) = G(x(∞), u(∞))

This approach is thus dependent on an accurate model, as well as direct measurements of d.
Suppose that instead of exact measurements of the disturbance, we have a state space model

for (r,d):

z(k + 1) = Fm(z(k)) (2.10a)

ym(k) = Gm(z(k)) (2.10b)

with ym(k) = (r(k), d(k))ᵀ, and z evolves on Rp for some integer p. The functions Fm : Rp → Rp
and G: Rp → R are assumed known.

Given the larger state space model (2.8, 2.10), we might opt for an observer based solution:

u(k) = φ(x(k), r(k), d̂(k))

where {d̂(k)} are estimates of the disturbance, based on input-output measurements up to
time k (we might even replace x(k) with x̂(k)—sometimes we don’t directly observe the state).
Observer design makes up about 20% of a typical introductory course on state space control
systems [1, 43].

A second option, called the Internal Model Principle, is to create a different state augmen-
tation that is entirely observed. For the sake of illustration, consider again the case of constant

22

reference/disturbance. We have (2.10) in this case with z(k) = ym(k), and Fm is the identity
function:

z(k + 1) = z(k)

The state augmentation is performed based on this model: define for each k,

za(k + 1) = za(k) + e(k + 1) , (2.11)

with error e defined above (2.9). We regard (x(k), za(k)) as the state for the purposes of control,
and hence state feedback takes the form

u(k) = φ(x(k), za(k)) (2.12)

The control design (2.12) is an example of integral control, since za is the sum of errors (the
discrete-time analog of integration).

Suppose that za(k) converges to some finite limit za(∞), as k →∞; the value of the limit is
irrelevant. This and eq. (2.11) imply perfect tracking:

lim
k→∞

e(k + 1) = lim
k→∞

[za(k + 1)− za(k)] = 0.

This conclusion is remarkable: we only require a very weak form of stability of (2.12) in order
to obtain perfect tracking. The secret to success is a hidden element of “learning” that comes
with integral control.

State augmentation has many other dimensions. If we have forecasts of significant distur-
bances, then it may be wise to make use of this data: forecasts can be used in the design of
the feedforward component uff(k) in the decomposition (2.1), or they may be used for state
augmentation. Much more on these topics can be found in [9].

2.3.3 Linear state space model

When F and G are linear we obtain the linear state space model:

x(k + 1) = Fx(k) +Gu(k), x(0) = x0 (2.13a)

y(k) = Hx(k) + Eu(k) (2.13b)

where (F,G,H,E) are matrices of suitable dimension (in particular, F is n × n for an n-
dimensional state space).

The state space model is not unique, in the sense that there are many choices for (F,G,H,E)
that result in the same input-output behavior, even though the definition of the state process x
will change depending on the model. And never forgot: we may add additional components to
x(k) as a means to solve a control problem.

Linear state feedback The linear model (2.13) is often constructed so that the goal is to
keep x(k) near the origin—the regulation problem; consider for example flight control, where we
wish to maintain velocity and altitude at some constant values. We first normalize the problem
so that these constant values are zero. It is then common to apply a linear control law:

u(k) = −Kx(k) (2.14)

23

where K is called the gain matrix. To evaluate choice of gain, we tack-on something like a
reference signal:

u(k) = −Kx(k) + v(k)

The closed loop behavior with new “input v” has a similar state space description:

x(k + 1) = (A−BK)x(k) +Bv(k), x(0) = x0 (2.15a)

y(k) = (C −DK)x(k) +Dv(k) (2.15b)

The signal v(k) appearing in (2.15a) is viewed as an “input disturbance”. In the regulation
problem, the goal is to investigate its impact on control performance.

Realization theory The ARMA model (2.4) admits an infinite number of distinct state space
descriptions). Let’s begin with the scalar auto-regressive model:

y(k) = −
N∑

i=1

aiy(k − i) + u(k) , k ≥ 0

which is (2.4), with M = 0 and b0 = 1. We obtain the state space model (2.13) with n = N by
choosing x(k) = (y(k), . . . , y(k −N + 1))ᵀ, and

A =




−a1 −a2 −a3 · · · · · · −aN
1 0 0 · · · · · · 0
0 1 0 · · · · · · 0
0 0 1 · · · · · · 0
...

. . .
...

0 0 0 · · · 1 0




B =




1
0
0
0
...
0




(2.16)

C = [1 , 0 , 0 , · · · , 0], and D = 0.
This construction can be generalized: with M = N in (2.4), we first define an intermediate

process

z(k) = −
N∑

i=1

aiz(k − i) + u(k) , k ≥ 0

So that we arrive at a state space model with state space x(k) = (z(k), . . . , z(k − N + 1))ᵀ to
describe the evolution of z. We next use the assumption that M = N : setting u(k) = z(k) = 0
for k < 0, it is possible to show that

y(k) =

N∑

i=0

biz(k − i) = Cx(k) +Du(k)

where

C = [b0 , b1 , · · · , bN−1] , D = bN (2.17)

The state space description (2.16,2.17) is known as controllable canonical form. There are many
other “canonical forms”, with special properties you can learn about in a linear systems course
[17, 125, 1, 43, 9].

24

2.3.4 A nod to Newton and Leibnitz

In many engineering applications it is best to start off in continuous time, with thanks to
Newton and Leibnitz for bringing us calculus. It is convenient to suppress time dependency for
the continuous time models. For example, provided there is no risk of ambiguity, we write u
instead of ut, and its derivative with respect to time is then denoted d

dtu.

The state space model in continuous time has the form

d
dtx = f(x, u) (2.18)

where x is the state evolving in Rn, and u the input evolving in Rm. The motion of a typical
solution to a nonlinear state space model in R2 is illustrated in Fig. 2.2.

d
dtx = f(x, u)

xt

x0

f(xt, ut)

Figure 2.2: Trajectory of a nonlinear state space model in two dimensions: at any time t, the velocity d
dt
xt is a

function of the current state xt and input ut.

When the function f appearing in (2.18) is linear, then we obtain the linear state space model
in continuous time. As in (2.13), this is accompanied by an observation process y evolving on
Rp:

d
dtx = Ax+Bu (2.19a)

y = Cx+Du, (2.19b)

and A,B,C,D are matrices of appropriate dimensions.

The geometry illustrated in Fig. 2.2 (that vector f(xt, ut) is tangent to the state trajectory)
is surprisingly valuable in gaining intuition in control design. An example of application is
Lyapunov theory and optimal control, where theory is more attractive in the continuous rather
than discrete time domain

However, in the end we have to sample time to apply our control and learning algorithms.
In this book we will opt for an Euler approximation. For sampling interval ∆, the discrete time
approximation of (2.18) is of the form (2.6a), with F(x, u) = x+ ∆f(x, u). For the linear model
(2.19a) this leads to F = I + ∆A.

2.4 Stability and Performance

In this section we consider the state space model (2.6a) in closed loop: a policy φ is chosen, so
that u(k) = φ(x(k)) for each k. Since the feedback law is fixed, the state then evolves as a state
space model without control. With just a slight abuse of notation we write

x(k + 1) = F(x(k)) , k ≥ 0 (2.20)

25

Our interest is in the long-run behavior of the state process; in particular, does it converge to
an equilibrium? We also seek bounds on a particular performance metric called the total cost.

The following is assumed throughout:

The state space X is equal to Rn, or a closed subset (2.21)

For example we allow the positive orthant, X = Rn+. The restriction on the state space (2.21) is
imposed so that any closed and bounded set S ⊂ X is necessarily a compact subset of X.

The definition of an equilibrium xe is straightforward—it is a state at which the system is
frozen:

xe = F(xe) (2.22)

The equilibrium will in fact be a part of the control design. Think of the cruise control in your
car, in which “equilibrium” means traveling in a straight line at constant speed. The particular
speed is something that you as the driver will choose. The control system then does the best it
can to keep x(k) near the desired xe.

The performance metric is based on a function c : X→ R+, interpreted as the “cost function
under policy φ”, to be considered in greater depth in Chapter 3. Now we arrive at a strange
but ubiquitous definition: the total cost is a function of x, known as the value function. It is
defined as the infinite sum,

J(x) =
∞∑

k=0

c(x(k)) , x(0) = x ∈ X (2.23)

It is assumed that c(xe) = 0, and we will seek conditions ensuring that x(k) → xe as k → ∞,
so there is some hope that J is finite valued. For the cruise control problem, the cost function
is designed so that c(x) is large if the state x corresponds to a speed that is far from desired.

Why is the controls community so excited about total cost? This metric for performance is
not very intuitive, but there are compelling reasons for using it as a metric for control design:

(i) This performance metric is “forward looking”. One might argue it is looking too far
foward (who cares about infinity), but there is implicit “discounting” of the future since
for a good policy we have c(x(k))→ 0 quickly as k →∞.

(ii) Theory for total cost optimal control is often closely related to average cost optimal
control—to be seen in Part 2 of the book.

(iii) If J is finite valued, then stability is typically guaranteed.

Benefit (iii) is the most abstract, but the most valuable aspect of this performance metric.
Section 2.4.1 is dedicated to stability theory and its relationship to value functions. A part

of this theory is based on the “fixed policy” dynamic programming equation:

J(x) = c(x) + J(F(x)) (2.24)

This can be derived from the definition (2.23), written as

J(x) = c(x) +

∞∑

k=0

c(x+(k))

where x+ is the solution to (2.20), starting at x+(0) = F(x).

26

2.4.1 Stability of equilibria

We first survey the three most common definitions of stability for a nonlinear state space model.
The first and most basic is essentially a notion of continuity near the equilibrium xe. Let X (k;x0)
denote the state at time k with initial condition x0: this is simply x(k), obtained recursively from
(2.20), starting at x(0) = x0. In particular, X (k;xe) = xe for all k since xe is an equilibrium.

Definition 2.1. Stable in the sense of Lyapunov

The equilibrium xe is stable in the sense of Lyapunov if for all ε > 0, there exists δ > 0 such
that if ‖x0 − xe‖ < δ, then

‖X (k;x0)−X (k;xe)‖ < ε for all k ≥ 0.

In words, if an initial condition is close to the equilibrium, then it will stay close forever. An
illustration is provided in Fig. 2.3, with

Br(x
e) = {x ∈ Rn : ‖x− xe‖ < r} , r > 0

Rn

xex0

x(k) = X (k; x0)

B(ε) B(δ)

Figure 2.3: If x0 ∈ B(δ), then
X (k;x0) ∈ B(ε) for all k ≥ 0.

This is a very weak notion of stability, since there is
no guarantee that the state will ever approach a desired
equilibrium. The next definitions impose convergence:

Definition 2.2. Asymptotic Stability

An equilibrium xe is said to be asymptotically stable if xe

is stable in the sense of Lyapunov and for some δ0 > 0,
whenever ‖x0 − xe‖ < δ0,

lim
k→∞

X (k;x0) = xe. (2.25)

The set of x0 for which the above limit holds is called the
region of attraction for xe.

The equilibrium is globally asymptotically stable if the
region of attraction is all of X: that is, δ0 =∞, and hence
x(k)→ xe from any initial condition.

It is common to say that the state space model is globally asymptotically stable. That is,
stress that this is a property of the system (2.20) rather than the equilibrium.

2.4.2 Lyapunov functions

The construction of a Lyapunov function V is the most common approach to establishing asymp-
totic stability, as well as bounds on a value function (and more general bounds on the state
process). In broad generality, V is a function on X taking non-negative values, and the crucial
property that makes it a Lyapunov function is that V (x(k)) is decreasing when x(k) is large:
this is formalized as a drift inequality. The Lyapunov function V is often regarded as a crude
notion of “distance” to the “center of the state space”.

27

V (x) V (x)

xx

V is inf-compact V is coercive

Figure 2.4: The function on the left
is inf-compact (in this example, it is
bounded on R), and the function on the
right is coercive.

For any scalar r, let SV (r) denote the sublevel set :

SV (r) = {x ∈ X : V (x) ≤ r} (2.26)

In addition to non-negativity of V , we frequently as-
sume that for each r, the set SV (r) takes on one of
three forms: the empty set, SV (r) = X, or SV (r) ⊂ X
is bounded. Under this assumption, the function V is
called inf-compact.

In most cases we find that SV (r) = X is impossible,
so that we arrive at the stronger coercive assumption:

lim
‖x‖→∞

V (x) =∞ (2.27)

In this case, under our standing assumption (2.21), the closure of SV (r) is either empty or
compact for each r.

Fig. 2.4 illustrates the two classes of functions with X = R. Two numerical examples:

(i) V (x) = x2 is coercive since (2.27) holds.

(ii) V (x) = x2/(1 + x2) is inf-compact but not coercive: SV (r) = R for r ≥ 1, and SV (r) =
[−a, a] (a bounded interval) for 0 ≤ r < 1, with a =

√
r/(1− r).

(iii) V (x) = ex is neither, since SV (r) = (−∞, log(r)], r > 0, is not a bounded subset of R.

The value function J satisfies the intuitive properties of a Lyapunov function under mild
conditions:

Lemma 2.1. Suppose that the cost function c and the value function J defined in (2.23) are
non-negative, and finite valued. Then,

(i) J(x(k)) is non-increasing, and lim
k→∞

J(x(k)) = 0 for each initial condition.

(ii) Suppose in addition that J is continuous, inf-compact, and vanishes only at xe. Then,
for each initial condition,

lim
k→∞

x(k) = xe

The proof is postponed to the end of the section, but we note here the first steps: the
dynamic programming equation (2.24) implies that

J(x(k + 1)) = J(F(x(k))) = J(x(k))− c(x(k)) ≤ J(x(k)) , k ≥ 0 (2.28)

That is, J(x(k)) is non-increasing, so that x(k) ∈ SJ(r) for each k ≥ 0, with r = J(x(0)). The
inf-compact assumption then implies that the state trajectory is “bottled-up” in the bounded
set SJ(r).

In the context of total-cost optimal control, the basic drift inequality considered in this book
is Poisson’s inequality : for non-negative functions V, c : X→ R+, and a constant η ≥ 0,

V (F(x)) ≤ V (x)− c(x) + η (2.29)

28

The reference to a great French mathematician is explained in the notes. Poisson’s inequality is
a relaxation of the dynamic programming equation (2.24) through the introduction of η, as well
as the inequality.

The inequality (2.29) is defined with attention to the dynamics (2.20), which together imply
the family of bounds (similar to (2.28)):

V (x(k + 1)) ≤ V (x(k))− c(x(k)) + η , k ≥ 0

If η = 0, it follows that the sequence {V (x(k) : k ≥ 0} is non-increasing. Under mild assumptions
on V , we obtain a weak form of stability:

Proposition 2.2. Suppose that (2.29) holds with η = 0. Suppose moreover that V is continu-
ous, inf-compact, and with a unique minimum at xe. Then the equilibrium is stable in the sense
of Lyapunov.

Proof. From the definition of the sublevel sets we obtain

⋂
{SV (r) : r > V (xe)} = SV (r)

∣∣∣
r=V (xe)

= {xe}

The final equality follows from the assumption that xe is the unique minimizer of V . The inf-
compact assumption then implies the following inner and outer approximations: for each ε > 0,
we can find r > V (xe) and δ < ε such that4

{x ∈ X : ‖x− xe‖ < δ} ⊂ SV (r) ⊂ {x ∈ X : ‖x− xe‖ < ε}

If ‖x0 − xe‖ < δ, then x0 ∈ SV (r), and hence x(k) ∈ SV (r) for all k ≥ 0 since V (x(k)) is
non-increasing. The final inclusion above then implies that ‖x(k)− xe‖ < ε for all k. Stability
in the sense of Lyapunov follows. ut

Bounds on the value function J are obtained by iteration: for example, the two bounds

V (x(2)) ≤ V (x(1))− c(x(1)) + η , V (x(1)) ≤ V (x(0))− c(x(0))

imply that V (x(2)) ≤ V (x(0))− c(x(0))− c(x(1)) + 2η. We can of course go further:

Proposition 2.3. (Comparison Theorem) Poisson’s inequality (2.29) implies the follow-
ing:

(i) For each N ≥ 1 and x = x(0),

V (x(N)) +

N−1∑

k=0

c(x(k)) ≤ V (x) +Nη (2.30)

(ii) If η = 0, then J(x) ≤ V (x) for all x.

(iii) Suppose that η = 0, and that V , c are continuous. Suppose moreover that c is inf-
compact, and vanishes only at xe. Then, the equilibrium is globally asymptotically stable.

ut
4This conclusion requires a bit of topology: the characterization of compact sets in terms of “open coverings”.

If this is new to you, don’t worry! In the future you might want to take a first year mathematical analysis course.

29

The proof is found below.
Prop. 2.3 raises a question: what if the Poisson’s inequality is tight, so that the inequality

in (2.29) is replaced by equality? Consider this ideal with η = 0, and use the more suggestive
notation V = J◦ for the Lyapunov function:

J◦(F(x)) = J◦(x)− c(x) (2.31)

If J◦ is non-negative valued, then we can take V = J◦ in Prop. 2.3 to obtain the upper bound
J(x) ≤ J◦(x) for all x. Equality requires further assumptions:

Proposition 2.4. Suppose that (2.31) holds, along with the following assumptions:

(i) J is continuous, inf-compact, and vanishes only at xe.

(ii) J◦ is continuous.

Then, J(x) = J◦(x)− J◦(xe) for each x.

To establish this result we first require the lemma:

Proof of Lemma 2.1. Similar to Prop. 2.3, we iterate (2.24) to obtain for each x = x(0) and
each N ,

J(x) = J(x(N)) +

N−1∑

k=0

c(x(k))

On taking limits we obtain

J(x) = lim
N→∞

{
J(x(N)) +

N−1∑

k=0

c(x(k))
}

=
{

lim
N→∞

J(x(N))
}

+ J(x)

which implies (i) under the assumption that J(x) is finite.
As noted after the lemma, the inf-compact assumption in (ii) is imposed to ensure that the

state trajectory evolves in a bounded set. Equation (2.28) implies that x(k) ∈ SJ(r) for the
particular value r = J(x(0)), and each k ≥ 0. Suppose that {x(ki) : i ≥ 0} is a convergent
subsequence of the state trajectory, with limit x∞. Then, by continuity of J ,

J(x∞) = lim
i→∞

J(x(ki)) = 0

The assumption that J vanishes only at xe implies that x∞ = xe. Part (ii) follows, since every
convergent subsequence reaches the same value xe. ut

Proof of Prop. 2.3. The bound (2.30) is established following the discussion preceding the propo-
sition. In particular, (2.29) implies

V (x(k + 1))− V (x(k)) + c(x(k)) ≤ η (2.32)

Summing each side from k = 0 to N − 1 gives (i):

V (x(N))− V (x(0)) +

N−1∑

k=0

c(x(k)) ≤ ηN

30

Part (ii) follows since V (x(N)) ≥ 0 for each N , so that when η = 0 we obtain from the preceding
bound,

N−1∑

k=0

c(x(k)) ≤ V (x(0))

The proof of (iii) is identical to Lemma 2.1: part (ii) implies that limk→∞ c(x(k)) = 0, and
the assumptions on c then imply that x(k)→ xe as k →∞.

It remains to show that xe is stable in the sense of Lypapunov. To see this, first observe
that with η = 0, the bound (2.29) implies that V ≥ c, so that V is also inf-compact. The bound
(2.29), and conditions on c, η, also imply that V (x(k)) is strictly decreasing when x(k) 6= xe.
Continuity of V implies that V (x(k)) ↓ V (xe) for each x(0), so that V (xe) < V (x(0)) for all
x(0) ∈ X. Stability in the sense of Lypapunov then follows from Prop. 2.2. ut

Proof of Prop. 2.4. The proof begins with iteration, as in Prop. 2.3:

J◦(x(N)) +
N−1∑

k=0

c(x(k)) = J◦(x)

Lemma 2.1 (ii) and continuity of J◦ implies that J◦(x(N))→ J◦(xe) as N →∞, so that

J◦(xe) + J(x) = J◦(x)

ut

x

V (x(t))

x(t)

f(x)

Rn

Figure 2.5: If V is a Lyapunov function, then V (xt) is non-increasing with time.

2.4.3 Geometry in continuous time

Let’s briefly consider an analog of (2.20) in continuous time, with state evolving on X = Rn:

d
dtxt = f(xt) (2.33)

31

where f : Rd → Rd is called the vector field. the use of subscripts is to help distinguish from
models in discrete time. It is common to suppress the time index, writing instead d

dtx = f(x)

We let X (t;x0) denote the solution to (2.33) at time t, when we need to emphasize depen-
dency on the initial condition x0 = x0. The definition of asymptotic stability of an equilibrium
xe is the same as Def. 2.1 for the state space model in discrete time, (2.20). The equilibrium is
globally asymptotically stable if in addition,

lim
t→∞
X (t;x0) = xe , for all x0 ∈ X

Verification of global asymptotic stability invites the following assumptions for a Lyapunov
function, generalizing the theory in discrete time:

(i) V is non-negative valued, differentiable, and its derivative ∇V is continuous.

(ii) It is inf-compact (recall the definition below (2.26)).

(iii) For any solution x, whenever xt 6= xe,

d
dtV (xt) < 0. (2.34)

Naturally, d
dtV (xt) = 0 if xt = xe since in this case V (xt+s) = V (xe) for all s ≥ 0.

Fig. 2.5 illustrates the meaning of the vector field f for the special case X = R2, and the figure
is intended to emphasize the fact that V (xt) is non-increasing when V is a Lyapunov function.
The drift condition (iii) can be expressed in functional form,

〈∇V (x), f(x)〉 < 0, x 6= xe. (2.35)

This is illustrated geometrically in Fig. 2.6.

x= x∗ x(t)

∇V (x)

SV (r)

〈∇V (x), f(x)〉 < 0,

f(x)

> 90◦

x

Figure 2.6: Geometric interpretations of a Lyapunov drift condition: the gradient ∇V (x) is orthogonal to the
level set {y : V (y) = V (x)}, which is the boundary of the set SV (r) shown, with r = V (x) for the value of x
shown.

Proposition 2.5. If a Lyapunov function exists (satisfying (i)–(iii) above), then the equilib-
rium xe is globally asymptotically stable. ut

Prop. 2.5 is a partial extension of Prop. 2.3 to the continuous time model. A full extension
requires a version of Poisson’s inequality. Suppose that c : Rn → R+ is continuous, V : Rn → R+

is continuously differentiable, and η ≥ 0 is a constant, jointly satisfying

〈∇V (x), f(x)〉 ≤ −c(x) + η, x ∈ X (2.36)

32

An application of the chain rule implies that this is a continuous time version of Poisson’s
inequality (2.29):

d
dtV (xt) ≤ −c(xt) + η , t ≥ 0.

And with a bit more work, the following conclusion:

Proposition 2.6. If (2.36) holds for non-negative c, V, η, then for

V (xT) +

∫ T

0
c(xt) dt ≤ V (x) + Tη, x0 = x ∈ X , T > 0

If η = 0 then the total cost is finite:
∫ ∞

0
c(xt) dt ≤ V (x), x0 = x ∈ X. (2.37)

Proof. For any T > 0, we obtain by the fundamental theorem of calculus,

−V (x0) ≤ V (xT)− V (x0) =

∫ T

0

(
d
dtV (xt)

)
dt

≤ Tη −
∫ T

0
c(xt), T ≥ 0.

If η = 0, then the bound (2.37) follows on letting T →∞. ut

Converse Theorems We have seen this implication:

Existence of Lyapunov function =⇒ Stability and/or performance bound

where the nature of stability depends on the nature of the Lyapunov function bound. What
about a converse? That is, if the system is stable, can we infer that a Lyapunov function exists?

Assume moreover that the total cost is finite:

J(x) =

∫ ∞

0
c(xt) dt, x0 = x

with arbitrary initial condition. If J is differentiable, then we obtain a solution to (2.34) using
V = J :

Proposition 2.7. If J is finite valued, then for each initial condition x0 and each t,

d
dtJ(xt) = −c(xt) (2.38)

If J is continuously differentiable, the Lyapunov bound (2.34) follows:

∇J(x) · f(x) = −c(x)

Proof. We have a simple version of Bellman’s principle: for any T > 0,

J(x0) =

∫ T

0
c(xr) dr + J(xT)

33

For t ≥ 0, δ > 0 given, apply this equation with T = t+ δ and T = t:

J(x0) =

∫ t+δ

0
c(xr) dr + J(xt+δ)

J(x0) =

∫ t

0
c(xr) dr + J(xt)

On subtracting, and then dividing by δ, this gives

0 =
1

δ

∫ t+δ

t
c(xr) dr +

1

δ

(
J(xt+δ)− J(xt)

)

Letting δ ↓ 0, the left hand side converges to c(xt) because c : Rn → R is continuous, and
the right hand side converges to the derivative of J(xt) with respect to time, which establishes
(2.38). The final conclusion follows from the chain rule. ut

2.4.4 Linear state space models

If the dynamics in (2.20) are linear, with x(k) ∈ X = Rn, then

x(k + 1) = Fx(k) , k ≥ 0 (2.39)

for an n× n matrix F . Iterating this gives

x(k) = F kx , k ≥ 0 , x(0) = x

Suppose that the cost is also quadratic, c(x) = xᵀDx for a symmetric and positive definite
matrix D. It follows that c(x(k)) is a quadratic function of x(0) for each k:

c(x(k)) = (F kx)ᵀDF kx

Hence the value function J defined in (2.23) is also quadratic:

J(x) = xᵀ
[∞∑

k=0

(F k)ᵀDF k
]
x , x(0) = x ∈ X

That is, J(x) = xᵀMx, where M is the matrix within the brackets. It satisfies a linear fixed
point equation reminiscent of the dynamic programming equation:

M = D + F ᵀMF (2.40)

This equation is known as the (discrete-time) Lyapunov equation. It admits a solution if all of
the eigenvalues of F satisfy |λ(F)| < 1. .

The continuous time setting is similar. Consider the linear ODE

d
dtx = Ax (2.41)

whose solution is the matrix exponential:

xt = eAtx(0) , eAt =

∞∑

m=0

1

m!
tmAm (2.42)

34

Consequently, xt → 0 as t → ∞ from each initial condition if and only if A is Hurwitz : each
eigenvalue of A has strictly negative real part.

The solution to (2.38) is obtained with a quadratic J(x) = xᵀM cx, where the matrix M c

can be found through a bit of linear algebra and calculus. The value function is non-negative,
so we may assume M c is positive semi-definite (hence in particular, symmetric: M c = M cᵀ).
Symmetry implies,

d
dtJ(xt) = 2xᵀtM

cAxt = xᵀt [M
cA+AᵀM c]xt

and from (2.38) this gives

xᵀt [M
cA+AᵀM c]xt = −c(xt) = −xᵀtDxt

This must hold for each t and each x(0), giving the Lyapunov equation in continuous time:

M cA+AᵀM c +D (2.43)

Example: Euler approximation for the LTI model We consider the linear model in
continuous time (2.41). If we sample at regular intervals, with sampling interval ∆, then we
obtain a model of the form (2.39), with F equal to the matrix exponential e∆A:

x(∆(k + 1)) = Fx(∆k)

An Euler approximation of (2.41) is obtained through the approximation F = I+∆A, which
can be regarded as the approximation of e∆A: keeping only the first two terms in the Taylor
series (2.42). The state x(k) in (2.39) is only approximation of the solution to the ODE (2.41)
at time t = ∆k with this chose of F .

A particular two dimensional example is A =
(−0.2, 1
−1, −0.2

)
. The matrix is Hurwitz, with two

eigenvalues λ(A) ≈ −0.15± j. With sampling interval ∆ = 0.02, we find that F = I + ∆A also
has two eigenvalues:

λ(F) = 1 + ∆λ(A) ≈ 0.997± 0.02j ,

The eigenvalues satisfy |λ(F)| < 1, so we see that stability of the discrete-time approximation
is inherited from the continuous-time model.

The Matlab command M = dlyap(F,eye(2)) returns a solution to the Lyapunov equation
(2.40) with D = I (the identity matrix):

M =

[
178.04 8.767
8.767 180.49

]

The fact that F has complex eigenvalues implies that the state process will exhibit rotational
motion. A sample paths of x is shown on the left hand side of Fig. 2.7. The trajectory spirals
towards the origin, and is intuitively “stable”. The plot on the right is a simulation of the linear
model subject to a “white noise” disturbance:

X(k + 1) = FX(k) +N(k + 1), k ≥ 0 (2.44)

35

x1 x1

x2 x2
x(k) (k)X

Figure 2.7: At left is a sample path of the deterministic linear model (2.39). At right is a sample path from the
linear model with disturbance, (2.44).

Example: frictionless pendulum The frictionless pendulum illustrated on the left hand
side of Fig. 2.8 is a favorite example in physics and undergraduate control courses. In is based
on several simplifying assumptions:

- There is no friction or air resistance

- The rod on which the bob swings is rigid, and without mass

- The bob has mass, but zero volume

- Motion occurs only in two dimensions

- The gravitational field is uniform

- “F = MA” (apply classical mechanics, subject to the foregoing)

A nonlinear state space model is obtained in which x1 is the angular position θ, and x2 its
derivative:

d
dtx = f(x) =

[
x2

− g
L sin(x1)

]
. (2.45)

Shown on the right hand side of Fig. 2.8 are sample trajectories of xt, and two equilibria.

−π π
0

x1 = θ

x2 = θ̇

m

θ

L

xe = 0
0 stable

xe = π
0 unstable

θ̈ = − g

L
sin(θ)

Figure 2.8: Frictionless pendulum: stable and unstable equilibria for the state space model.

An inspection of state trajectories shown on the right hand side of Fig. 2.8 reveals that
the equilibrium xe = (π0) is not stable in any sense, which agrees with physical intuition (the
pendulum is sitting upright in this case). Trajectories which begin near the equilibrium xe = 0
will remain near this equilibrium thereafter.

In fact, the origin is stable in the sense of Lyapunov. To see this, consider a Lyapunov
function defined as the sum of potential and kinetic energy:

V (x) = PE + KE = mgL[1− cos(x1)] + 1
2mL

2x2
2

36

The first term is potential energy relative to the equilibrium height, and the second is the
classical “KE = 1

2mv
2” formula for kinetic energy. It is not surprising that V is minimized at

xe = 0.
We have ∇V (x) = mL2[(g/L) sin(x1) , x2]ᵀ, and

∇V (x) · f(x) = mL2{(g/L) sin(x1) · x2 − x2 · (g/L) sin(x1) = 0

This means that d
dtV (xt) = 0, and hence V (xt) does not depend on time. For example, the

periodic orbit shown in Fig. 2.8 evolves in a level set of V :

g

L
[1− cos(x1(t))] + 1

2x2(t)2 = const.

From this it is not difficult to show that the origin is stable in the sense of Lyapunov.
Linearization: Using the first-order Taylor series approximation sin(θ) ≈ θ, the state space

equation for the pendulum can be approximated by the LTI model (2.41): d
dtx = Ax, with

A =

[
0 1
−g/L 0

]
. (2.46)

The eigenvalues of A are obtained on solving the quadratic equation

0 = det(Iλ−A) = det
([λ −1
g/L λ

])
= λ2 + g/L =⇒ λ = ±

√
g/L j

The matrix is not Hurwitz, since Re (λ(A)) = 0 for each of the two eigenvalues. Hence the
linear approximation, or linearization, cannot predict that the equilibrium is stable in the sense
of Lyapunov, but the complex eigenvalues are consistent with the periodic behavior of the
pendulum.

2.5 A Glance Ahead: From Control Theory to RL

Here is a definition from Wikipedia, as seen on July 2020: Reinforcement learning (RL) is
an area of machine learning concerned with how software agents ought to take actions in an
environment in order to maximize the notion of cumulative reward. Here is a translation of
some of the key terms:

N Machine learning (ML) refers to prediction based on sampled data.

N Take actions ≡ feedback. That is, the choice of u(k) for each k based on observations.

N Software agent ≡ policy φ. This is where the machine learning comes in: the creation
of φ is based on a large amount of training data collected in “the environment”.

N Cumulative reward ≡ negative of the sum of cost, such as (2.23), but with the inclusion
of the input:

Cumulative reward = −
∑

k

c(x(k), u(x(k)))

An emphasis in the academic community is truly model-free RL, and most of the theory builds
on the optimal control concepts reviewed in the next chapter. Some of the main ideas can be
exposed right here.

What follows is background on how RL algorithms are currently formulated. Think hard
about alternatives — remember, the field remains young!

37

2.5.1 Actors and critics

The actor-critic algorithm of reinforcement learning is specifically designed within the context
of stochastic control, so this is a topic for part 2 of the book. The origins of the terms are worth
explaining here. We are given a parameterized family of policies {φϑ : ϑ ∈ Rd}, which play the
role of actors. For each ϑ we (or our “software agents”) can observe the state process x (or
perhaps only an observation process y), under the policy u(k) = φϑ(x(k)). The ideal critic then
computes exactly the associated value function Jϑ, but in realistic situations we have only an
estimate.

Since in this book we are minimizing cost rather than maximizing reward, the output of an
actor-critic algorithm is the minimum

ϑ? = min
ϑ
〈µ, Jϑ〉 (2.47)

where µ ≥ 0 serves as a state weighting. For a discrete state space this is a sum

〈µ, Jϑ〉 =
∑

i

Jϑ(xi)µ(xi)

where µ(xi) is relatively large for “important states”. Methods to solve the optimization problem
(2.47) are explored in Section 4.6, using an approach known as gradient free optimization. These
algorithms are intended to approximate the true gradient descent algorithms of optimization
surveyed in Section 4.4.

This is an example of ML: optimizing a complex objective function over a large function class
for the purposes of prediction or classification (in this case we are predicting the best policy).
A very short introduction to ML can be found in Section 5.1.

2.5.2 Temporal differences

Where do we find a critic? That is, how can we estimate a value function without a model? One
answer lies in the sample path representation of the fixed policy Bellman equation, previously
announced in (2.28). For any ϑ we have

Jϑ(x(k)) = c(x(k), u(k)) + Jϑ(x(k + 1)) , k ≥ 0 , u(k) = φϑ(x(k))

We might seek an approximation Ĵ for which this identity is well approximated. This motivates
the temporal difference (TD) sequence commonly used in RL algorithms:

Dk+1(Ĵ) :=−Ĵ(x(k)) + Ĵ(x(k + 1)) + c(x(k), u(k)) , k ≥ 0 , u(k) = φϑ(x(k)) (2.48)

After collecting N observations, we obtain the mean-square loss:

Eε(Ĵ) =
1

N

N−1∑

k=0

[
Dk+1(Ĵ)

]2
(2.49)

We are then faced with another machine learning problem: minimize this objective function
over all Ĵ in a given class (for example, this is where neural networks frequently play a star

38

role). It is often easy to solve because Dk+1(Ĵ) depends linearly on its argument: for any two
approximations, and any scalars a, b,

Dk+1(aĴ1 + bĴ2) = aDk+1(Ĵ1) + bDk+1(Ĵ2)

It follows that Eε(Ĵ) is a quadratic “functional” (a function whose domain is a set of functions).
It seems we are all done! If we can make (2.49) nearly zero, then we have a good estimate of

a value function. Beyond its application to actor-critic methods, there are TD- and Q-learning
techniques, designed to minimize (2.49) or a surrogate, that are part of a bigger RL toolbox.

Unfortunately, you have to drop the optimism: we are not done.

2.5.3 Bandits and exploration

Suppose that our policy is pretty good. Maybe not optimal in any sense, but x(k) → xe,
u(k) → ue rapidly as k → ∞, where the limit is a desirable state-input pair (say, (xe, ue)
minimizes the one-step cost c(x, u)). We typically then have continuity:

lim
k→∞

[
−Ĵ(x(k + 1)) + Ĵ(x(k))− c(x(k), u(k))

]
= −Ĵ(xe) + Ĵ(xe)− c(xe, ue) = c(xe, ue) (2.50)

It follows that we aren’t observing very much via the temporal difference (2.48). If N is very
large then Eε(Ĵ) ≈ c(xe, ue)2. This essentially destroys any hope for a reliable estimate of the
value function. Expressed another way: a good policy does not lead to sufficient exploration of
the state space.

There are many ways to introduce exploration. We can for example adapt our criterion as
follows: denote by Eε(Ĵ ;x) the mean-square loss obtained with x(0) = x. Rather than take
a very long run, perform many shorter runs, from many (M > 1) initial conditions. The loss
function to be minimized is the average

L(Ĵ) =
1

M

M∑

i=1

Eε(Ĵ ;xi) (2.51)

The most efficient way to choose the samples {xi} is a topic of research. It is a question similar
to how to choose µ in (2.47).

Another approach is to let the input do the exploring. The policy is modified slightly through
the introduction of “noise”:

u(k) = φ̃(x(k),ξ(k))

For example, {ξ(k)} might be a scalar signal, defined as a mixture of sinusoids. The noisy policy
is defined so that

(i) φ̃(x(k),ξ(k)) ≈ φϑ(x(k)) for “most k”

(ii) The state process “explores”. In particular, the policy is design to avoid convergence of
(x(k), u(k)) to any limiting value.

This is a crude approach, since by changing the input process, the associated value function also
changes. More sensible approaches are contained in Chapters 4 and 5: Q-learning and “off policy
SARSA” might be designed around an exploratory policy like this one, but these algorithms are
carefully designed to avoid bias from exploration.

39

The best way to explore is a topic of research, and is mature only within a very special
setting: multi-armed bandits. The term “bandit” refers to slot machines: you put money in the
machine, pull an arm, and hope that more money pops out. A more rational application is in
the advertisement industry, in which an “arm” is an advertisement (which costs money), and
the advertiser hopes money will pop out as the ads encourage sales. There is a great history
of heuristics and science to create successful algorithms to maximize profit, based only on noisy
observations of the performance of candidate ads ([131] is a great reference on the theory of
bandits). It is here that the “exploration/exploitation” tradeoff is most clearly seen: you have
to accept some loss of revenue through exploration in order to learn the best strategy, and then
“exploit” as you gain confidence in your estimates.

The situation is much more complex in control applications: imagine that for each state
x(k), there is a multi-armed bandit. “Pulling arm a” at time k means choosing u(k) = a ∈ U.
Concepts from bandit theory have lead to heuristics to best balance the exploration/exploitation
tradeoffs arising in RL [175]. This is an exciting direction for future research.

2.6 How Can We Ignore Noise?

If you have never heard the term “random variable”, then you can skip this section without
concern.

work in progress

2.7 Examples

What follows are toy examples which will be useful for applying the methods to be developed
over the course of this book. The models are presented in continuous time because of the
elegance of calculus and classical mechanics.

Go
al

3,747 m
Elevation

Figure 2.9: Mountain Car

2.7.1 Mountain Car

The goal is to drive a car with a very weak engine to the very top of a very high mountain.

A simple example is illustrated in Fig. 2.9, in which the two dimensional state space is
position and velocity:

xt = (zt, vt)
ᵀ ∈ X = [zmin, zgoal]× [−v, v]

Where zmin is a lower limit for the position zt, and the target state is zgoal. The velocity vt is
bounded in magnitude by v > 0. The input u is the throttle position (which is negative when

40

the car is in reverse). Within the RL literature, this example was introduced in the dissertation
[156], and has since become a favorite basic example [185, 194].

What makes this problem interesting is that the engine is so weak, that it is impossible to
reach the hill directly from some initial conditions. In particular, it may seem sensible to hit
the throttle, and head towards the goal at maximum speed. In some cases, the car will stall
before reaching the goal. A successful policy will sometimes put the car in reverse, and travel
at maximal speed away from the goal to reach a higher elevation to the left. Several cycles back
and forth may be required to reach the goal.

mgmg cos(θ)

θ

ku

mg sin(θ)

Figure 2.10: Two forces on
the Mountain Car

A continuous-time model can be constructed based on the
two forces on the car, illustrated in Fig. 2.10. To obtain a simple
model, we need to be careful with our notion of distance: zgoal−zt
denotes the path distance along the road to the goal, which is not
the same as the distance along the x-axis in Fig. 2.9. Subject to
this convention, Newton’s law gives

ma = m
d2

dt2
z = −mg sin(θ) + ku

With state x = (z, v)ᵀ, we arrive at the two dimensional state
space model,

d
dtx1 = x2

d
dtx2 =

k

m
u− g sin(θ(x1))

(2.52)

where θ(x1) is the road grade at z = x1.

An examination of the potential energy U tells us from which states we can reach the goal
without control (setting u = 0 in (2.52)). The potential energy is proportional to elevation, and
it can be computed by integrating the negative of force, −F (z). For the control-free model we
have −F (z) = g sin(θ(z)), and hence

U(z) = U(zmin) +

∫ z

zmin

g sin(θ(z)) dz (2.53)

UPotential energy (z

z

)
F (z) = −g sin(θ(z))

F (z) = −g sin(θ(z)) + k/m

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

Figure 2.11: Potential energy for
Mountain Car.

The version of this model adopted in [194, Ch. 10]
uses these numerical values:

k/m = 10−3 , g = 2.5× 10−3 , θ(z) = π + 3z

In this case (2.53) gives U(z) = U(zmin) + 1
3g sin(3z).

Fig. 2.11 shows the potential energy as a function of z
on the interval [zmin, zgoal]. It has a unique maximum at
zgoal, which implies that it is necessary to apply external
force to reach the goal for any initial condition satisfying
z(0) < zgoal and v(0) ≤ 0.

Is the goal reachable? We again examine potential
energy. Consider the force as a function of z with u(k) =
1 for all k. We obtain −F (z) = g sin(θ(z))− kz/m, and

the resulting potential energy as a function of z is transformed as shown in Fig. 2.11. We now

41

have U(zmin) > zgoal, so from z(0) = zmin we will reach the goal with this open-loop control
law.

This state space model leaves much out of the navigation problem—namely, wind, traffic,
and pot-holes. Also missing from (2.52) are hard constraints on position and velocity assumed
at the start. A discrete time model is adopted in [194, Ch. 10] of the form (2.6a): using the
notation x(k) = (z(k), v(k))ᵀ,

z(k + 1) = [[z(k) + v(k)]]1 (2.54a)

v(k + 1) = [[v(k) + 10−3u(k)− 2.5× 10−3 cos(3z(k))]]2 (2.54b)

which corresponds to θ(z) = π+ 3z. The brackets denote projection of the values of z(k+ 1) to
the interval [zmin, zgoal], and v(k + 1) to the interval [−v, v]. In numerical experiments, we take

zmin = −1.2, zgoal = 0.5, and v = 7× 10−2. (2.54c)

The state space is also trimmed, so that v = 0 whenever z = zgoal (the car is parked once it
reaches its target).

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

z(0) = −1.2

z(0) = −0.6−
z(0) = 0.4El

ev
at

io
n

k0 20 40 60 80 100 120
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
Goal

Po
si

tio
n:

z
(k

)

Figure 2.12: Position as a function of time for Moun-
tain Car, from three different initial conditions, using the
policy (2.55).

Here is an aggressive policy that will
get you to the top: whatever direction
you are going, accelerate in that direc-
tion at maximum rate (provided this is
feasible):

u(k) =





sign(v(k)) zgoal < z(k) < zgoal

0 z(k) = zgoal

1 z(k) = zmin

(2.55)
On considering the evolution of the ve-
locity state (2.54b), you can see this is
not a great policy: imagine what hap-
pens when z(0) = zmin and v(0) = −v. It will take many time steps k for the velocity v(k) to
become positive.

Fig. 2.12 shows results using this policy, from three different initial conditions. The plot
starting from z(0) = 0.4 tells an unfortunate story: the car moves toward the undesirable
“Western hill” with maximal acceleration, and on arrival to the limit zmin = −1.2 (just before
k = 40), the velocity is at its minimum v(k) = −v. The plot shows that the position remains
at zmin for over 20 time steps, since it takes that much time for the velocity to become positive.
Better policies will be investigated in Section 4.7, designed to slow down in advance to avoid
this delay.

2.7.2 MagBall

The magnetically suspended metal ball illustrated in Fig. 2.13 will be used to illustrate several of
the important modeling concepts. In particular, how to transform a set of nonlinear differential
equations into a state space model, and how to approximate this by a linear state space model of
the form (2.19). Further details from a control systems perspective may be found in the lecture
notes [17].

42

u(t)

y(t)
Reference height r

Figure 2.13: Magnetically Suspended Ball

The input u is the current applied to an electro-magnet, and the output y is the distance
between the center of the ball and some reference height. Since positive and negative inputs are
indistinguishable at the output of this system, it follows that this cannot be a linear system.
The upward force due to the current input is approximately proportional to u2/y2, and hence
from Newton’s law for translational motion we have

ma = m d2

dt2
y = mg − cu

2

y2
,

where g is the gravitational constant and c is some constant depending on the physical properties
of the magnet and ball.

Control design goal : maintain the distance to the magnet at some reference value r. As a
first step, we obtain a state space model.

This input-output model can be converted to state space form to obtain something similar
to the controllable canonical form description of the ARMA model in (2.16,2.17): using x1 = y
and x2 = d

dty,

d
dtx1 = x2,

d
dtx2 = g − c

m

u2

x2
1

where the latter equation follows from the formula d
dtx2 = d2

dt2
y. This pair of equations defines

a two-dimensional state space model of the form (2.18):

d
dtx1 = x2 = f1(x1, x2, u) (2.56a)

d
dtx2 = g − c

m

u2

x2
1

= f2(x1, x2, u) (2.56b)

It is nonlinear, since f2 is a nonlinear function of x, and also the state space is constrained:
X = {x ∈ R2 : x1 ≥ 0}.

Suppose that a fixed current ue, say positive, is applied, and that the state xe is an equilib-
rium:

f(xe, ue) = 0.

From the definition of f1 in (2.56a) we must have xe2 = 0, and setting f2(xe, ue) equal to zero in
(2.56b) gives

xe1 =

√
c

mg
ue (2.57)

43

The negative solution is ignored, since x1 is restricted to be positive.
If we are very successful with our control design, and xt = r for all t, then we must have

ut = ue(r) , t ≥ 0

with ue(r) = r
√
mg/c: the solution to (2.57) with xe = r. Of course, we don’t expect that this

“open loop” approach will be successful! If we are realistically successful, so that xt ≈ r for all
t (perhaps after a transient), then we should expect that ut ≈ ue(r) as well. The design of a
feedback law to achieve this goal is often obtained through an approximate linear model, called
a linearization.

Linearization about an equilibrium state The linearization is defined exactly as in the
frictionless pendulum (2.45). Assume that the signals x1(t), x2(t) and ut remain close to the
fixed point (xe1, x

e
2, u

e), and write

x1(t) = xe1 + δx1(t)

x2(t) = xe2 + δx2(t)

u(t) = ue + δu(t),

where δx1(t), δx2(t), and δut are small-amplitude signals. From the state equations (2.56) we
then have

d
dtδx1 = xe2 + δx2(t) = δx2(t)
d
dtδx2 = f2(xe1 + δx1, x

e
2 + δx2, u

e + δu)

Applying a first-order Taylor series expansion to the right hand side of the second equation
above gives

d
dtδx2 = f2(xe1, x

e
2, u

e) +
∂f2
∂x1

∣∣∣
(xe1,x

e
2,u

e)
δx1 +

∂f2
∂x2

∣∣∣
(xe1,x

e
2,u

e)
δx2

+
∂f2
∂u

∣∣∣
(xe1,x

e
2,u

e)
δu+ d

The final term d represents the error in the Taylor series approximation. After computing partial
derivatives we obtain the formulae

d
dtδx1 = δx2.

d
dtδx2 = 2

c

m

ue2

(xe1)3
δx1 −

2c

m

ue

(xe1)2
δu+ d

On denoting

α = 2
c

m

ue2

(xe1)3
, β = −2

c

m

ue

(xe1)2
.

we obtain a linear state space model with disturbance:

d
dtδx =

[
0 1
α 0

]
δx+

[
0
β

]
δu+

[
0
1

]
d

δy = δx1 ,

(2.58)

44

There is a hidden approximation in (2.58), since d is in fact a nonlinear function of (x, u).
In control design this approximation is taken one step further by setting d ≡ 0, to obtain the
linear model (2.19). This may not be a useful model for simulations, but often leads to effective
control solutions.

2.7.3 CartPole

The next example has a long history within the control systems literature [150, 190, 8], and
was introduced to the RL literature in early research of Barto and Sutton [15]. It is today a
popular test example on openai.com. A history from the perspective of control education can
be found in [227], which provides the dynamic equations with state x = (z, ż, θ, θ̇), where z is
the horizontal position of the cart, and the angle θ is as shown in Fig. 2.14.

m

θ

M F

mg

(force)

z (position)

Figure 2.14: CartPole

The goal in this example is regulation: keep θ = 0 while
the cart is moving at some desired speed, or some desired
fixed position. The aforementioned references describe several
successful strategies to swing the pendulum up to a desired
position without excessive energy. A normalized model used
in [227] is given by

d
dtz = d

dtx1 = x2

d
dtx2 = u

d
dtθ = d

dtx3 = x4

d
dtx4 = sin(x3)− u cos(x3)

(2.59)

The state equations are easily linearized near the equilib-
rium ue = 0 and xe = (ze, 0, 0, 0)ᵀ for any ze: using the first or-
der Taylor series approximations sin(x3) ≈ x3 and cos(x3) ≈ 1,

we obtain as in the derivation of (2.58)

d
dtδx1 = δx2

d
dtδx2 = u
d
dtδx3 = δx4

d
dtδx4 = δx3 − u+ d

(2.60)

Ignoring the “disturbance” (error term) d, the ODE (2.60) is a version of the state space
model (2.19) with

A =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 1 0


 , B =




0
1
0
−1




The matrix A is not Hurwitz, with eigenvalues at ±1 and repeated eigenvalues at 0. This was
anticipated at the start: it is unlikely that the pendulum will remain upright with a constant
“open loop” input, ut ≡ 0.

The linear model is of great value for insight, and designing a linear feedback law to keep
the system near the equilibrium:

δu = −Kδx

openai.com

45

Methods to obtain the 4× 1 matrix K through optimal control techniques will be investigated
later in the book, but there are far better sources to learn about control design for linear systems
[17, 125, 1, 43, 9].

In conclusion, we know what to do locally, but the linearization provides no insight whatso-
ever on how to swing the pendulum up to the desired vertical position. The robotics community
has developed ingenious specialized techniques for classes of nonlinear control problems that
include CartPole as a special case [190, 8, 227, 47]. A goal of current research is to marry exist-
ing control approaches with model free techniques from RL to obtain reliable control designs in
more complex settings.

2.7.4 Pendubot and Acrobot

Encoder 1
Motor

Table

Encoder 2

Encoder 2

Link 1

Link 2

Link 1

Link 2

Motor
and
Encoder 1

Figure 2.15: The Illinois Pendubot and Sutton’s Acrobot

Fig. 2.15 shows a photograph of the Pendubot as it appeared in the robotics laboratory at
the University of Illinois in the 1990s [189, 17], and a sketch indicating its component parts.
It is similar to Sutton’s Acrobot [198], which is another example that is currently popular on
openai.com. The control objective is similar to CartPole: starting from any initial condition,
swing the Pendubot up to a desired equilibrium, without excessive energy.

The value of this example is explained in the introduction of [189], where they compare to
CartPole, and a variation of Furuta [86]:

“The balancing problem for the Pendubot may be solved by linearizing the equations
of motion about an operating point and designing a linear state feedback controller,
very similar to the classical cart-pole problem ... One very interesting distinction
of the Pendubot over both the classical cart-pole system and Furuta’s system is the
continuum of balancing positions. This feature of the Pendubot is pedagogically
useful in several ways, to show students how the Taylor series linearization is op-
erating point dependent and for teaching controller switching and gain scheduling.
Students can also easily understand physically how the linearized system becomes
uncontrollable at q1 = 0, ±π.” (referring to the first and third illustrations shown
in Fig. 2.16, with q1, q2 joint angles shown in Fig. 2.17).

openai.com

46

Input q

y

x

1

q2

�c2

�c1
�1

d11 = m1�
2
c1 + m2(�

2
1 + �2c2 + 2�1�c2 cos(q2)) + I1 + I2

d22 = m2�
2
c2 + I2

d12 = d21 = m2(�
2
c2 + �1�c2 cos(q2)) + I2

h1 = −m2�1�c2 sin(q2)q̇
2
2 − 2m2�1�c2 sin(q2)q̇2q̇1

h2 = m2�1�c2 sin(q2)q̇
2
1

φ1 = (m1�c1 + m2�1)g cos(q1) + m2�c2g cos(q1 + q2)

φ2 = m2�c2g cos(q1 + q2)

u = τ

Figure 2.17: Coordinate description of the Pendubot: `1 is the length of the first link, and `c1, `c2 are the
distances to the center of mass of the respective links. The variables q1, q2 are joint angles of the respective links,
and the input is the torque applied to the lower joint.

Figure 2.16: A continuum of different equi-
librium positions for the Pendubot.

The Pendubot consists of two rigid alu-
minum links: link 1 is directly coupled to the
shaft of a DC motor mounted to the end of a
table. Link 1 also includes the bearing housing
for the second joint. Two optical encoders pro-
vide position measurements: one is attached
at the elbow joint and the other is attached to
the motor. Note that no motor is directly con-
nected to link 2—this makes vertical control of
the system, as shown in the photograph, ex-
tremely difficult!

The system dynamics be derived using the so-called Euler-Lagrange equations found in
robotics textbooks [191]:

d11q̈1 + d12q̈2 + h1 + φ1 = τ (2.61a)

d21q̈1 + d22q̈2 + h2 + φ2 = 0 (2.61b)

where the variables can be deduced from Fig. 2.17. Consequently, this model may be written in
state space form, ẋ = f(x, u), where x = (q1, q2, q̇1, q̇2)′, and f is defined from the above equations.

This model admits various equilibria: for example, when ue = τ e = 0, the vertical downward
position xe = (−π/2, 0, 0, 0) is an equilibrium, as illustrated on the right hand side of Fig. 2.15.
Three other possibilities are shown in Fig. 2.16, each with τ e 6= 0.

A fifth equilibrium is obtained in the upright vertical position, with τ e = 0 and xe =
(+π/2, 0, 0, 0). It is clear from the photograph shown on the left hand side of Fig. 2.15 that
the upright equilibrium is strongly unstable in the sense that with τ = 0, it is unlikely that the
physical system will remain at rest. Nevertheless, the velocity vector vanishes, f(xe, 0) = 0, so
by definition the upright position is an equilibrium when τ = 0.

47

Although complex, we may again linearize these equations about the vertical equilibrium.
With the input u equal to the applied torque, and the output y equal to the lower link angle,
the resulting state space model is defined by the following set of matrices in the 1990’s vintage
system described in [189]:

A =




0 1.0000 0 0
51.9243 0 −13.9700 0

0 0 0 1.0000
−52.8376 068.4187 0 0


 B =




0
15.9549

0
−29.3596




C =
[
1 0 0 0

]
D = 0.

(2.62)

Postscripts For those students who have had a course in undergraduate control systems, the
corresponding transfer function has the general form

P (s) = k
(s− γ)(s+ γ)

(s− α)(s+ α)(s− β)(s+ β)
,

with k > 0 and 0 < α < γ < β. The variable “s” corresponds to differentiation. Writing

P (s) = k
s2 − γ2

s4 − 2(α2 + β2)s2 + α2β2

the transfer function notation Y (s) = P (s)U(s) denotes the ODE model:

d4

dt4
δy − 2(α2 + β2)

d2

dt2
δy + α2β2δy = k[

d2

dt2
u− γ2u]

The roots of the denominator of P (s) are {±α,±β}, which correspond with the eigenvalues
of A. The positive eigenvalues mean that A is not Hurwitz. The fact that P (s0) = 0 for
the positive value s0 = γ implies more bad news (a topic far beyond the scope of this book,
but the impact of zeros in the right-half plane is worth reading about in basic texts, such as
[125, 1, 43, 9]).

2.7.5 Cooperative Rowing

In a sculling boat, each rower has two oars or ‘sculls’, one on each side of the boat. The control
system discussed here concerns coordination of N individual scullers (meaning just one rower
per boat) that are part of a single team. You can see 5 of N teammates on the left hand side
of Fig. 2.18. The team objective is to maintain constant velocity towards a target (let’s say, the
island of Kaua’i), and also maintain “social distance” between boats.

A state space model might be formulated as follows. Let zi(t) denote the distance to Kaua’i
at time t, and ui(t) the force exerted by the rower at time t. Taking into account the fact
that drag increases with speed, and applying once more Newton’s law F = MA, results in the
following possible dynamical equations

d2

dt2
zi = −ai ddtzi + biui + di

in which {ai, bi} are positive scalars, and the disturbance {di(t)} is left un-modeled. If we ignore
the disturbance (for the purposes of control design), we can pose the rowing game as an LQR

48

Figure 2.18: Cooperative rowing with partial information.

optimal control problem: a topic covered in Sections 3.1 and 3.6. We will see that this will result
in a policy of the form

ui = Kix+ bi

where x is the 2N -dimensional vector of positions and velocities for all the rowers, Ki is a 2N -
dimensional row vector, and bi is a scalar that depends upon the tracking goal. Implementation
of this policy requires that each rower know the position and velocity of every other rower at
each time. Let’s think about how the rowers might cooperate without so much data.

Imagine that each rower only views the nearest neighbors to the left and right. This breaks
the team of size N into sub-teams of size three that coordinate individually. Unfortunately, if
N is large, it is known that this distributed control technique can lead to large oscillations in
the positions of the boats with respect to the distant island (the social distancing part is not a
problem).

A more robust strategy is obtained with just a bit of global information: assume that at
each time t, rower i has access to two scalar observations: her own distance to Kaua’i zi(t), and
the average of all rowers:

z̄(t) =
1

N

N∑

j=1

zj(t)

The policy of the ith rower is assumed to be a function of this data. One possibility is to pretend
that xi(t) = (zi(t), z̄(t))ᵀ evolves according to a state space model of the form (2.18), in which
case it is appropriate to search for a state feedback policy ui(t) = φi(zi(t), z̄(t)).

Before fixing the architecture of the policy it is essential to consider the goals. Since we have
assumed that social distancing is managed through an independent control mechanism, there
remain only two:

zi(t) ≈ z̄(t) , d
dtz

i(t) ≈ vref for all large t

Based on the discussion in Section 2.3.2 we might obtain better coordination through the intro-
duction of a third variable, defined as the integral of the position error:

zia(t) = zia(0) +

∫ t

0
[zi(r)− z̄(r)] dr

Or, to keep things bounded, a discounted approximation:

zia(t) = zia(0) +

∫ t

0
eλ(t−r)[zi(r)− z̄(r)] dr

49

with λ > 0. Once we have made our choice, we then search for a policy defined as a function of
the three variables, ui(t) = φi(zi(t), z̄(t), zia(t)).

However, do not forget that this is a game! The “best” choice of φi will depend upon the
choice of φj for all j 6= i. We will experiment with “best response” schemes designed to learn
a collection of policies {φi : 1 ≤ i ≤ N} that work well for all. Best response is also behind the
RL training in AlphaZero [184], even though Go and chess are obviously not cooperative games!

50

2.8 Exercises

2.1 Something dumb here. state space analysis

2.2 Something dumb here. integral control

Linear algebra:

2.3 Let A be an n× n matrix, and suppose that the infinite sum exists

U = I +A+A2 +A3 + · · ·

where I denotes the identity matrix. Verify that U is the inverse of the matrix I −A
2.4 Two square matrices A and Ā are called similar if there is an invertible matrix M such

that
A = M−1ĀM

Obtain the following for two similar matrices A and Ā.
(a) Show that Am is similar to Ā

m
for any m ≥ 1, where the superscript “m” denotes

matrix product,
A1 = A, Am = A(Am−1), m ≥ 1.

(b) Show that v is an eigenvector for A if and only if Mv is an eigenvector for Ā.

(c) Suppose that Ā is diagonal (Āij = 0 if i 6= j). Suppose moreover that |Āii| < 1 for each
i. Conclude that I −A admits an inverse by combining Exercise 2.3 and Prob. 2.4 (i).

2.5 Matrix exponential. Compute eAt for all t for the 2× 2 matrix

A = aI + bJ , I =

[
1 0
0 1

]
J =

[
0 1
−1 0

]

The notation is intended to be suggestive: J2 = −I.

It is not difficult to obtain a formula for Am for each m, as required in the definition (2.42).
With a < 0 and b 6= 0, describe the solution to d

dtx = Ax with non-zero initial condition.

Control systems in continuous time For simulating an ODE you might try ode45 in
Matlab; there are many imitations available for use with Python.

2.6 Consider the state space model ẋ = Ax + Bu; y = Cx, where A is similar to a diagonal
matrix. In this case we may write

Λ = V −1AV

where Λ is a diagonal matrix, with each Λ(i, i) an eigenvalue of A, V is a matrix whose
columns are eigenvectors.

(a) Obtain a state space model for x = V −1x, of the form ẋ = Āx + B̄u; y = C̄x, by
finding repesentations for (Ā, B̄, C̄). Comment on why this state space representation is
called modal form.

The remainder of the problem is numerical, using

A =




8 −7 −2
8 −10 −4
−4 5 2


 B =




0
0
1


 C = [1 0 0]

51

You are encouraged to use Matlab or Python.

(b) Find the eigenvalues and eigenvectors of A, and verify that the matrix Λ = V −1AV is
indeed diagonal when V is the matrix of eigenvectors.

(c) Obtain the modal-form state space model.

2.7 For the system ẋ = Ax with A =

[
−1 4
0 −1

]
, show that V (x) = ‖x‖2 = x2

1 + x2
2 is not a

Lyapunov function. Find a quadratic function V that is.

2.8 (Foster’s Criterion) Suppose that ẋ = f(x) is a nonlinear state space model on Rn.
Assume also that there is a C1 function V : Rn → R+, and a set S such that,

〈∇V (θ), f(θ)〉 ≤ −1, θ ∈ Sc (2.63)

(a) Show that TK(x) ≤ V (x) for x ∈ Rn, where

TK(x) = min{t ≥ 0 : xt ∈ K}, x0 = x ∈ Rn.

(b) In the special case of a stable linear system (f(x) = Ax, with A Hurwitz), show that
a solution to (2.63) is given by V (x) = log(1 + xTPx) for some matrix P > 0, and with
S = {x : ‖x‖ ≤ k} for some scalar k.

(c) Find an explicit V , S for A =

[
−1 4
0 −1

]

Note: Foster devised a version of this stability criterion for countable state space Markov
chains 70 years ago

2.9 Consider the nonlinear state space model on the real line,

d
dtx = f(x) =

1− ex
1 + ex

(a) Sketch f as a function of x, and from this plot explain why xe = 0 is an equilibrium,
and this equilibrium is globally asymptotically stable.

(b) Find a solution to the Poisson inequality (2.36): 〈∇V, f〉 ≤ −c+ η̄, with c(x) = x2 and
η̄ <∞. You might try a polynomial, or a log of a polynomial of |x|. See if you can find a
solution with η = 0.

(c) Find a solution V to Foster’s criterion (2.63), with S = [−k, k] for some k > 0. Also,
discuss why TS(x) is not finite valued using S = {0} (that is, k = 0).

2.10 Suppose that one wants to minimize a C1 function V : Rn → R+. A necessary condition
for a point x? ∈ Rn to be a minimum is that it be a stationary point : ∇V (x?) = 0.

Consider the steepest descent algorithm ẋ = −∇V (x). Find conditions on the function V
to ensure that a given stationary point x? will be asymptotically stable for this equation.
One approach: find conditions under which the function V is a Lyapunov function for this
state space model.

2.11 You are given a nonlinear input-output system which satisfies the nonlinear differential
equation:

ÿ(t) = y2(u− y) + 2u̇

(a) Obtain a two-dimensional nonlinear state-space representation with output y, input u,
and states x1 = y and x2 = ẏ − 2u.

52

(b) Linearize this system of equations around its equilibrium output trajectory when u(·) ≡
0, and write it in state space form.

(c) For those of you with background in classical control: Find the transfer function for
the linear system obtained in (b).

2.12 Consider the nonlinear state space model on the real line,

d
dtx = f(x) = −x3

(a) Sketch f as a function of x, and from this plot explain why xe = 0 is an equilibrium,
and this equilibrium is globally asymptotically stable.

(b) Find a solution to the Poisson inequality (2.36) with c(x) = x2: 〈∇V, f〉 ≤ −c+ η̄ with
η̄ <∞. You might try a polynomial, or a log of a polynomial in of |x|. See if you can find
a solution with η = 0.

2.13 Consider the Van der Pol oscillator, described by the pair of equations

ẋ1 = x2

ẋ2 = −(1− x2
1)x2 − x1.

(2.64)

(a) Obtain a linear approximate model d
dtδx = Aδx around the unique equilibrium xe = 0.

(b) Verify that A is Hurwitz, and obtain a quadratic Lyapunov function V for the linear
model.
(c) Show that V is also a Lyapunov function for (2.64) on the set SV (r) defined in (2.26),
for some r > 0. That is, show that the drift inequality (2.34) holds whenever xt ∈ SV (r).

Conclude that the set SV (r) ⊂ Ω ≡ the region of attraction for xe.

(d) Can we find the entire region of attraction? Take a box around the origin B = {x :
−m ≤ x1 ≤ m, −m ≤ x2 ≤ m} for some integer m (definitely larger than 1, but less than
10 will suffice). Choose N values {xi} ⊂ B (say, N = 103), and simulate the ODE for each
i, with x(0) = xi, to test to see if xt ∈ SV (r) for some t <∞, and hence xi ∈ Ω.

Why does entry to Ω guarantee that x(0) is in the region of asymptotic stability?

2.14 (Integral control design). The temperature T in an electric furnace is governed by the
linear state equation

d
dtT = u+ w

where u is the control (voltage) and w is a constant disturbance due to heat losses. It
is not directly observed. It is desired to regulate the temperature to a steady-state value
prescribed by the set-point T = T0, where T0 is your comfort temperature. The following
should be solved by hand:
(a) Design a state-plus-integral feedback controller to guarantee that T (t)→ T0 as t→∞,
for any constant w. The closed loop poles should have natural frequency ωn ≈ 1 (that is,
the eigenvalues of the closed loop state space model should satisfy |λ| ≈ 1.)

(b) To what value does the control ut converge as t → ∞? Has the controller “learned”
w?

2.15 (Linear control design for MagBall). Obtain a linear control design for (2.58), of the form

δu = −Kδx = −K1δx1 −K2δx2

53

Base your solution on the linearization (2.58), making sure that your solution results in
A−BK Hurwitz. Simulate as in Exercise 2.13 to estimate the region of attraction.

2.16 (Feedback linearization for MagBall). For systems with simple nonlinearities, there is a
“brute-force” approach to obtain a linear model. For MagBall we may view ν = u2/x2

1 as
an input, from which we obtain a linear system via (2.56):

d
dtx1 = x2

d
dtx2 = g − c

m
ν

(a) As in the previous exercise, obtain a control law v = −Kδx, where K1 and K2 are
parameters chosen for stability and good transient response.

(b) The policy is then given by

u = x1

√
K1δx1 +K2δx2 (2.65)

Simulate, and estimate the region of attraction.

Note: See [121] for a survey on feedback linearization — a topic that has far more depth
than is obvious from this example.

2.9 Notes

Work in progress—comments welcome
The notion of “state” is flexible in both control theory [9] and reinforcement learning [194].

The motivation is the same in each field: for the purposes of on-line decision making, replace the
full history of observations at time k by some finite dimensional “sufficient statistic” xk. One
constraint that arises in RL is that the state process must be directly observable; in particular,
the belief state that arises in partially observed MDPs requires the (model based) nonlinear filter,
and is hence not directly useful for model-free RL. In practice, the “RL state” is specified as
some compression of the full history of observations. The reader is referred to [194, Section 17.3]
for further discussion.

Textbook treatments on Lyapunov theory can be found in [27] (nonlinear) and [1, 125]
(linear). The ECE Department at the University of Illinois had a great course on state space
methods—the lecture notes are now available online [17]. The first section of [104] contains a
brief crash-course on Lyapunov theory, written in the style of this book, and with applications
to reinforcement learning.

Poisson’s inequality (2.29) is far removed (roughly two centuries) from the celebrated equa-
tion introduced by mathematician Siméon Poisson. The motivation back then was potential
theory, as defined in theoretical physics. About one century later, Poisson’s equation arose as
a central player in studying the evolution of the density of of Brownian motion (a particular
Markov process). The terminology Poisson inequality and Poisson equation is today applied to
any Markov chain, with generator playing the role of the Laplacian. The generator takes any
function h : X → R to a new function denoted Ah. In particular, the deterministic state space
model (2.20) can be regarded as a Markov chain [149], and the associated generator is defined
as

Ah (x) = h(F(x))− h(x)

In this notation, (2.29) becomes AV ≤ −c+ η.

54

Chapter 3

Optimal Control

To begin, we recall some notation: x(k) is the state at time k, which evolves in a state space X;
u(k) is input at time k, which evolves in the input (or action) space U (the sets X and U may be
Euclidean space, a finite set, or something more exotic). There may also be an output y, but
this is usually ignored in this chapter. The input and state are related through the dynamical
system (2.6a):

x(k + 1) = F(x(k), u(k)) (3.1)

where F: X× U→ X.
This chapter concerns the design of a state feedback policy u(k) = φ(x(k)) based on opti-

mization. The design of φ is based on a cost function c, which is a scalar-valued function of
(x, u). We assume throughout that it takes on non-negative values:

c : X× U→ R+

The chapter surveys optimization for control systems without assuming any background on
the theory of optimization. The term “convex” appears occasionally, but this concept is not
essential for understanding any of the material. Optimization theory and the role of convexity
will be important later in the book. A brief survey can be found in Section 4.4.

3.1 Value Function for Total Cost

The total cost J associated with a particular control input u := u[0,∞) is defined by the sum

J(u) =
∞∑

k=0

c(x(k), u(k))

The value function is defined to be the minimum over all inputs, and is a function of the initial
condition:

J?(x) = min
u

∞∑

k=0

c(x(k), u(k)) , x(0) = x ∈ X . (3.2)

The goal of optimal control is to find an optimizing input sequence, and in the process we usually
need to compute the value function J?. We settle for an approximation in the majority of cases.

55

56

Why should we care? It is rare in our every-day lives that we think about solving a decision
problem over an infinite horizon. It is favored in the control theory literature because an optimal
policy often comes with stability guarantees: Thm. 3.1 implies this identity for the optimal
input-output process:

J?(x?(k)) = c(x?(k), u?(k)) + J?(x?(k + 1))

which is a version of Poisson’s inequality (2.29) with η = 0 (and inequality replaced by equality).
Mild conditions laid out in Prop. 2.3 then imply that xe is globally asymptotically stable under
the optimal policy.

What’s more, once you understand the total cost formulation, other standard optimal control
objectives can be treated as special cases. This is explained in Section 3.3.

Under our assumption that c is non-negative, the value function is also non-negative. Below
are minimal assumptions to ensure that J? is finite:

(i) There is a target state xe that is an equilibrium for some input ue:

F(xe, ue) = 0

(ii) The cost function c is non-negative, and vanishes at this equilibrium, c(xe, ue) = 0.

(iii) For any initial condition x0, there is an input sequence u0 and a time T 0 such that with
this initial condition and this input we have x(T 0) = xe

Condition (iii) is a weak form of controllability. Under these three assumptions it follows that
J?(x) <∞ for each x.

The Linear Quadratic Regulator problem refers to optimal control synthesis based on the
linear system model (2.13), with quadratic cost:

c(x, u) = xᵀSx+ uᵀRu (3.3)

It is always assumed that S ≥ 0 (positive semi-definite) and R > 0 (positive definite). If there
is one policy for which J? is finite valued, then the value function is quadratic, J?(x) = xᵀM?x
where M? ≥ 0. The optimal policy is obtained by linear state feedback: φ?(x) = −K?x for a
matrix K? that is a function of M? and other system parameters. A bit more on this special
case is contained in Section 3.6, where it will be clear why we impose the strict inequality R > 0.

3.2 Bellman Equation

To derive the Bellman equation, let x be an arbitrary initial state, and let km be an intermediate
time, 0 < km <∞. We regard J?(x(km)) as the cost to go at time km: This is the optimal total
cost over the remaining life-time of the optimal state-trajectory.

Based on this interpretation we obtain,

J?(x) = min
u[0,∞)

[km−1∑

k=0

c(x(k), u(k)) +
∞∑

k=km

c(x(k), u(k))
]

= min
u[0,km]

[km−1∑

k=0

c(x(k), u(k)) + min
u[km,∞)

(∞∑

k=km

c(x(k), u(k))

︸ ︷︷ ︸
J?(x(km))

)]

57

Optimal trajectory starting from x at time t = 0

Optimal trajectory starting from at time

x(0)
x(km) = xm

kmxm

Figure 3.1: If a better control existed on [km,∞), we would have chosen it.

which gives the functional “fixed point equation”:

J?(x) = min
u[0,km−1]

[km−1∑

k=0

c(x(k), u(k)) + J?(x(km))
]

(3.4a)

As a consequence, the optimal control over the whole interval has the property illustrated in
Fig. 3.1: If the optimal trajectory passes through the state xm at time x(km) using the control
u? = u[0,∞), then the control u?[km,∞) must be optimal for the system starting at xm at time km.

If a better u? existed on [km,∞), we would have chosen it. This concept is called the principle
of optimality.

Analysis in continuous time proceeds by letting km ↓ 0 to obtain a partial differential equa-
tion. Theory is far simpler in discrete time: we set km = 1 to obtain the following celebrated
result.

Theorem 3.1. If the value function J? is finite valued, then it satisfies

J?(x) = min
u

{
c(x, u) + J?(F(x, u))

}
(3.5)

ut

Equation (3.5) is often interpreted as a fixed point equation in the unknown “variable” J?.
It goes by the name Bellman equation or dynamic programming equation: the two terms are

used interchangeably in this book.
The function of two variables within the minimum in (3.5) is the “Q-function” of reinforce-

ment learning:

Q?(x, u) := c(x, u) + J?(F(x, u)) (3.6)

so that the Bellman equation is equivalent to

J?(x) = min
u
Q?(x, u) (3.7)

An important consequence of Thm. 3.1 is that the optimal control can be written in state
feedback form, x?(k) = φ?(x?(k)). The feedback law is any minimizer of the Q-function:

φ?(x) ∈ arg min
u

Q?(x, u) , x ∈ X (3.8)

Another important property is the fixed point equation,

Q?(x, u) = c(x, u) +Q?(F(x, u)) (3.9)

58

where we denote Q(x) = minuQ(x, u), x ∈ X, for any function Q. Eqn. (3.9) is obtained
by eliminating J? in (3.6) via the identity (3.7). Applications of this dynamic programming
equation will appear throughout the book, starting in Section 3.7.

The term dynamic programming refers to recursive algorithms designed to obtain the solution
to a Bellman equation. However, dynamic programming is only practical when X is finite, or
the system has special structure (such as for linear state space models and quadratic cost). The
two most popular algorithms are value iteration and policy iteration.

3.2.1 Value iteration

Given an initial approximation V 0 for V ? appearing in (3.5), a sequence of approximations is
defined recursively via

V n+1(x) = min
u

{
c(x, u) + V n(F(x, u))

}
, x ∈ X, n ≥ 0 (3.10)

Recursions like this to solve fixed point equations are generally known as successive approxima-
tion. In Exercise 3.3 you will establish the following interpretation:

V n+1(x) = min
u[0,n]

{ n∑

k=0

c(x(k), u(k)) + V 0(x(n+ 1))
}
, x(0) = x ∈ X . (3.11)

The VIA is convergent under very general conditions: for each x

lim
n→∞

[V n(x)− V n(xe)] = J?(x)

Here is the simplest result of this kind:

Proposition 3.2. Suppose that the state space X and input space U are finite, and J? is finite
valued. Suppose moreover that c(x, u) > 0 for (x, u) 6= (xe, ue). Then, there is n0 ≥ 1 such that
for any initialization V 0,

Vn(x) = J?(x)− V 0(xe) , x ∈ X , n ≥ n0

Proof. Let φ? be an optimal policy, and let n0 ≥ 1 denote a value such that (x?(k), u?(k)) =
(xe, ue) for k ≥ n0. Such an integer exists because J? is finite valued.

We have from (3.11)

V n(x) ≤
n−1∑

k=0

c(x(k), u(k)) + V 0(x(n)) ,when u(k) = φ?(x(k)) for each k, x(0) = x ∈ X .

The right hand side is precisely J?(x)− V 0(xe) for n ≥ n0. ut

In completely general situations the algorithm generates stabilizing policies, subject to an
assumption on the initial value function. Denote for n ≥ 0,

gn(x) = Vn+1(x)− Vn(x) , ηn = sup
x
gn(x)

59

and define a policy at stage n of the algorithm:

φn(x) ∈ arg min
u

{
c(x, u) + V n(F(x, u))

}
, x ∈ X, n ≥ 0

The crucial assumption on V 0 is a finite bound, which is interpreted as Lyapunov bound in
the proof of Prop. 3.3 that follows: the function V 0 is non-negative, and satisfies for some η ≥ 0,

min
u

{
c(x, u) + V 0(F(x, u))

}
≤ V 0(x) + η , x ∈ X (3.12)

The conclusions of Prop. 3.3 are most interesting when η = 0, so that for each n:

{
c(x, u) + V n(F(x, u))

}∣∣∣
u=φn(x)

≤ V n(x)

The following bound then follows from Prop. 2.3,

Jn(x) ≤ V n(x) , x ∈ X ,

where Jn is the total cost using policy φn.

Proposition 3.3. Suppose that (3.12) holds, with V 0 non-negative. That is, there is a policy
φ−1 for which V 0 serves as a Lyapunov function:

{
c(x, u) + V 0(F(x, u))

}∣∣∣
u=φ−1(x)

≤ V 0(x) + η , x ∈ X

Then a similar bound holds for each n:

{
c(x, u) + V n(F(x, u))

}∣∣∣
u=φn(x)

≤ V n(x) + ηn , x ∈ X

Moreover, the upper bounds are finite and non-increasing:

η ≥ η0 ≥ η1 ≥ · · ·

Proof. The Lyapunov bound follows from adding and subtracting terms in (3.10):

{
c(x, u) + V n(F(x, u))

}∣∣∣
u=φn(x)

= V n+1(x) = V n + gn ≤ V n + ηn

It remains to obtain bounds on {ηn}. First observe that

V 1(x) ≤
{
c(x, u) + V 0(F(x, u))

}∣∣∣
u=φ−1(x)

≤ V 0(x) + η

from which we conclude that g1(x) ≤ η for all x, and hence also η1 ≤ η.
The next steps are similar: for n ≥ 1,

V n+1(x) ≤
{
c(x, u) + V n(F(x, u))

}∣∣∣
u=φn−1(x)

V n(x) =
{
c(x, u) + V n−1(F(x, u))

}∣∣∣
u=φn−1(x)

Hence on subtracting,

gn+1(x) = V n+1(x)− V n(x) ≤
{
V n(F(x, u))− V n−1(F(x, u))

}∣∣∣
u=φn−1(x)

≤ ηn−1

ut

60

3.2.2 Policy Improvement

The Policy Improvement Algorithm (PIA) starts with an initial policy φ0, and updates recur-
sively as follows:

For policy φn, the associated cost is computed:

Jn(x) =
∞∑

k=0

c(x(k), u(k)) , u(j) = φn(x(j)) for each j , x(0) = x ∈ X (3.13)

This solves the fixed-policy Bellman equation,

Jn(x) =
{
c(x, u) + Jn(F(x, u))

}∣∣∣
u=φn(x)

(3.14)

The (n+ 1)th iteration of PIA is completed with the policy improvement step:

φn+1(x) = arg min
u
{c(x, u) + Jn(F(x, u))} (3.15)

The proof of the following is similar to the proof of Prop. 3.3. The fact that the value functions
are non-increasing is again an application of Prop. 2.3.

Proposition 3.4. Suppose that φ0 is stabilizing, in the sense that J0 is finite valued. Then
for each n ≥ 0, {

c(x, u) + Jn(F(x, u))
}∣∣∣
u=φn+1(x)

≤ Jn(x) , x ∈ X

Consequently, the value functions are non-increasing:

J0(x) ≥ J1(x) ≥ J2(x) ≥ · · ·

ut

3.2.3 Perron-Frobenius theory – a gentle introduction*

One step in the PIA requires a subroutine: how to solve the fixed policy dynamic programming
equation (3.14)? This is a question that may have been posed in Chapter 2 where we introduced
the fixed policy value function J defined in (2.23). The purpose here is to present an efficient
approach to computing the value function when the state space is finite; this is also a prelude
to theory for Markov chains as well as spectral graph theory that arises in MDPs and ML.

Let’s return for a moment to the setting of Section 2.4, where we considered the state space
model without control:

x(k + 1) = F(x(k)) , k ≥ 0

and associated value function (2.23), recalled here:

J(x) =
∞∑

k=0

c(x(k)) , x(0) = x ∈ X

The value function satisfies a version of (3.14), which in equation (2.24) is expressed in the
simpler form

J(x) = c(x) + J(F(x)) , x ∈ X (3.16)

61

Much of Perron-Frobenius theory concerns calculation of fixed-point equations involving
matrices. To apply this theory, we need a matrix. Assume the state space is finite, and to simplify
notation suppose that the state space is a sequence of positive integers: X = {1, 2, 3, . . . , N} for
some N > 1. Assume that xe = N , which satisfies F(N) = N by the equilibrium property.
Assume also that c(N) = 0, and that the value function is finite valued.

Definite an N×N transition matrix P , based on the dynamical system as follows: P (i, j) = 0
or 1 for each i and j, and P (i, j) = 1 means that j = F(i). Consequently, the ith row of P
has exactly one non-zero element. In particular, P (N,N) = 1 characterizes the equilibrium
property. With this notation, we have a new way of thinking about the fixed policy dynamic
programming equation:

J(i) = c(i) +

N∑

j=1

P (i, j)J(j) (3.17)

Now, dear reader: please accept a new way of thinking about the notation:

~J = ~c+ P ~J (3.18)

I hope the notation is clear: P is an N ×N matrix, ~J is an N -dimensional column vector whose
ith element is J(i), and the definition of ~c is analogous. I am pleading with you here, because
I know from experience that young graduate students feel uncomfortable going from (3.16) to
(3.18).

At first glance, it seems clear that we can solve this equation by inversion:

~J = [I − P]−1~c

The problem however is that I − P is never invertible, since P always has an eigenvalue λ = 1:
whenever v ∈ RN has constant entries (v(i) = v(1) for all i), we have

Pv = v

You might try a pseudo inverse. In Matlab, this is computed using the command

J = (I-P)\c

But if you do this, you may not understand what is going on behind Matlab’s curtain. And how
do you know if you have obtained the boundary constraint J(xe) = 0?

Here is the ingenious idea of Perron and Frobenius: choose two vectors s, ν ∈ RN with
non-negative entries, and satisfying,

P (i, j) ≥ s(i)ν(j) 1 ≤ i, j ≤ N (3.19)

This is called a minorization condition. Letting s ⊗ ν denote the “outer product” of these two
vectors, this is equivalently expressed

P (i, j) ≥ [s⊗ ν](i, j) 1 ≤ i, j ≤ N

We then play with the fixed point equation:

~c = [I − P] ~J = [I − (P − [s⊗ ν])] ~J + [s⊗ ν] ~J

62

and note that the final term is just a constant times s, represented as a column vector:

[s⊗ ν] ~J = δs , δ =
∑

j

ν(j)J(j)

Under very mild conditions we can now invert: denote

Z =
∞∑

n=0

(P − [s⊗ ν])n (3.20)

with (P − [s⊗ ν])k the kth power of the difference for k ≥ 1, and with (P − [s⊗ ν])0 = I (the
identity matrix).

Here is where the minorization condition comes in: the matrix (P−[s⊗ν])k has non-negative
entries for each k ≥ 0, so that the infinite sum is always meaningful. If it is finite valued, then
Z = [I − (P − [s⊗ ν])]−1, and consequently

~J = Z~c− δZs
To find δ you must apply the boundary condition for J :

0 = J(N) =
∑

k

Z(N, k)c(k)− δ
∑

k

Z(N, k)s(k)

and then obtain δ by division.
Alternatively, think harder about your choice of ν! Here is a simple consequence of the

Perron-Frobenius construction:

Proposition 3.5. Consider the state space model with X = {1, 2, 3, . . . , N}. Suppose that
c : X → R+ vanishes only at the state N , and suppose that the total cost J is finite valued.
Define the matrix Z using s = ν = eN (the Nth basis vector in RN).

Then, ~J = Z~c. That is, for each k ∈ X,

J(k) =

N∑

j=1

Z(k, j)c(j) =

∞∑

n=0

N∑

j=1

(P − [s⊗ ν])n(k, j)c(j)

Proof. The minorization condition holds because P (N,N) = 1 = [s⊗ν](N,N), and [s⊗ν](i, j) =
0 for all other i, j. Applying the boundary constraint J(N) = 0 gives

δ =
∑

j

ν(j)J(j) = J(N) = 0

To see that Z is finite valued we establish an interpretation for each term in the sum: for
j < N ,

(P − [s⊗ ν])n(i, j) = 1{x(n) = j} , when x(0) = i

The left hand size is zero for j = N and k ≥ 1. Letting n0 ≥ 1 denote an integer for which
x(n) = N for n ≥ n0, it follows that Z can be expressed as a finite sum:

Z =

n0∑

n=0

(P − [s⊗ ν])n

ut

63

3.3 Variations

The total cost problem (3.2) is the standard in the control literature, and opens the door to
many other possibilities.

Discounted cost A more popular objective within the operations research literature is the
discounted-cost problem:

J?(x) = min
u

∞∑

k=0

γkc(x(k), u(k)) , x(0) = x ∈ X . (3.21)

with γ ∈ (0, 1) the discount factor. The Q-function becomes Q?(x, u) := c(x, u) + γJ?(F(x, u)),
and the Bellman equation has the same form (3.7).

Shortest path problem Given a subset A ⊂ X, define

τA = min{k ≥ 1 : x(k) ∈ A}

The discounted shortest path problem (SPP) is defined to be the minimal discounted cost
incurred before reaching the set A:

J?(x) = min
u

τA−1∑

k=0

γkc(x(k), u(k)) (3.22)

For the purposes of unifying the control techniques that follow, it is useful to recast this as an
instance of the total cost problem (3.2). This requires the definition of a new state process xA

with dynamics FA, and a new cost function cA defined as follows:

(i) The modified state dynamics:

FA(x, u) =

{
F(x, u) x ∈ Ac
x x ∈ A

so that xA(k + 1) = xA(k) if xA(k) ∈ A (called a graveyard set for the control system).

(ii) Modified cost function:

cA(x, u) =

{
c(x, u) x ∈ Ac
0 x ∈ A

From these definitions it follows that the value function (3.22) can be expressed

J?(x) = min
u

∞∑

k=0

γkcA(xA(k), u(k)) , x ∈ Ac

Alternatively, we can obtain a dynamic programming equation by writing

J?(x) = min
u

{
c(x, u(0)) +

τA−1∑

k=1

γkc(x(k), u(k))
}

64

with the understanding that
∑0

1 = 0. The upper limit in the sum is equal to 0 when τA = 1;
equivalently, x(1) ∈ A. Hence,

J?(x) = min
u(0)

{
c(x, u(0)) + γ1{x(1) ∈ Ac} min

u[1,∞]

τA−1∑

k=1

γk−1c(x(k), u(k))
}

= min
u(0)

{
c(x, u(0)) + γ1{x(1) ∈ Ac}J?(x(1))

}
, x(1) = F(x, u(0))

= min
u

{
c(x, u) + γ1{F(x, u) ∈ Ac}J?(F(x, u))

}
(3.23)

z-1.2 -0.9 0.5

J∗(z, 0)

0

10

20

30

40

50

60

Figure 3.2: Value function for Moun-
tain Car, for states x = (z, 0)ᵀ (the ini-
tial velocity is zero).

Mountain Car Recall the Mountain Car example
introduced in Section 2.7.1. The control objective is to
reach the goal in minimal time, but can also be case
as a total cost optimal control problem without dis-
counting. Let c(x, u) = 1 for all x, u with x 6= zgoal,
and c(zgoal, u) ≡ 0. Given that the car is parked upon
reaching the goal, it is natural to modify the dynamics
to impose this constraint: F(zgoal, u) = zgoal for any
u. The optimal total cost (3.2) is finite for each initial
condition, and the Bellman equation (3.5) becomes

J?(x) = 1 + min
u

{
J?(F(x, u))

}
, x1 < zgoal

and with J?(zgoal, x2) = 0 for any value of x2.

Fig. 3.2 shows the value function for initial conditions corresponding to the car starting
at rest (corresponding to v = x2 = 0). The total cost is relatively low with initial condition
x0 = (z, 0) with z ≤ −0.9 because the car can reach the goal without stalling.

Finite horizon Your choice of discount factor is based on how concerned you are with the
distant future. Motivation is similar for the finite horizon formulation: fix a horizon T ≥ 1, and
denote

J?(x) = min
u[0,T]

T∑

k=0

c(x(k), u(k)) , x(0) = x ∈ X . (3.24)

This can be interpreted as the total cost problem (3.2), following two modifications of the state
description and the cost function, similar to the SPP:

(i) Enlarge the state process to xT (k) = (x(k), τ(k)), where the second component is “time”
plus an offset:

τ(k) = τ(0) + k , k ≥ 0

(ii) Extend the definition of the cost function as follows:

cT ((x, τ), u) =

{
c(x, u) τ ≤ T
0 τ > T

65

That is, cT ((x, τ), u) = c(x, u)1{τ ≤ T } for all x, τ, u.

If these definitions are clear to you, then you understand that we have succeeded in the
transformation:

J?(x) = min
u

∞∑

k=0

cT (xT (k), u(k)) , xT (0) = (x, τ) , τ = 0 (3.25)

However, to write down the Bellman equation it is necessary to consider all values of τ (at least
values τ ≤ T), and not just the desired value τ = 0. Letting J?(x, τ) denote the right hand side
of (3.25) for arbitrary values of τ ≥ 0, the Bellman equation (3.5) becomes

J?(x, τ) = min
u

{
c(x, u)1{τ ≤ T }+ J?(F(x, u), τ+ 1)

}
(3.26)

The similarity with (3.10) is explored in Exercise 3.3.

Based on (3.25) and the definition of cT , we know that J?(x, τ) ≡ 0 for τ > T . This is
considered a boundary condition for the recursion (3.26), which is put to work as follows: first,
since J?(x, T + 1) ≡ 0,

J?(x, T) = c(x) := min
u
c(x, u)

Applying (3.26) once more gives,

J?(x, T − 1) = min
u

{
c(x, u) + c(F(x, u))

}

If the state space X is finite then these steps can be repeated until we obtain the value function
J?(· , 0).

What about the policy? It is again obtained via (3.26), but the optimal input depends on
the extended state, based on the policy

φ?(x, τ) = arg min
u

{
c(x, u) + J?(F(x, u), τ+ 1)

}
, τ ≤ T

This means that the feedback is no longer time-homogeneous:5

u?(k) = φ?(x?(k), τ?(k)) = φ?(x?(k), k) (3.27)

Model predictive control Perhaps the most successful control technique in manufacturing
and building operations is model predictive control (MPC). This is a slight variant of (3.27) to
obtain a stationary policy:

u(k) = φMPC(x?(k)) = φ?(x(k), T) (3.28)

However, MPC is never presented as state feedback because the policy φMPC is not computed
and stored in memory. Rather, for each k, when the state x = x(k) is observed, the finite
horizon optimization is performed to obtain the value u = φ?(x, T). That is, the policy is only
evaluated for those states that are observed [140, 141].

5Substituting τ?(k) = k is justified because we cannot control time!

66

Nevertheless, the general optimal control theory provides techniques to ensure that the total
cost associated with (3.28) is finite. Denote for x ∈ X,

JMPC(x) =
∞∑

k=0

c(x(k), u(k))

subject to x(0) = x, and u(k) = φMPC(x(k)) for all k. The following result is a corollary to
Prop. 3.3, after recognizing that J?(x; T) = V T (x).

Proposition 3.6. Consider the policy (3.28), obtained with modified objective:

J?(x; T) = min
u[0,T]

T −1∑

k=0

c(x(k), u(k)) + V0(x(T)) , x(0) = x ∈ X , (3.29)

where V0 : X→ R+ satisfies (3.12) with η = 0:

min
u

{
c(x, u) + V 0(F(x, u))

}
≤ V 0(x) , x ∈ X

Then, the total cost under φMPC is everywhere finite, and admits the bound

JMPC(x) ≤ J?(x; T)

3.4 Inverse Dynamic Programming

An alternative to dynamic programming is to change the problem: in optimal control we are
given c, and then face the (often daunting) task of computing J?. Why not reverse the problem?
Given any function J , find a cost function cJ so that (3.5) is satisfied? To proceed in a way that
respects our original goal, we introduce the Bellman error :

B(x) = −J(x) + min
u

[c(x, u) + J(F(x, u))] (3.30)

This is precisely the error in the Bellman equation (3.5). Based on this we obtain a solution to
a Bellman equation, with modified cost function:

J(x) = min
u

[cJ(x, u) + J(F(x, u))] (3.31a)

cJ(x, u) = c(x, u)− B(x) (3.31b)

The minimizer in (3.31a) defines a policy, denoted φJ(x).
This procedure is known as Inverse Dynamic Programming. It is is one formulation of the

control-Lyapunov function approach to control design. Minimizing the Bellman error is a goal
of many approaches to reinforcement learning. Motivation is provided in the following:

Proposition 3.7. Suppose that the following hold:

(i) J is non-negative, continuous, and vanishes only at xe.

(ii) The function dJ(x) = c(x,φJ(x)) is also non-negative, continuous, and vanishes only
at xe. Moreover, it is inf-compact.

67

(iii) There is a constant % satisfying 0 ≤ % < 1, and

B(x) = c(x, u)− cJ(x, u) ≥ −%c(x, u) for all x, u

Let Jφ
J

denote the value function under the policy φJ :

Jφ
J
(x) =

∞∑

k=0

c(x(k), u(k)) , x(0) = x, u(k) = φJ(x(k)) for all k

Then, the performance of φJ admits the following bounds:

J?(x) ≤ JφJ (x) ≤ (1 + %)J?(x)

The proof of Prop. 3.7 requires a deeper look at the dynamic programming equation (3.5),
whose solution is typically unique. The following is an extension of Prop. 2.4:

Proposition 3.8. Suppose that the value function J? is finite valued, and the optimal policy
φ? is stabilizing, in the sense that x?(k)→ xe as k →∞ for any initial condition.

Suppose that J : X→ R+ is continuous, vanishes only at xe, and solves

J(x) ≤ min
u

{
c(x, u) + J(F(x, u))

}
, x ∈ X (3.32)

Then J = J?.

Proof. Let φJ(x) denote a minimizer of (3.32), and denote by H(x) the value function with this
policy:

H(x) =

∞∑

k=0

c(x(k), u(k)) , x(0) = x, u(k) = φJ(x(k)) for all k

We have the bound H ≤ J by the Comparison Theorem, Prop. 2.3. We can also establish the
following bound by induction on T :

J(x) ≤ min
u[0,T]

{T −1∑

k=0

c(x(k), u(k)) + J(x(T))
}

≤
T −1∑

k=0

c(x?(k), u?(k)) + J(x?(T)) , u?(k) = φ?(x?(k)) for all k

with the second inequality obtained because we have replaced the minimum with a specific
policy. We have J(x?(T))→ 0 as T → ∞ by the assumptions on J and φ?, and hence J ≤ J?.

Putting the two bounds together gives for all x,

J?(x) ≤ H(x) ≤ J(x) ≤ J?(x)

ut

68

Proof of Prop. 3.7. The assumptions on J and dJ are imposed so that we may apply Prop. 2.3
for the state space model subject to u(k) = φJ(x(k)). Part (i) implies that Jφ

J
(x) ≤ J(x) for

all x, and (iii) tells us that xe is globally asymptotically stable under this policy. We can then
apply Prop. 3.8 to establish the bound

Jφ
J
(x) ≤ min

u

∞∑

k=0

cJ(x(k), u(k))

As in the proof of Prop. 3.8, the right hand side can only be increased by replacing the minimum
with the optimal policy: with x(0) = x,

Jφ
J
(x) ≤

∞∑

k=0

cJ(x?(k), u?(k)) ≤ (1 + %)J?(x)

where the second inequality uses cJ ≤ (1 + %)c. ut

3.5 Bellman Equation is a Linear Program

One approach to control design is to introduce a family of candidate value function approxi-
mations {Jθ : θ ∈ Rd}, and compute the parameter θ∗ that minimizes the Bellman error, such
as through minimizing the mean-square criterion (2.49). A significant challenge is that the loss
function Eε(Jθ) is not convex, even for when Jθ depends linearly on θ. This means we cannot
appeal to Prop. 4.4 as we search for the global minimum θ∗.

We obtain a convex optimization problem by applying a common trick in optimization: over-
parameterize the search space. The first step is to regard J? and Q? as independent variables,
and regard (3.6) as a linear constraint. Following this approach we obtain a linear program that
lends itself to RL algorithm design.

Naturally, we obtain a finite-dimensional linear program only if the state space and action
space are finite. In this case, as part of the algorithm we choose a weighting function µ, and
denote for any candidate approximation J ,

〈µ, J〉 :=
∑

x∈X
µ(x)J(x)

It is assumed that µ(x) > 0 for each x, and best to make this positive everywhere to be sure
the solution to the LP is unique. In most cases this will be a pmf, meaning that in addition
we assume

∑
x µ(x) = 1. If the state space is not finite, say X = Rn, then we must modify the

definition:
〈µ, J〉 :=

∑

x∈X
{µ(x)J(x) : µ(x) > 0}

That is, µ is always assumed to have finite support.
Prop. 3.9 states that the Bellman equation can be cast as a linear program. If we have a

parameterized family {Jθ, Qθ : θ ∈ Rd} that is linear in θ, then we can construct a similar linear
program with variable θ. This LP is found in Section 5.5 as eq. (5.53), followed by many other
approaches to approximately solve the Bellman equation.

For any function J : X→ R, and any scalar r, let SJ(r) denote the sublevel set :

SJ(r) = {x ∈ X : J(x) ≤ r} (3.33)

69

The function J is called inf-compact if the set SJ(r) is either compact, empty, or SJ(r) = X (the
three possibilities depend on the value of r). In most cases we find that SJ(r) = X is impossible,
so that we arrive at the stronger coercive condition (2.27):

lim
‖x‖→∞

J(x) =∞

Proposition 3.9. Suppose that the value function J? defined in (3.2) is continuous, inf-
compact, and vanishes only at xe. Then, the pair (J?, Q?) solve the following convex program in
the “variables” (J,Q):

max
J,Q

〈µ, J〉 (3.34a)

s.t. Q(x, u) ≤ c(x, u) + J(F(x, u)) (3.34b)

Q(x, u) ≥ J(x) , x ∈ X , u ∈ U(x) (3.34c)

J is continuous, and J(xe) = 0. (3.34d)

We can without loss of generality strengthen (3.34b) to equality: Q(x, u) = c(x, u) +
J(F(x, u)). Based on this substitution, the variable Q is eliminated:

max
J
〈µ, J〉 (3.35a)

s.t. c(x, u) + J(F(x, u)) ≥ J(x) , x ∈ X , u ∈ U(x) (3.35b)

This more closely resembles what you find in the stochastic control literature (see [5] for a sur-
vey). The more complex LP (3.34) is introduced because it is easily adapted to RL applications.

We present next an important corollary that will motivate RL algorithms to come. Denote
for any pair (J,Q) the Bellman error:

D(J,Q)(x,u) :=−Q(x, u) + c(x, u) + J(F(x, u)) , x ∈ X u ∈ U (3.36)

Its square is denoted Eε(J,Q) = D(J,Q)2; a non-negative function on X × U (recall (2.49) for
motivation).

Corollary 3.10. Suppose that the assumptions of Prop. 3.9 hold. Then, for any constants
κε > 0, 0 ≤ %ε ≤ 1, and pmfs µ, ν, the pair (J?, Q?) solve the following quadratic program:

max
J,Q

〈µ, J〉 − κε〈ν, Eε(J,Q)〉 (3.37a)

s.t. Constraints (3.34b)–(3.34d) (3.37b)

Q(x, u) ≥ (1− %ε)c(x, u) + J(F(x, u)) (3.37c)

The extra constraint (3.37c) is introduced so we arrive at something closer to (3.35). The
choice %ε = 0 is not excluded, but we will need the extra flexibility when we seek approximate
solutions.

70

3.6 Linear Quadratic Regulator

For the linear system model (2.13), with quadratic cost (3.3), it is known that the value function
is quadratic, J?(x) = xᵀM?x for each x. The Q-function is also quadratic: combining the
definition (3.6) with the system model (2.13a),

Q?(x, u) = c(x, u) + J?(Fx+Gu) (3.38)

A more explicit quadratic representation can be found in eq. (3.41).
The optimal policy is obtained by minimizing the Q-function over u, which is easily done

via the first-order condition for optimality:

0 = ∇uQ?(x, u) = 2Ru? + 2GᵀM?(Fx+Gu?)

Under the assumption that R > 0 it follows that R +GᵀM?G > 0 (and hence invertible). The
minimizer u? = φ?(x) defines the optimal policy as linear state feedback:

φ?(x) = −K?x with K? = [R+GᵀM?G]−1GᵀM?F (3.39)

To obtain φ? we must compute the value function, since the gain K? depends on M? ≥ 0.
This matrix solves a fixed-point equation known as the algebraic Riccati equation (ARE):

M? = F ᵀM?F − (F ᵀM?G)(R+GᵀM?G)−1(GᵀM?F) + S (3.40)

This equation will in general have many symmetric solutions, though only one provides a rep-
resentation of the value function. Prop. 3.9 leads to an alternative LP characterization of M?

whose solution is unique.
To understand the LP (3.34) in this special case, it is most convenient to express all three

functions appearing in (3.34b) in terms of the variable zᵀ = (xᵀ, uᵀ):

J?(x, u) = zᵀMJ?z Q?(x, u) = zᵀMQ?z c(x, u) = zᵀM cz (3.41a)

MJ? =

[
M? 0
0 0

]
M c =

[
S 0
0 R

]
(3.41b)

MQ? = M c +

[
F TM?F F TM?G
GTM?F GTM?G

]
(3.41c)

Justification of the formula for MQ? is contained in the proof of Prop. 3.11 that follows.

Proposition 3.11. Suppose that J? is everywhere finite. Then, the value function and Q-
function are each quadratic: J?(x) = xᵀM?x for each x, where M? ≥ 0 is a solution to the
algebraic Riccati equation, and the quadratic Q-function is given in (3.41). The matrix M? is
also the solution to the following convex program:

M? ∈ arg max trace (M) (3.42a)

s.t.

[
S 0
0 R

]
+

[
F TMF F TMG
GTMF GTMG

]
≥
[
M 0
0 0

]
(3.42b)

where the maximum is over symmetric matrices M , and the inequality constraint (3.42b) is in
the sense of symmetric matrices.

71

Despite its linear programming origins, (3.42) is not a linear program: it is an example of a
semi-definite program (SDP) [212]. The proof of the proposition is contained in the Appendix.

Proof of Prop. 3.11. The reader is referred to standard texts for the derivation of the ARE
[1, 43]. The following is a worthwhile exercise: postulate that J? is a quadratic function of x,
and you will find that the Bellman equation implies the ARE.

Now, on to the derivation of (3.42). The variables in the linear program introduced in
Prop. 3.9 consist of functions J and Q. For the LQR problem we restrict to quadratic functions:

J(x) = xᵀMx , Q(x, u) = zᵀMQz

and treat the symmetric matrices (M,MQ) as variables.
To establish (3.42) we are left to show 1) the objective functions (3.34a) and (3.42a) coincide

for some µ, and 2) the functional constraints (3.34b, 3.34c) are equivalent to the matrix inequality
(3.42b). The first task is the simplest:

trace (M) =
n∑

i=1

J(ei) = 〈µ, J〉

with {ei} the standard basis elements in Rn, and µ(ei) = 1 for each i.
The equivalence of (3.42b) and (3.34b, 3.34c) is established next, and through this we also

obtain (3.41c). In view of the discussion preceding (3.35), the inequality constraint (3.34b) can
be strengthened to equality:

Q?(x, u) = c(x, u) + J?(Fx+Gu)

It remains to establish the equivalence of (3.42b) and (3.35).
Applying (3.38), we obtain a mapping from M to MQ. Denote

MJ =

[
M 0
0 0

]
, Ξ =

[
F G
F G

]

giving for all x and zᵀ = (xᵀ, uᵀ),

J(x) = xᵀMx = zᵀMJz , J(Fx+Gu) = zᵀΞᵀMJΞz

This and (3.38) gives, for any z,

zᵀMQz = Q(x, u) = c(x, u) + J(Fx+Gu)

= zᵀM cz + zᵀΞᵀMJΞz

The desired mapping from M to MQ then follows, under the standing assumption that MQ is
a symmetric matrix:

MQ = M c + ΞᵀMJΞ =

[
S 0
0 R

]
+

[
F TMF F TMG
GTMF GTMG

]

The constraint (3.35) is thus equivalent to

zᵀMJz = J(x) ≤ Q(x, u) = zᵀMQz , for all z

This is equivalent to the constraint MJ ≤MQ, which is (3.42b). ut

72

3.7 A Second Glance Ahead

In Section 2.5 it was only possible to talk about RL within the framework of policy selection
within a parameterized family. We can broaden this vision now that we know something about
optimal control.

Let’s turn to a common approach to RL in which we choose a parameterized family of
functions {Qθ : θ ∈ Rd}, and seek among them an approximation to the Q-function Q? defined
in (3.6). For any θ we obtain a policy by mimicking (3.8):

φθ(x) ∈ arg min
u

Qθ(x, u) , x ∈ X (3.43)

Consider how we might approximate policy iteration: given an initial policy φ0, generate a
sequence of policies {φn} and parameter estimates {θn} as follows:

(i) Obtain a parameter θn to achieve the approximation Qθn ≈ Qn, where the latter is the
fixed-policy Q-function that satisfies

Qn(x, u) = c(x, u) +Qn(x+, u+) , x+ = F(x, u) , u+ = φn(x+) (3.44)

(ii) Define a new policy φn+1 = φθn , along with a fresh exploration policy for the next
iteration of (i)

The fixed point equation (3.44) is essentially the same as the fixed policy dynamic programming
equation (2.24), but defined for the fixed-policy Q-function rather than the value function.
Achieving the approximation Qθn ≈ Qn is a topic of Chapter 5, as was noted previously in
Section 2.5.2. The two polices in (ii) may be required so we respect the exploration challenge
discussed in Section 2.5.

Refinements of this approximation of PIA are favored in the RL literature—to be explored
in greater depth in Section 5.3.

An alternative is to reconsider the temporal difference sequence (2.48), which was defined
for a fixed-policy value function and associated dynamic programming equation (2.24). Recall
the dynamic programming equation for the Q-function introduced in (3.9):

Q?(x, u) = c(x, u) +Q?(F(x, u)) , Q?(x) = min
u
Q?(x, u)

Just as in (2.48), for any approximation Q̂ we can observe the Bellman error along the state-input
trajectory:

Dk+1(Q̂) :=−Q̂(x(k), u(k)) + c(x(k), u(k)) + Q̂(x(k + 1)) (3.45)

This is zero for every k if Q̂ = Q?.
Q-learning is broadly defined as algorithms to choose θ∗ so that |Dk+1(Qθ)| is in some sense

minimized over all θ, based on observations of the system for k = 0 to N . The first approach
that might come to mind is to mimic the mean-square criterion (2.49):

Eε(θ) =
1

N

N−1∑

k=0

[
Dk+1(Qθ)

]2
(3.46)

Unfortunately, minimizing this objective function is often difficult, because of the minimum in
the definition of Qθ. Alternative approaches are investigated in Chapter 5.

73

3.8 Examples

0

10

20

30

40

50

60

70

M
ax

im
um

 B
el

lm
an

 E
rr

or

BE = max
x

−J(x) + min
u

[c(x, u) + J(F(x, u))]

B
E

Iterations

J∗(z, v)

Position z
Velocity v

−1.25−1.00−0.75−0.50−0.25 0.00 0.25 0.50

−0.06
−0.04

−0.02
0.00

0.02
0.04

0.06

0

10

20

30

40

50

60

70

30 40 500 10 20 60 n

VIA

PIA

Figure 3.3: Value function for MountainCar, and performance of the two basic dynamic programming algorithms

3.8.1 Mountain Car

Ve
lo

ci
ty

0

10

20

30

40

50

60

-1.2 -0.96 -0.72 -0.49 -0.25 -0.01 0.23 0.5
Position

-1.2 -0.96 -0.72 -0.49 -0.25 -0.01 0.23 0.5
Position

z

-0.07

0.0

0.07

J∗(z, 0)u∗ = −1

u∗ = 1

Figure 3.4: Optimal policy for MountainCar, and the total cost J?(x) with x = (z, 0).

74

3.9 Exercises

3.1 Consider the scalar optimal control problem with linear dynamics:

x(k + 1) = x(k)− u(k) (3.47)

with x(k) and u(k) constrained to X = R+.

(i) With cost function c(x, u) = x2 + ru2, show that the LQR solution (??) solves
the total cost optimization problem (3.2). Note: you must check that your policy is
feasible, which means that 0 ≤ u?(k) ≤ x?(k) for each k.

(ii) Consider the more general cost c(x, u) = xp + ruq. Assume that p, q ≥ 1 so that c
is a convex function on R2

+. Linearity of (3.47) then implies that J? is also convex,
and you might guess that it is approximated by a similar function J(x) = xs, with
s ≥ 1.

WIP Compute the Bellman error (3.30) for arbitrary s, keeping in mind that u
is constrained:

B(x) = −J(x) + min
0≤u≤x

[c(x, u) + J(F(x, u))] , F(x, u) = x− u

3.2 Box constrained LQR [217]

3.3 The similarity between (3.26) and (3.10) is explored in this exercise.

To get started, assume that J0 ≡ 0 for the initialization of value iteration, and compute
J1 using (3.10). Verify that J1(x) = J?(x, T) for each x. Repeat: write down the formula
for J2 using (3.10), and verify that J2(x) = J?(x, T − 1) (recall (3.26)). This procedure
leads to a proof by induction that Jk+1(x) = J?(x, T − k) for each k ≤ T .

Now a mild generalization: for general J0, show that the function Jn obtained from the
VIA algorithm (3.10) satisfies (3.11) (and observe the similarity with (3.4a)). The proof of
(3.11) is an instance of the principle of optimality illustrated in Fig. 3.1.

3.4 Consider the double integrator ÿ = u.
(a) Obtain a state space model with xt = (y(t), ẏ(t))ᵀ

(b) Compute the value function as a function of x(0) = x:

J?(x) =

∫ ∞

0
y(t)2 + u2

t dt,

Perform all calculations by hand.

3.5 ?

3.6 ?

3.7 ?

3.8 ?

3.9 ?

3.10 ?

3.11 ?

3.12 ?

75

3.10 Notes

Work in progress—comments welcome: This chapter is too broad for a full history of contribu-
tions!

There are many good books on theory and history of nonlinear optimal control [228, 27].
This chapter has provided only a brief survey of the LQR problem. See the books [125, 1] for
much more theory and history, the December 1971 special issue of the IEEE Transactions on Au-
tomatic Control, and early work of Kalman [109, 110].

If you have the Control System Toolbox from Matlab, then you have available some brilliant
tools for computation:

lqr, lqrd: Solves the LQR problem using the data A, B, Q, and R.

are, ared: Solves the algebraic Riccati equation in continuous or discrete time

conv, rlocus: used to graph the “symmetric root locus” [1, 43] (worth knowing about,
but this book is not the best reference!)

Inverse dynamic programming and the control Lyapunov approach to control has a long
history in both control theory literature [78, 217, 165]. It lurks behind the curtains in the RL
literature: minimization of the Bellman error is closely aligned with the IDP approach to control

The linear programming approach to dynamic programming goes back to Manne in the 60’s
[138, 65, 5, 34]. There is an on-going research program on LP approaches to optimal control
for deterministic systems [214, 100, 101, 130, 111, 37, 88, 89, 38]. A significant program on
linear programming approaches to approximate dynamic programming began in [61, 62, 63] and
continues today—see Chapter 10 for more history.

76

Chapter 4

ODE Methods for Algorithm Design

For our purposes, an algorithm is a finite sequence of computer-implementable instructions,
designed to compute or approximate a policy, its performance, a value function, or related
quantities. In algorithm design we will see it is useful to throw away the constraints of computers,
and pretend that they can operate with infinite clock-speed. An ordinary differential equation
(ODE) will be regarded an example of an algorithm operating on this imaginary computer.

The motivation comes from two sources. First, we want to know if our algorithm will
eventually lead to a good approximation. This is easily couched in the theory of stability of
ODEs, for which there is a far richer theory than stability of recursions in discrete time. Secondly,
once we have constructed an ODE with desirable properties, including stability, we can then get
advice from experts to provide the translation from calculus to a practical recursive algorithm.
Expertise is required in the theory of numerical methods for ODEs [46], and/or the theory of
stochastic approximation (which is a close cousin). My personal favorite for the latter is [36],
but there are many other great resources [23, 22, 124].

4.1 Ordinary Differential Equations

Let’s start with a question we should probably have posed earlier: what is an ODE? The question
was taken for granted many times in the preceding pages. Up to now, the state space model in
continuous time considered in Section 2.4.3 is the most significant example.

The “state variable” in our applications usually represents the output of an algorithm, rather
than anything directly related to a control system. For this reason, throughout this chapter we
use ϑ = {ϑt : t ≥ 0} to denote the state process for the ODE, and restrict to the Euclidean
setting: ϑt ∈ Rd for an integer d. The state space model (2.33) in this notation is

d
dtϑ = f(ϑ) (4.1)

where ϑ0 = θ0 ∈ Rd is given, and f : Rd → Rd is the vector field as in (2.33). Two examples with
n = 1:

f(θ) = aθ and ϑt = θ0e
at

f(θ) = θ−2 and ϑt = [θ−1
0 − t]−1

The ODE (4.1) is time-homogeneous since the right hand side does not depend upon t. See
Section 3.3 for hints on how to apply state augmentation to create homogeneity for a model in
which f does depend on time.

77

78

In every application of the ODE approach to algorithm design, the first step is to construct
the vector field f so that ϑt converges to some desired value θ∗ ∈ Rd. In particular, if ϑ0 = θ∗,
then the solution to the ODE should stay put: ϑt = θ∗ for all t ≥ 0. This requires that d

dtϑt = 0
for all t, which by (4.1) implies that θ∗ is an equilibrium: f(θ∗) = 0. Advanced material on
stability theory for ODEs is contained in Section 4.8. Some of this can be anticipated from the
Lyapunov theory contained in Section 2.4.3.

Understanding theory surrounding existence of solutions of (4.1) is the first step towards
understanding ODE principles for algorithm design in this chapter and in Part 2 of the book.
Much as how the Bellman equation (3.5) is regarded as a fixed point equation, the ODE (4.1)
is a fixed point equation in the variable ϑ = {ϑt : t ≥ 0}. Perhaps we can mirror the success of
the value iteration algorithm (3.10) (an instance of successive approximation)? Writing (4.1) as
ϑ = ϑ− d

dtϑ+ f(ϑ), an analog would be

ϑn+1(t) = ϑn(t)− d
dtϑ

n(t) + f(ϑn(t)) , t ≥ 0, n ≥ 0

with ϑ0 = {ϑ0(t) : t ≥ 0} given as initial condition. This approach is doomed to failure! One
source of difficulty is the repeated differentiation in this recursion, which means we have to be
very careful with our selection of ϑ0. Also, this recursion does not respect the requirement
ϑ0 = θ0.

The difficulty introduced by differentiation motivates an alternative interpretation of the
ODE. The Fundamental Theorem of Calculus provides something sensible:

ϑt = ϑ0 +

∫ t

0
f(ϑτ) dτ , 0 ≤ t ≤ T (4.2)

The finite time horizon T is chosen for the sake of analysis. Successive approximation is defined
as before: take an initial guess ϑ0 = {ϑt : 0 ≤ t ≤ T}, and define for n ≥ 0,

ϑn+1(t) = ϑ0 +

∫ t

0
f(ϑnτ) dτ , 0 ≤ t ≤ T (4.3)

This approach is as successful as value iteration:

Proposition 4.1. Suppose that the function f is globally Lipschitz continuous: there is ` > 0
such that for each x, y ∈ Rd,

‖f(x)− f(y)‖ ≤ `‖x− y‖ (4.4)

Then for each θ0 there exists a solution to (4.2) on the infinite time horizon. Moreover successive
approximation is uniformly convergent:

lim
n→∞

max
0≤t≤T

‖ϑn(t)− ϑt‖ = 0

ut

The proof of Prop. 4.1 can be found in Chapter 9. A key component of the proof is
Grönwall’s Inequality, which commonly appears in the theory of stochastic approximation, as
well as ordinary differential equations. Note that Bellman had early influence here [21], which
is why Prop. 4.2 is often called the Bellman-Grönwall Lemma.

79

Proposition 4.2. (Grönwall Inequality) Let α, β and z be real-valued functions defined
on an interval [0, T], with T > 0. Assume that β and z are continuous.

(i) If β is non-negative and if z satisfies the integral inequality

zt ≤ αt +

∫ t

0
βszs ds (4.5)

Then Grönwall Inequality holds:

zt ≤ αt +

∫ t

0
αsβs exp

(∫ t

s
βr dr

)
ds, 0 ≤ t ≤ T . (4.6)

(ii) If, in addition, the function α is non-decreasing, then

zt ≤ αt exp
(∫ t

0
βs ds

)
, 0 ≤ t ≤ T . (4.7)

ut

The proof can be found in Section 4.8, or if you have background in linear state space models,
you might want to work it out on your own. Hint: first solve the problem with equality:

zt = γt +

∫ t

0
βszs ds (4.8)

You can construct a state space model, with state xt = zt − γt, and because it is a scalar linear
system you obtain an explicit solution. The solution leads to something like (4.6), but with
equality.

4.2 A Brief Return to Reality

This entire chapter considers ODE approaches to algorithm design: this means design of the
function f appearing in (4.1), or design of the more exotic ‘quasi-stochastic’ ODEs for which
theory and applications are developed in Section 4.9.3 and sections 4.6 and 4.7.

There is the inevitable translation step: any design formulated in continuous time must be
translated to create a practical algorithm. If you have taken a first year calculus course, then
you probably have predicted the most common appoach: select a sequence of times {0 = t0 <
t1 < · · · }, and replace the derivative in (4.1) by a finite difference: with ϑ0 = θ0 given, define
for each k ≥ 0,

α−1
k [ϑ̄tk+1

− ϑ̄tk] = f(ϑ̄tk)

where αk = tk+1 − tk > 0. The recursive nature is evident after rearranging terms:

ϑ̄tk+1
= ϑ̄tk + αkf(ϑ̄tk) (4.9)

In our final algorithm we simplify notation, writing θk = ϑ̄tk . This is known as the Euler
approximation of an ODE, or simply Euler’s method.

This approximation is successful under the assumptions of Prop. 4.1: It can be shown that

max
0≤t≤T

‖ϑ̄t − ϑt‖ ≤ K(`, T)ᾱ (4.10)

80

where ᾱ = max{αk : tk+1 ≤ T}. The proof is given in Chapter 9, with upper bounds on K(`, T)
that at first appear frightening (growing exponentially fast in ` and T).

Fortunately, asymptotic stability of the ODE often implies stability of (4.10), and in this
case we obtain the bound (4.10) with K(`, T) independent of T > 0.

Example: The Euler approximation for the LTI model in continuous time (2.41), with f(x) =
Ax, results in the discrete time model (2.39), with F = (1 + αA) (with sampling interval α > 0
fixed).

Consider the scalar case d
dtϑ = aϑ, which admits the solution ϑt = θ0e

at. The Euler approx-
imation results in a similar solution, as a function of the initial condition:

ϑ̄tk+1
= F kϑ̄0 , F = (1 + αa)

The approximation ϑ̄tk = ϑtk + O(α) follows from the Taylor series approximation for the
exponential, (1 + αa)k ≈ (eαa)k = eatk .

If a < 0 and α < |a|−1, then the approximation holds on the infinite time interval, since
both ϑ̄tk and ϑtk converge to zero geometrically fast, as k →∞. ut

Those interested in a high-fidelity approximation of an ODE usually abandon the Euler
approximation for more sophisticated techniques, such as the midpoint method or more general
Runge-Kutta methods [46, 105]. The update equations are more complex, but this complexity
is often offset by the tighter approximation.

4.3 Newton-Raphson Flow

This section concerns an approach to ODE design, in which the goal is to solve the root finding
problem:

f(θ∗) = 0

The parameter θ∗ may be regarded as an equilibrium condition for the ODE (4.1). The problem
we face here is that this ODE may not be stable in any sense. In this section we describe a
generic approach to modify the dynamics to ensure stability.

Section 4.4 concerns root finding problems for the special case in which f = −∇θL, where
L : Rd → R+ is a loss function associated with some optimization problem. The root finding
problem is then equivalent to the first order condition for optimality, ∇θL (θ∗) = 0. If L has
nice properties (such as convexity), then it is not difficult to establish stability of (4.1). In the
absence of these nice properties, the techniques in this section may prove useful.

The approach taken here is to modify our objective, treating f(ϑt) as a “state variable”. Our
goal is to construct an ODE so that limt→∞ f(ϑt) = 0 for each initial condition. Under mild
additional assumptions on f it will follow that limt→∞ ϑt = θ∗, which is our design objective.

If f(ϑt) is a state variable, this means there is an associated vector field V : Rd → Rd, and

d
dt f(ϑt) = V(f(ϑt)) (4.11)

One way to ensure that f(ϑt) converges to zero is to choose V(f) = −f , giving

d
dt f(ϑt) = −f(ϑt) (4.12)

81

The solution is f(ϑt) = e−tf(ϑ0), which converges to zero exponentially quickly. Achieving these
dynamics would be an amazing feat!

Well, it isn’t really so difficult: we have the chain rule:

d
dt f(ϑt) = A(ϑt)

d
dtϑt , with A(θ) = ∂θf (θ) , θ ∈ Rd

This means that achieving the dynamics (4.11) is equivalent to

d
dtϑt = [A(f(ϑt))]

−1V(f(ϑt))

Application of this identity, for the special case V(f) = −f , defines the Newton-Raphson flow :

d
dtϑt = −

[
A(ϑt)

]−1
f(ϑt) (4.13)

The function on the right hand side will be called the Newton-Raphson vector field

fNRf(θ) = −
[
A(θ)

]−1
f(θ) (4.14)

In most applications it is not possible to determine a-priori if the matrix A(θ) = ∂θf (θ) is
full rank, which motivates a regularized Newton-Raphson flow :

d
dtϑt = −[εI +A(ϑt)

ᵀA(ϑt)]
−1A(ϑt)

ᵀf(ϑt) (4.15)

It is shown in Prop. 4.3 that (4.15) is stable, provided V = ‖f‖2 is a coercive function on Rd. It
follows that V serves as a Lyapunov function for (4.15), giving

lim
t→∞

f(ϑt) = 0 (4.16)

Proposition 4.3. Consider the following conditions for the function f:

(a) f is globally Lipschitz continuous and continuously differentiable. Hence A(·) is a
bounded and continuous matrix-valued function.

(b) ‖f‖ is coercive. That is, {θ : ‖f(θ)‖ ≤ n} is compact for each n.

(c) The function f has a unique rot θ∗, and Aᵀ(θ)f(θ) 6= 0 for θ 6= θ∗. Moreover, the matrix
A∗ = A(θ∗) is non-singular.

The following hold for solutions to the ODE (4.15) under increasingly stronger assumptions:

(i) If (a) holds then for each t, and each initial condition

d
dt f(ϑt) = −A(ϑt)[εI +A(ϑt)

ᵀA(ϑt)]
−1A(ϑt)

ᵀf(ϑt) (4.17)

(ii) If in addition (b) holds, then the solutions to the ODE are bounded, and

lim
t→∞

A(ϑt)
ᵀf(ϑt) = 0 (4.18)

(iii) If (a)–(c) hold, then (4.15) is globally asymptotically stable. ut

82

Proof. The result (i) follows from the chain rule and the definitions.

The proof of (ii) is based on the Lyapunov function V (ϑ) = 1
2‖f(ϑ)‖2 combined with (a):

d
dtV (ϑt) = −f(ϑt)

ᵀA(ϑt)[εI +A(ϑt)
ᵀA(ϑt)]

−1A(ϑt)
ᵀf(ϑt)

The right hand side is non-positive when ϑt 6= θ∗. Integrating each side gives for any T > 0,

V (ϑT) = V (ϑ0)−
∫ T

0
f(ϑt)

ᵀA(ϑt)[εI +A(ϑt)
ᵀA(ϑt)]

−1A(ϑt)
ᵀf(ϑt) dt (4.19)

so that V (ϑT) ≤ V (ϑ0) for all T . Under the coercive assumption, it follows that solutions to
(4.15) are bounded. Also, letting T →∞, we obtain from (4.19) the bound

∫ ∞

0
f(ϑt)

ᵀA(ϑt)[εI +A(ϑt)
ᵀA(ϑt)]

−1A(ϑt)
ᵀf(ϑt) dt ≤ V (ϑ0)

This combined with boundedness of ϑt implies that limt→∞A(ϑt)
ᵀf(ϑt) = 0.

We next prove (iii). Global asymptotic stability of (4.15) requires that solutions converge to
θ∗ from each initial condition, and also that θ∗ is stable in the sense of Lyapunov. Assumption (c)
combined with (ii) gives the former, that limt→∞ ϑt = θ∗. A convenient sufficient condition for
the latter is obtained by considering A∞ = ∂θ[G(θ)f(θ)] |θ=θ∗ . Stability in the sense of Lypaunov
holds if this matrix is Hurwitz (all eigenvalues are in the strict left half plane in C) [113,
Thm. 4.7]. Apply the definitions, we obtain A∞ = −[εI +M]−1M with M = A(θ∗)ᵀA(θ∗) > 0
(recall that A(θ∗) is assumed to be non-singular). The matrix A∞ is negative definite, and hence
Hurwitz. ut

4.4 Optimization

Here we turn to a optimization of a loss function L : Rd → R+, for which we would like to
compute a global minimum

θ∗ ∈ arg minL(θ)

The section contains a very brief survey of optimization theory, and ODE techniques to estimate
θ∗. In particular, we establish conditions under which the steepest descent ODE is convergent:

d
dtϑ = −∇θL(ϑ) (4.20)

The purpose of our analysis is to find minimal conditions under which we know we will be
successful. This requires strong assumptions for steepest descent other ODE methods to be
considered.

However, please do not feel you have to prove a theorem before you can experiment: the algo-
rithms we obtain are frequently successful in practice, even when our assumptions are violated.
For example, the optimization problems arising in training neural networks are not convex, but
practitioners commonly apply the gradient descent algorithms described next.

83

4.4.1 Role of convexity

A function L : Rd → R is convex if the following bound holds for any θ0, θ1 ∈ Rd and α ∈ (0, 1):

L((1− α)θ0 + αθ1) ≤ (1− α)L(θ0) + αL(θ1) (4.21)

An equivalent definition has a stronger geometric flavor: for each θ0 ∈ Rd, there is a vector
v0 ∈ Rd satisfying

L(θ) ≥ L(θ0) + 〈v0, θ − θ0〉 , for all θ ∈ Rd (4.22)

The right hand side is regarded as an affine function of θ, and the bound means that the graph
of L is always above the graph of the affine function. The vector v0 is called a sub-gradient. If
L is differentiable at θ0, then it is an ordinary gradient v0 = ∇L (θ0).

Recall that a set S ⊂ Rd is convex if it contains all line segments with endpoints in S. That
is, if θ0, θ1 ∈ S, then (1−α)θ0 +αθ1 ∈ S for any α ∈ (0, 1). The function L is called quasi-convex
if the sublevel set SL(r) is convex (or empty) for any scalar r, where (recalling (2.26)),

SL(r) = {θ ∈ Rd : L(θ) ≤ r}

For example, with d = 1, any continuous non-decreasing function is quasi-convex, since in this
case SL(r) = (−∞, a(r)] for each r, where a(r) = max{θ : L(θ) ≤ r} (continuity isn’t required
to ensure quasi-convexity, but is required to arrive at this representation for the sublevel set.

A convex function is always quasi-convex. There are also several stronger conditions for the
function L:

N It is strictly convex if the inequality (4.21) is strict whenever θ1 6= θ0.

N If L is differentiable, then it is called strongly convex if for a constant m > 0 and all
θ, θ0 ∈ Rd,

{∇L(θ)−∇L(θ0)}ᵀ(θ − θ0) ≥ m‖θ − θ0‖2 (4.23)

Strong convexity is used to establish nice numerical properties of ODEs designed to compute a
global optimum. The value of convexity and strict convexity is made clear in the following.

Proposition 4.4. Suppose that L : Rd → R+ is convex. Then, for given θ0 ∈ Rd,

(i) If θ0 is a local minimum, then it is also a global minimum

(ii) If L is differentiable at θ0, with ∇L (θ0) = 0, then θ0 is a global minimum.

(iii) If either of (i) or (ii) holds, and if L is strictly convex, then θ0 is the unique global
minimum ut

Proposition 4.5. Suppose that L is strongly convex and continuously differentiable, with
unique minimizer θ∗. Then θ∗ is globally asymptotically stable for the gradient descent ODE
(4.20). If L is strongly convex, then the rate of convergence is exponential:

d
dt‖ϑt − θ∗‖ ≤ e−mt‖ϑ0 − θ∗‖

where m appears in (4.23).

84

Proof. We adopt the Lyapunov function approach, using V (θ) = 1
2‖θ − θ∗‖2. From the chain

rule,
d
dtV (ϑ) = −∇θL(ϑ)ᵀ{ϑ− θ∗}

. . . ut

4.4.2 Constrained optimization

Consider the optimization problem with equality constraints:

L? := min L(θ)

s.t. g(θ) = 0
(4.24)

where g : Rd → Rm (so there are m ≥ 1 constraints). The constraints are convex if and only if
g is an affine function of θ: for an m× d matrix D and vector d ∈ Rm,

g(θ) = Dθ + d

One approach to the solution of these problems is through a Lagrangian relaxation, defined
through a sequence of steps. Introduce the Lagrangian L : Rd × Rm → R:

L(θ, λ) = L(θ) + λᵀg(θ) , θ ∈ Rd , λ ∈ Rm

The so-called dual function is the minimum of the Lagrangian, with constraints removed:

ϕ∗(λ) = min
θ
L(θ, λ)

The value −∞ is possible: consider what happens when L is a linear function of θ.

For any λ ∈ Rm we obtain a lower bound on L? as follows:

ϕ∗(λ) ≤ min
θ
{L(θ, λ) : g(θ) = 0} = min

θ
{L(θ) : g(θ) = 0} = L?

where the inequality holds because we have re-introduced the constraints, which means we are
minimizing L over a potentially smaller set. The dual problem is defined to be the maximum of
ϕ∗ over all λ:

max
λ

min
θ
L(θ, λ) = max

λ
ϕ∗(λ) ≤ L? (4.25)

We say there is a duality gap if the inequality is strict. The left hand side is called a min-max
(or saddle point) problem.

There is a simple ODE to obtain a solution to the saddle point problem (4.25), known as
the primal-dual flow :

d
dtϑ = −∇θL(ϑ, λ) = −∇L(ϑ)− [∇θg(ϑ)]ᵀλ (4.26a)
d
dtλ = ∇λL(ϑ, λ) = g(ϑ) (4.26b)

where for each i, {
[∇θg(ϑ)]ᵀλ

}
i

= 〈∇θgi(ϑ), λ〉 = ∇θgi(ϑ)ᵀλ

85

Proposition 4.6. Suppose that L is strictly convex, and g is affine. Then the primal-dual
algorithm converges to the unique solution (θ∗, λ?) of the dual:

L(θ∗, λ?) = L?

Proof. The proof is remarkably simple, and similar to Prop. 4.5. Consider the Lyapunov function

V (θ, λ) = 1
2‖θ − θ∗‖2 + 1

2‖λ− λ?‖2

Applying the chain rule,

d
dtV (ϑ, λ) = 〈ϑt − θ∗, ∂θL(ϑtλt)

d
dtϑt〉+ 〈λt − λ?,∇λL(ϑt, λt), ∂λL(ϑtλt)

d
dtλt〉

≤ [L(θ∗ , λt)− L(θ∗ , λ?)]dt+ [L(θ∗ , λ?)− L(ϑt , λ
?)]dt

. . . ut

The case of inequality constraints is considered next:

L? := min L(θ)

s.t. g(θ) ≤ 0
(4.27)

where again g : Rd → Rm. If gi is a convex function for each i (or simply quasi-convex), then
the constraint region S = {θ : g(θ) ≤ 0} is a convex set.

The Lagrangian and dual function ϕ∗ are defined exactly as before, but we must restrict to
λ ∈ Rm+ to obtain the prior upper bound:

ϕ∗(λ) ≤ min
θ
{L(θ, λ) : g(θ) ≤ 0} ≤ min

θ
{L(θ) : g(θ) ≤ 0} = L?

where the second inequality is based on the bound λᵀg(θ) ≤ 0 when g(θ) ≤ 0 and λ ≥ 0. The
saddle point problem is defined as before:

max
λ≥0

min
θ
L(θ, λ) = max

λ≥0
ϕ∗(λ) ≤ L? (4.28)

Subject to convexity and minor additional assumptions, there is no duality gap (the inequality
is actually and equality).

The primal-dual flow is almost the same as (4.26). The ODE for the parameter estimate is
identical:

d
dtϑ = −∇L(ϑ)− [∇θg(ϑ)]ᵀλ

The ODE for the dual variable λ must be modified to impose non-negativity. This comes in the
form of an m-dimensional reflection process γ. It is easiest to express the new dual dynamics in
integral form

λt = λ0 +

∫ t

0
g(ϑr) dr + γt , (4.29)

where λ0 ≥ 0 is the initial condition. The reflection process is defined by three constraints (for
each 1 ≤ i ≤ m):

1. γ0(i) = 0

86

2. γ(i) is non-decreasing, and the solution to (4.29) is non-negative (λt(i) is non-negative
for each i and t).

3. It is the minimal function of time satisfying 1 and 2, which is equivalently expressed

∫ T

0
λt(i) dγt(i) = 0 , for all T > 0 (4.30)

The integral (4.30) is defined in the sense of Riemann and Stieltjes, and on combining 1–3 we
see that

λt(i) > 0 =⇒ d
dtγt(i) = 0

Prop. 4.6 extends easily to this primal-dual flow, and the proof is identical: the property (4.30)
makes the reflection process disappear in the Lyapunov function analysis.

The open question is how to translate this into a discrete-time algorithm, since (4.29) is no
longer an ODE. A standard primal-dual algorithm is defined by the pair of recursions:

θn+1 = θn + αn+1{−∇L(θn) + λᵀn∇g(θn)
}

(4.31a)

λn+1 =
[
λn − αn+1g(θn)

]
+

(4.31b)

where
[
·
]

is the component-wise maximum with zero. Hence (4.31b) can be expressed

λn+1 = λn − αn+1g(θn) + δγn

δγn =
[
λn − αn+1g(θn)

]
+
− [λn − αn+1g(θn)] ≥ 0

with δγn interpreted as an increment of the reflection process. It is approximately minimal,
since δγn × λn = 0 whenever θn is feasible (i.e., g(θn) ≤ 0).

4.5 Quasi-Stochastic Approximation

This section is an early introduction to Chapter 9, which concerns ODE approximations and
algorithm design in a stochastic setting, based on the theory of stochastic approximation.

We are interested in solving a root-finding problem of a special form, which requires an
adjustment of notation. We are given a function f : Rd×Rm → Rd, along with an m-dimensional
“random vector” Φ. The function f used in the previous sections is replaced by the average (or
expectation):

f(θ) := E[f(θ,Φ)] , θ ∈ Rd , (4.32)

in which Our goal is then to solve f(θ∗) = 0 for this strange function f : Rd → Rd. In this
section we introduce algorithms to achieve this goal by adapting the ODE approaches in previous
sections. The big difference is that we know nothing about f or Φ.

If you don’t know what is meant by random, or expectations, you don’t have to worry. We
avoid any mention of probability in this section by replacing “random variables” by sinusoids,
or other “bouncy” functions of time.

For those of you with a background in probability: the stochastic approximation (SA) method
of Robbins and Monro [171] amounts to a variation of the Euler scheme (4.9), in which we replace
f by samples from f :

θn+1 = θn + αn+1f(θn,Φn) , n ≥ 0, (4.33)

87

where each Φn has the same distribution as Φ, or the distribution of Φn converges to that of
Φ as n → ∞. It will be seen in Chapter 9 that this recursion does approximate the associated
ODE:

d

dt
ϑt = f(ϑt). (4.34)

A useful approximation requires assumptions on f , the “noise” Φn, and the step-size sequence.
The required assumptions, and the mode of analysis, is not very different than what is required
to successfully apply the deterministic Euler approximation (4.9).

The upshot of stochastic approximation is that it can be implemented without knowledge
of the function f or of the distribution of Φ; rather, it can rely on observations of the sequence
{f(θn,Φn)}. This is one reason why these algorithms are valuable in the context of reinforcement
learning.

In much of the SA literature it is assumed that Φ is a Markov chain: a topic considered
in depth in Chapter 6. A key observation in the present chapter is that Markov chains need
not be stochastic: the deterministic state space model (2.20) (without control) always satisfies
the Markov property used in Part 2 of this book. For example, for given ω > 0, the sequence
Φn = [cos(ωn), sin(ωn)] is a Markov chain on the unit circle in R2. This motivates the quasi-
stochastic approximation (QSA) algorithm:

d
dtΘt = atf(Θt,ξt) , (4.35)

We use the terms gain and stepsize inter-changeably for the non-negative process a.
The probing signal ξ is generated from a deterministic (possibly oscillatory) signal rather

than a stochastic process. Two canonical choices are the m-dimensional mixtures of periodic
functions:

ξt =
K∑

i=1

vi[φi + ωit](mod 1) (4.36a)

ξt =

K∑

i=1

vi sin(2π[φi + ωit]) (4.36b)

for fixed vectors {vi} ⊂ Rm, phases {φi}, and frequencies {ωi}. Under mild conditions on f we
can be assured of the existence of the existence of this limit defining the mean vector field:

f(θ) = lim
T→∞

1

T

∫ T

0
f(θ,ξt) dt, for all θ ∈ Rd. (4.37)

Such signals have well defined steady-state means and covariance matrices. Consider for
example (4.36b) in the special case

ξi(t) =
√

2 sin(ωit) , 1 ≤ i ≤ m (4.38)

with ωi 6= ωj for all i 6= j. The steady state mean and covariance are then

lim
T→∞

1

T

∫ T

t=0
ξt dt = 0 (4.39a)

lim
T→∞

1

T

∫ T

t=0
ξtξ

ᵀ
t dt = I (4.39b)

88

where I is the identity matrix.
The following subsections contain examples to illustrate theory of QSA, and also a glimpse

at applications.

4.5.1 Quasi Monte-Carlo

Consider the problem of obtaining the integral over the interval [0, 1] of a function y : R → R.
In a standard Monte-Carlo approach we would draw independent random variables {Φn}, with
distribution uniform on the interval [0, 1], and then average:

θn =
1

n

n−1∑

k=0

y(Φk) (4.40)

A QSA analog is described as follows: the probing signal is the one-dimensional sawtooth func-
tion, ξt := t (modulo 1) and consider the analogous average

Θt =
1

t

∫ t

0
y(ξr) dr (4.41)

Alternatively, we can adapt the QSA model (4.35) to this example, with

f(θ,ξ) := y(ξ)− θ. (4.42)

The averaged function is then given by

f(θ) = lim
T→∞

1

T

∫ T

0
f(θ,ξt) dt =

∫ 1

0
y(ξt) dt− θ

so that θ∗ =
∫ 1

0 y(ξt) dt is the unique root of f . Algorithm (4.35) is given by:

d
dtΘt = at[y(ξt)−Θt]. (4.43)

-2
0
2
4
6
8

10

0 10 20 30 40 50 60 70 80 90 100

g = 0.25 g = 0.5 g = 1

g = 2 g = 5 g = 10

t

Θ(t)

Figure 4.1: Sample paths of Quasi Monte-Carlo estimates.

This Monte-Carlo approach (4.41) can be transformed into something resembling (4.43).
Taking derivatives of each side of (4.41), we obtain using the product rule of differentiation, and
the fundamental theorem of calculus,

d
dtΘt = − 1

t2

∫ t

0
y(ξr) dr +

1

t
y(ξt) =

1

t
[y(ξt)−Θt]

This is precisely (4.43) with at = 1/t (not a great choice for an ODE design, since it is not
bounded as t ↓ 0).

89

The numerical results that follow are based on y(θ) = e4t sin(100θ), whose mean is θ∗ ≈ −0.5.
The differential equation (4.43) was approximated using a standard Euler scheme with sampling
interval 10−3. Several variations were simulated, differentiated by the gain at = g/(1 + t).
Fig. 4.1 shows typical sample paths of the resulting estimates for a range of gains, and common
initialization Θ0 = 10. In each case, the estimates converge to the true mean θ∗ ≈ −0.5, but
convergence is very slow for g > 0 significantly less than one. Recall that the case g = 1 is very
similar to what was obtained from the Monte-Carlo approach (4.41).

Independent trials were conducted to obtain variance estimates. In each of 104 independent
runs, the common initial condition was drawn from N(0, 10), and the estimate was collected at
time T = 100. Fig. 4.2 shows three histograms of estimates for standard Monte-Carlo (4.40),
and QSA using gains g = 1 and 2. An alert reader must wonder: why is the variance reduced
by 4 orders of magnitude when the gain is increased from 1 to 2? The relative success of the
high-gain algorithm is explained in Section 4.5.

Monte Carlo QSA QSAµ = -0.47

σ2 = 2e-03

µ = -0.48

σ2 = 1e-03

µ = -0.48

σ2 = 1e-7
g = 1 g = 1 g = 2

Figure 4.2: Histograms of Monte-Carlo and Quasi Monte-Carlo estimates after 104 independent runs. The
optimal parameter is θ∗ ≈ −0.4841.

Buyer beware The remainder of this chapter is based on extensions of quasi Monte-Carlo,
which is traditionally framed in discrete time. The sawtooth function used in (4.41) is a common
choice in this research area, defined more generally in discrete time as follows:

ξ(k) = ξ(0) + 2πωk (mod 1) (4.44)

Subject to conditions on the parameter ω and function y : R → R, we have the Law of Large
Numbers:

lim
N→∞

1

N

N∑

k=1

y(ξ(k)) =

∫ 1

0
y(r) dr

This is known as the Equidistribution Theorem (see [20], and [94, p. 87] for more history).
The quasi Monte-Carlo literature contains more sophisticated techniques to define well behaved
“probing sequences”.

Sinusoids and sawtooth functions are used in this chapter for simplicity (and because of
my own ignorance of the substantial literature on pseudo randomness). So, translating a QSA
algorithm to a discrete time algorithm requires two steps: 1) an approximation of the ODE,
perhaps using the standard Euler scheme, and 2) careful selection of the probing sequence in
discrete time. I suspect that the latter choice requires care only for parameter estimation in
high dimension.

4.5.2 Constant gain algorithm

In later sections we will consider the linear approximation:

f(θ,ξ) = A(θ − θ∗) +Bξ (4.45)

90

This provides insight, and sometimes we can show strong coupling between the linear and
nonlinear QSA ODEs. We briefly consider here this linear model in which at = α is constant.
Then QSA is a time-invariant linear system:

d
dtΘt = α[AΘ̃t +Bξt] , Θ̃0 = θ̃0

where Θ̃t := Θt − θ∗ is the error at time t. For this simple model we can solve the ODE when
the probing signal is the mixture of sinusoids (4.36b).

A linear system satisfies the principle of super-position. To put this to work, consider the
probing signal (4.36b), and for each i, consider the ODE

d
dtΘ̃

i
t = α

[
AΘ̃t + vi sin(2π[φi + ωit])

)
, Θ̃i0 = 0

The principle states that the solution to the ODE is the sum:

Θ̃t = eαAtθ̃0 +B
K∑

i=1

Θ̃it (4.46)

We see that the response to the initial error θ̃0 = θ0 − θ∗ decays to zero exponentially quickly.
Moreover, to understand the steady-state behavior of the algorithm it suffices to fix a single
value of i. For more complex probing signals we can again justify consideration of sinusoids,
provided we can justify a Fourier series approximation.

Let’s keep things simple, and stick to sinusoids. And it is much easier to work with complex
exponentials:

d
dtΘ̃t = α[AΘ̃t + v exp(jωt)] , Θ̃0 = 0

with ω ∈ R and v ∈ Rd (dropping the scaling 2π for simplicity, and the phase φ is easily returned
by a time-shift). We can express the solution as a convolution:

Θ̃t = α

∫ t

0
exp
(
αAr

)
v exp

(
jω(t− r)

)
dr

= α
(∫ t

0
exp
(
[αA− jωI]r

)
dr
)
v exp

(
jωt
)

Writing D = [αA− jωI], the integral of the matrix exponential is expressed,

∫ t

0
eDr dr = D−1

[
eDt − I

]

Using linearity once more, and the fact that the imaginary part of ejωt is sin(ωt), we arrive at
a complete representation for (4.46):

Proposition 4.7. Consider the linear model with A Hurwitz, and probing signal (4.36b), for
which the constant-gain QSA algorithm has the solution (4.46). Then Θ̃it = αΓ itv

i for each i and
t, with

Γ it = Im
(

[αA− jωI]−1
[
exp
(
αAt

)
− exp

(
2πj[φi + ωit]

)
I
])

(4.47)

91

Prop. 4.7 illustrates a challenge with fixed gain algorithms: if we want small steady-state
error, then we require small α (or large ωi, but this brings other difficulties for computer
implementation—never forget Euler!). However, if α > 0 is very small, then the impact of
the initial condition in (4.46) will persist for a long time.

The Ruppert-Polyak averaging technique can be used to improve the steady-state behavior—
more on this can be found in Section 4.9.4 for vanishing-gain algorithms. It is easy to illustrate
the value for the special case considered here. One form of the technique is to simply average
some fraction of the estimates:

ΘRP
T :=

1

T − T0

∫ T

T0

Θt dt (4.48)

For example, T0 = T − T/5 means that we average the final 20%.

Corollary 4.8. Suppose that the assumptions of Prop. 4.7 hold, so in particular f is linear.
Consider the averaged estimates (4.48) in which T0 = T − T/K for fixed K > 1. Then,

ΘRP
T = θ∗ +MT θ0 +B

K∑

i=1

ΘRP i
T

where

MT =
K

T
α−1A−1

[
exp
(
αAT

)
− exp

(
αAT0

)]

and ΘRP i
T = αΓRP i

t vi for each i and t, with ΓRP i
T equal to the integral of Γ it appearing in (4.47):

ΓRP i
T =

K

T
Im
(

[αA]−1[αA− j2πωiI]−1
[
exp
(
αAT

)
− exp

(
αAT0

)])

+
K

T
Im
(j

2πωi
[αA− j2πωiI]−1

[
exp
(
2π[φi + ωiT]j

)
− exp

(
2π[φi + ωiT0]j

)])

Hence, ΘRP
T converges to θ∗ at rate 1/T . ut

4.5.3 Application to policy iteration

Consider the nonlinear state space model in continuous time,

d
dtxt = f(xt, ut) , t ≥ 0

with xt ∈ Rn, ut ∈ Rm. Given a cost function c : Rn+m → R, our goal is to approximate the
optimal value function

J?(x) = min
u

∫ ∞

0
c(xt, ut) dt , x = x0

and approximate the optimal policy. For this we first explain how policy iteration extends to
the continuous time setting.

For any feedback law ut = φ(xt), denote the associated value function by

Jφ(x) =

∫ ∞

0
c(xt,φ(xt)) dt , x = x0.

92

It follows from Prop. 2.7 that this solves a dynamic programming equation:

0 = c(x,φ(x)) +∇Jφ (x) · f(x,φ(x))

The policy improvement step in this continuous time setting defines the new policy as the
minimizer:

φ+(x) ∈ arg min
u
{c(x, u) +∇Jφ (x) · f(x, u)}

Consequently, approximating the term in brackets is key to approximating PIA.
An RL algorithm is constructed through the following steps. First, add Jφ to each side of

the fixed-policy dynamic programming equation:

Jφ (x) = Jφ (x) + c(x,φ(x)) +∇Jφ (x) · f(x,φ(x))

The right-hand side motivates the following definition of the fixed-policy Q-function:

Qφ(x, u) = Jφ(x) + c(x, u) + f(x, u) · ∇Jφ (x).

The policy update can be equivalently expressed φ+(x) = arg minuQ
φ(x, u), and this Q-function

solves the fixed point equation

Qφ(x, u) = Qφ(x) + c(x, u) + f(x, u) · ∇Qφ (x) (4.49)

where Hφ(x) = H(x,φ(x)) for any function H (note that this is a substitution, rather than the
minimization appearing in (3.9)).

Consider now a family of functions Qθ parameterized by θ, and define the Bellman error for
a given parameter as

Eθ(x, u) = −Qθ(x, u) +Qθ(x) + c(x, u) + f(x, u) · ∇Qθ (x) (4.50)

A model-free representation is obtained, on recognizing that for any state-input pair (xt, ut),

Eθ(xt, ut) = −Qθ(xt, ut) +Qθ(xt) + c(xt, ut) + d
dtQ

θ(xt) (4.51)

The error Eθ(xt, ut) can be observed without knowledge of the dynamics f or even the cost
function c. The goal is to find θ∗ that minimizes the mean square error:

‖Eθ‖2 := lim
T→∞

1

T

∫ T

0

[
Eθ(xt, ut)

]2
dt. (4.52)

We choose a feedback law with “exploration”, of the form introduced in Section 2.5.3:

ut = φ̃(xt,ξt) (4.53)

chosen so that the resulting state trajectories are bounded for each initial condition, and that
the joint process (x,u,ξ) admits an ergodic steady state.

Whatever means we use to obtain the minimizer, this approximation technique defines an
approximate version of PIA: given a policy φ and approximation Qθ

∗
, the policy is updated:

φ+(x) = arg min
u

Qθ
∗
(x, u) (4.54)

This procedure is repeated to obtain a recursive algorithm.

93

Least squares solution Consider for fixed T the loss function

LT (θ) =
1

T

∫ T

0

[
Eθ(xt, ut)

]2
dt

If the function approximation architecture is linear,

Qθ(x, u) = d(x, u) + θᵀψ(x, u) , θ ∈ Rd. (4.55)

in which d : X× U→ R. Then LT is a quadratic function of θ:

LT (θ) = θᵀMθ − 2bᵀθ + LT (0) = (θ − θ∗)ᵀM(θ − θ∗) + LT (0)

We leave it to the reader to find expressions for M , b, and LT (0).
In this special case we do not need gradient descent techniques: the matrices M and b can

be represented as Monte-Carlo, as surveyed in Section 4.5.1, and then θ∗ = M−1b.

0 1 2 3
-100

0

100
SA QSA

t × 102

Θt

30,000 samples

Figure 4.3: Comparison of QSA and Stochastic Approximation (SA) for policy evaluation.

Gradient descent The first-order condition for optimality is expressed as a root-finding prob-
lem: ∇Θ‖Eθ‖2 = 0, and the standard gradient descent algorithm in ODE form is

d
dtϑt = −1

2a∇θ‖Eϑt‖2 = −aEϑt∇θEϑt

with a > 0. This is an ODE of the form (4.34), whose QSA counterpart (4.35) is the QSA
steepest descent algorithm,

d
dtΘt = −atEΘt(xt, ut)ζΘtt
ζθt := ∇θEθ(xt, ut)

(4.56)

Where, based on (4.51) we can typically swapping derivative with respect to time and derivative
with respect to θ to obtain

∇θEθ(xt, ut) = −∇θQθ(xt, ut) +
{
∇θQθ(xt,φ(xt)) + d

dt∇θQθ(xt,φ(xt))
}

The QSA gradient descent algorithm (4.56) is best motivated by a nonlinear function approx-
imation, but it is instructive to see how the ODE simplifies for the the linearly parameterized
family (4.55). We have in this case

ζt = −ψ(xt, ut) + ψ(xt,φ(xt)) + d
dtψ(xt,φ(xt))

and Eθ(xt, ut) = bt + ζᵀt θ using

bt = c(xt, ut)− d(xt, ut) + d(xt,φ(xt)) + d
dtd(xt,φ(xt))

94

so that (4.56) becomes
d
dtΘt = −at [ζtζ

ᵀ
t Θt + btζt] (4.57)

The convergence of (4.57) may be very slow if the matrix

G := lim
t→∞

1

t

∫ t

0
ζτζ

ᵀ
τ dτ (4.58)

has eigenvalues close to zero. This can be resolved through the introduction of a larger gain a,
or a matrix gain. One approach is to estimate G from data and invert:

Ĝt =
1

t

∫ t

0
ζτζ

ᵀ
τ dτ, 0 ≤ t ≤ T (4.59a)

d
dtΘt = −atĜ−1

T [ζtζ
ᵀ
t Θt + btζt] , t ≥ T (4.59b)

This might be motivated by the ODE approximation

d
dtϑ = −a{ϑ− θ∗}

Justification for this approximation is contained in Section 4.9.

Numerical example Consider the LQR problem in which f(x, u) = Ax+ Bu, and c(x, u) =
xᵀMx + uᵀRu, with M ≥ 0 and R > 0. Given the known structure of the problem, we know
that the function Qφ associated with any linear policy φ(x) = Kx, takes the form

Qφ =

[
x
u

]ᵀ([
M 0
0 R

]
+

[
AᵀP + PA+ P PB

BᵀP 0

])[
x
u

]

where P solves the Lyapunov equation

AᵀP + PA+KᵀRK +Q = 0

This motivates a quadratic basis, which for the special case n = 2 and m = 1 becomes

{ψ1, . . . , ψ6} = {x2
1, x

2
2, x1x2, x1u, x2u, u

2}
and there is no harm in setting d(x, u) ≡ 0.

In order to implement the algorithm (4.59b) we begin with selecting an input of the form

ut = K0xt + ξt (4.60)

where K0 is a stabilizing controller and ξt =
∑q

j=1 v
j sin(ωjt + φj). Note that K0 need not be

the same K whose value function we are trying to evaluate.
The numerical results that follow are based on a double integrator with friction:

ÿ = −0.1ẏ + u

which can be expressed in state space form using x = (y, ẏ)ᵀ:

ẋ =

[
0 1
0 −0.1

]
x+

[
0
1

]
u (4.61)

We took a relatively large cost on the input:

M = I R = 10

and gain at = 1/(1 + t).

95

n‖K
−

K
�
‖/
‖K

�
‖

1 2 3 4 5 6
0

5

10

Figure 4.4: Iterations of PIA

Fig. 4.3 shows the evolution of the QSA algorithm for
the evaluation of the policy K = [−1, 0] using the stabilizing
controller K0 = [−1,−2] and ξ in (4.60) as the sum of 24
sinusoids with random phase shifts and whose frequency
was sampled uniformly between 0 and 50 rad/s. The QSA
algorithm is compared with the related SA algorithm in
which ξ is “white noise” instead of a deterministic signal6

Fig. 4.4 shows the weighted error for the feedback gains
obtained using the approximate policy improvement algo-
rithm (4.54) and the optimal controller K? (which can be
easily computed for an LQR problem). Each policy eval-
uation performed by the model-free algorithm (4.59). The

PIA algorithm indeed converges to the optimal control gain K?.

4.5.4 A brief tour of QSA theory

While QSA theory is far simpler than stability of its stochastic ancestor, the technicalities are
best left to the end of the chapter – see Section 4.9 for details. Contained here is an overview,
and some guidelines for algorithm design.

QSA-ODE solidarity The apparent noise plays a crucial role in the analysis:

Ξ̃t = f(Θt,ξt)− f(Θt) (4.62)

so that
d
dtΘt = at[f(Θt) + Ξ̃t] (4.63)

While this is similar to the ODE (4.34), an apparent discrepancy is that the gain a is absent.
There are two ways to proceed. The most obvious is to introduce a gain in (4.34): for any t0 > 0,
consider the solution to the ODE

d
dtΘ̄t = atf(Θ̄t) , t ≥ t0 , Θ̄t0 = Θt0 (4.64)

This is simply a time-scaling of (4.34), using

τ = gt :=

∫ t

0
ar dr, t ≥ 0. (4.65)

For example, if ar = (1 + r)−1, then

τ = log(1 + t) and ξ(g−1(τ)) = ξ(eτ − 1). (4.66)

Lemma 4.9. Let {ϑτ : τ ≥ τ0} denote the solution to (4.34) with ϑτ0 = Θt0, and τ0 = gt0.
The solution to (4.64) is then given by

Θ̄t = ϑτ , t ≥ t0 , with τ = gt =

∫ t

0
ar dr

ut
6For implementation, both (4.59) and the linear system (4.61) were approximated using Euler’s method, with

time-step of 0.01s.

96

The second and more standard approach is to perform a time-scaling for the QSA ODE:

Θ̂τ :=Θ(g−1(τ)) = Θt

∣∣∣
t=g−1(τ)

(4.67)

The chain rule of differentiation gives

d

dτ
Θ(g−1(τ)) = f(Θ(g−1(τ)),ξ(g−1(τ)).

That is, the time-scaled process solves the ODE,

d

dτ
Θ̂τ = f(Θ̂τ,ξ(g−1(τ)). (4.68)

The two processes Θ and Θ̂ differ only in time scale, and hence, proving convergence of one to
θ∗ proves that of the other.

These transformations are a starting point in Section 4.9.2, where you can find a proof of
convergence of QSA. The required assumptions are mild:

(QSA1) The process a is non-negative, monotonically decreasing to zero, and

∫ ∞

0
ar dr =∞

(QSA2) Lipschitz continuity for both f and f , and solidarity of these vector fields: there exists
a constant b0 <∞, such that for all θ ∈ Rd, T > 0,

∥∥∥∥
1

T

∫ T

0
f(θ,ξt) dt− f(θ)

∥∥∥∥ ≤
b0
T

(1 + ‖θ‖)

(QSA3) The ODE (4.34) has a globally asymptotically stable equilibrium θ∗.

It is recommended to choose the gain in this standard family:

at = g/(1 + t)ρ (4.69)

This satisfies (QSA1) for any g > 0, and 0 < ρ ≤ 1.

Convergence rates and coupling We say that the rate of convergence is 1/t%0 if

lim sup
t→∞

t%‖Θ̃t‖ =

{
∞ % > %0

0 % < %0

(4.70)

where Θ̃t := Θt − θ∗ is the estimation error. By careful design we can achieve %0 = 1, which is
optimal in most cases (such as the Monte-Carlo example).

The following partial integrals play a central role when we turn to rates of convergence in
Section 4.9.3: for θ ∈ Rd and T ≥ 0,

ΞI
T (θ) =

∫ T

0
[f(θ,ξt)− f(θ)] dt (4.71)

97

This is assumed bounded in T , which is justified under mild assumptions on f and ξ (see
Section 4.9.1 for further discussion). Subject to further assumptions, we obtain a coupling
result:

lim
t→∞
‖a−1

t Θ̃t − ΞI
t(θ
∗)‖ = 0 (4.72)

which of course implies precise bounds on the rate of convergence of Θt to θ∗.
In addition to global asymptotic stability, to obtain the coupling bound it is assumed that

the linearization matrix A∗ is Hurwitz: this is defined as the d× d matrix with entries

A∗i,j =
∂

∂θj
f i (θ∗)

Gain selection For the standard gain (4.69) there is a big difference between ρ < 1 and
ρ = 1. This might be predicted from Lemma 4.9: if ρ = 1, the temporal transformation results
in τ = g log(1 + t), which grows very slowly with t. For ρ < 1 we have

τ = g
1

1− ρ(1 + t)1−ρ

which grows faster than any polynomial function of t. This difference is reflected in the theory:
to obtain (4.72) using at = g/(1 + t)ρ is not difficult using 0 < ρ < 1, and mainly requires that
the linearization matrix A∗ is Hurwitz. For ρ = 1, the gain g must be chosen sufficiently large
so that I + gA is Hurwitz.

t

g = 1.5

g = 2.7g
−
1
Z
t

0 1 2 3 4 5

0
1
2
3
4
5
6
7

95 96 97 98 99 100

0

1

Figure 4.5: Evolution of Zt = (1 + t)Θ̃t using Quasi Monte-Carlo estimates for a range of gains.

Coupling for a linear approximation Consider the very special linear model (4.45), for
which (4.71) is independent of θ:

ΞI
T (θ) = ΞI

T = B

∫ t

0
ξr dr

The coupling result (4.72) is illustrated here using the simple Monte-Carlo example, whose plots
are shown in Fig. 4.1. The representation (4.43) is easily modified to take the form (4.45). First,
denote by ξ0 a periodic function of time whose sample paths define the uniform distribution on
[0, 1]: for any continuous function c,

lim
T→∞

1

T

∫ T

0
c(ξ0

t) dt =

∫ 1

0
c(x) dx.

98

We previously used the sawtooth function, ξ0
t = t (mod 1). Introduce a gain g > 0, and consider

d
dtΘt =

g

1 + t
[y(ξ0

t)−Θt] (4.73)

This is of the form (4.45) with A = −1, B = 1, and ξt = [y(ξ0
t) − θ∗]. Prop. 4.22 below

establishes the coupling result (4.72) only for g > 1. Figs. 4.1 and 4.2 illustrate the qualitative
conclusion of Prop. 4.22. Coupling is illustrated in Fig. 4.5.

Denote Zt = a−1
t Θ̃t. The scaled errors g−1Z are compared since ξ grows linearly with g: we

expect g−1Zt ≈
∫ t

0 (y(ξ0(r)) − θ∗) for large t. The initial condition was set to Θ0 = 10 in each
experiment.

The figure compares results using ten gains, approximately equally spaced on a logarithmic
scale. The smallest gain is g = 1.5, and all other gains satisfy g ≥ 2. Prop. 4.22 asserts that
|Zt − ΞIt | = O

(
[1 + t]−δS

)
, where δS < 0.5 for g = 1.5, and δS = 1 for g ≥ 2. The scaled errors

{g−1Zt : 95 ≤ t ≤ 100} are nearly indistinguishable when g ≥ 2.

In practice it is often convenient to simply use a fixed constant at ≡ α > 0. We can expect
some bias in the estimates, but we will see in examples that the bias is often negligible. Low
bias is suggested by Prop. 4.7.

4.5.5 Zap QSA

The convergence theory surveyed in Section 4.9 requires that the ODE (4.34) have a globally
asymptotically stable equilibrium θ∗. A tight bound on the rate of convergence requires that
the linearization matrix A∗ is Hurwitz.

What if A∗ is not Hurwitz? Or worse, what if the crucial stability assumption fails? Consider
the two time-scale algorithm,

d
dtΘt =

g

1 + t
[−Ât]−1f(Θt,ξt) ,

d
dtÂt =

1

(1 + t)ρ
[∂θf(Θt,ξt)− Ât]

(4.74)

This is called Zap-QSA, designed to mimic the Newton-Raphson flow.

The second ODE is introduced so that Ât ≈ A(Θt) (following a transient). This requires
0 < ρ < 1, meaning we use high gain for the matrix estimate. Provided we can ensure a bounded
inverse, we arrive at something more closely resembling the Newton-Raphson flow:

d
dtΘt =

g

1 + t
[−A(Θt)]

−1
[
f(Θt) + Ξt

]

where Ξt = f(Θt,ξt) − f(Θt) + εt—the error εt comes from the approximation Ât ≈ A(Θt). If
A(θ∗) is Hurwtiz, then it is invertible. Since f(θ∗) = 0, we have by the product rule

∂θ

{
[−A(θ)]−1f(θ)

}∣∣∣
θ=θ∗

= −I

The most important motivation for the matrix gain in (4.74) is stability, by appealing to
theory for the Newton-Raphson flow. In addition, theory in Section 4.9 suggests that the
convergence rate for Zap-QSA is 1/t, provided g > 1.

99

4.6 Gradient-Free Optimization

How can we find the minimum of a function L(θ) without computing its gradient? There are
gradient-free variants of stochastic approximation available that provide an answer. Rather than
wait until Chapter 9, in this section we take a look at extremum seeking control : a family of
continuous time algorithms for gradient-free optimization [133, 6]. The preceding QSA theory
inspires many possibilities.

×HP
Filter

HP
Filter

Exploratory
input

×

Physical
System+

Θt
Θt

L(Ψt)

Ψt

ξt

∇̃L(t)ξt

− atG

∇̃L(t)d
dtΘt = −atG

Figure 4.6: Extremum seeking control for gradient free optimization

Quasi-Gradient Descent Consider the unconstrained minimization problem

min
θ∈Rd

L(θ). (4.75)

It is assumed that L : Rd → R has a unique minimizer, denoted as θ∗. The goal here is to
estimate θ∗ based on observations of L(Ψt), where the signal Ψ is chosen by design.

The first step is to relax our goal: find a solution to f(θ∗) = 0, where

f(θ) := ∇L(θ) , θ ∈ Rd . (4.76)

This is equivalent to our original objective if L is convex. The two general algorithms described
below are each based on the following architecture: construct an ODE of the form

d
dtΘt = −at∇̃L(t) (4.77)

where a is a non-negative gain, and ∇̃L(t) is designed to approximate (4.76) in an average sense:

∫ T1

T0

at∇̃L(t) dt ≈
∫ T1

T0

at∇L(Θt) dt , for T1 � T0 ≥ 0.

This is achieved through algorithm design, and a particular choice for the signal Ψ: the sum of
two terms Ψt = Θt + εξt, t ≥ 0, where ε > 0, and ξ is a probing (or “exploration”) signal.

Any algorithm of the form (4.77) is called quasi Stochastic Gradient Descent (qSGD), as it
is a cousin of SGD algorithms that are also designed to approximate gradient descent.

Fig. 4.6 shows a block-diagram architecture of the second algorithm derived below: qSGD #2.
The block diagram is more general than described here, since in the second algorithm the HP
(high pass) filters are chosen to be pure differentiation:

∇̃L(t) = d
dtξt × d

dtL(Ψt)

100

The kind of output you can expect is illustrated in Fig. 4.7. The gradient of the function L
shown has two roots: θ∗ = 1 is the global minimum, and θs = −1 is a saddle point (while the
derivative is zero, it is neither a local minimum or local maximum). Standard gradient descent
would converge to θs for any initial condition Θ0 ≤ θs. The plot on the right hand side in
Fig. 4.7 shows the evolution of the estimates Θt using qSGD #2, initialized at Θ0 = −5 < θs.
The solution is not slowed down by the shallow slope of L near θs; this is a benefit of the probing
signal.

L(θ)

θ t

∗

θ∗θs-2 0 2 0 25 50

Θ(t)

θ
sθ

-4

0

2

-2

Figure 4.7: Extremum seeking control: avoiding a saddle point

For a given Θ ∈ Rd, consider the second-order Taylor expansion of the objective function:

L(Θ+ εξt) = L(Θ) + εξᵀt∇L(Θ)

+ 1
2ε

2ξᵀt∇2L(Θ)ξt + o(ε2).

Define fε(Θ,ξ) := −ξL(Θ+ εξ). Under (4.39a) and (4.39b), It is easy to verify that

f ε(Θ) := lim
T→∞

1

T

∫ T

t=0
f(Θ,ξt) dt = −ε∇L(Θ) + Err(ε) (4.78)

where ‖Err(ε)‖ = O(ε2). Thus, based on the QSA ODE (4.35), the following algorithm seeks
(approximate) zeros of ∇L:

Quasi Stochastic Gradient Descent #1a

For a given d× d matrix G, and initial condition Θ0,

d
dtΘt = −at

1

ε
GξtL(Ψt) (4.79a)

Ψt = Θt + εξt (4.79b)

The choice G = I approximates the steepest descent algorithm.
Let’s consider how analysis of qSGD #1a can be cast in the framework of Section 4.5. The

algorithm takes the form (4.35):

d
dtΘt = atf(Θt,ξt) , with f(Θt,ξt) = −1

ε
ξtL(Θt + εξt)

The representation (4.78) suggests that the algorithm will approximate gradient descent, pro-
vided the right hand side of (4.78) is Lipschitz continuous (which will hold on mild conditions on
L). The problem we may face is with the function f . In many problems of interest we know that
∇L is globally Lipschitz continuous, but L is not. Consider for example a quadratic function.
In this case f is not Lipschitz continuous, and we cannot apply QSA theory. A slightly more
complex algorithm resolves this issue:

101

Quasi Stochastic Gradient Descent #1

For a given d× d matrix G, and initial condition Θ0,

d
dtΘt = −at

1

2ε
Gξt

{
L(Θt + εξt)− L(Θt − εξt)

}
(4.80)

Denoting by atf(Θt,ξt) the right hand side of (4.80), we can show that f is Lipschitz in its
first variable whenever this is true for ∇L.

The vector field f ε for (4.80) admits the same approximation (4.78). In fact, under mild

assumptions, the two vector fields coincide. We write ξ
dist
= −ξ if for any continuous function g,

lim
T→∞

1

T

∫ T

0
{g(ξt)− g(−ξt)} = 0

This holds for example if the components of ξ are sinusoids. Under this assumption, the limit on
the left hand side of (4.78) is the same for either algorithm. However, the following consistency
result can only be established for qSGD #1:

Proposition 4.10. Suppose that the following hold for function and algorithm parameters in
qSGD #1:

(i) Assumption (QSA1) of Section 4.9 holds: a is non-negative and monotonically decreas-
ing, and

lim
t→∞

at = 0,

∫ ∞

0
ar dr =∞.

(ii) L has a unique minimizer θ∗ ∈ Rd.
(iii) ∇L is globally Lipschitz continuous, and L is strongly convex: (4.23) holds for some
m > 0.

Then there exists ε̄ > 0 such that for each 0 < ε < ε̄,

(a) There is a unique root θ∗ε of f ε, satisfying ‖θ∗ε − θ∗‖ ≤ O(ε).

(b) Convergence holds from each initial condition:

lim
t→∞

Θt = θ∗ε

ut

This is not to say that qSGD #1a is worthless. We simply cannot establish convergence from
each initial condition. Many of the illustrations in this section are based on the first algorithm.

There are many other approaches to qSGD. For the next algorithm, it is assumed that {ξt}
is differentiable with respect to time. We view ξ•(t) := (ξt,

d
dtξt) ∈ R2m as the probing signal;

the reason for this definition will become apparent shortly.
The following limit is assumed to exist, and the limit is assumed to be invertible:

ΣII := lim
T→∞

1

T

∫ ᵀ

0

d
dtξt

[
d
dtξt

]ᵀ
dt;

102

this is indeed true for the signal chosen in (4.38).

For a given Θ ∈ Rd, we have

d
dtL(Θ+ εξt) = ε ddtξ

ᵀ
t∇L (Θ+ εξt),

implying that

d
dtξt

d
dtL(Θ+ εξt) = ε ddtξt

d
dtξt

ᵀ∇L (Θ+ εξt)

= ε ddtξt
d
dtξt

ᵀ[∇L (Θ) + ε∇2L (Θ)ξt
]

+O(ε2)

= ε ddtξt
d
dtξt

ᵀ∇L (Θ) +O(ε2).

(4.81)

Therefore,

lim
T→∞

1

T

∫ T

0

d
dtξt

d
dtL(Θ+ εξt) = εΣII∇L (Θ) +O(ε2). (4.82)

This motivates

QSA Gradient Descent #2

For a given d× d matrix G, and initial condition Θ0,

d
dtΘt = −at

1

ε
Gξ′t

d
dtL(Ψt) (4.83a)

Ψt = Θt + εξt (4.83b)

where ξ′t = d
dtξt.

This is the first algorithm that clearly fits into the block diagram Fig. 4.6: the high pass
filter refers to differentiation.

In view of (4.81) and (4.82), the algorithm (4.83) is approximately equivalent to a QSA
algorithm of the form (4.35), with

f(Θ,ξ•) :=−Gξ•2ξ•2ᵀ∇L (Θ+ εξ•1), ξ• = (ξ•1,ξ
•
2) ∈ R2m

f(Θ) ≈ −GΣII∇L (Θ).

Any of these algorithms can be implemented based on observations of {L(Ψt)}, without
knowledge of the gradient. Unfortunately, there is a complete theory only for qSGD #1, and
we find in simple examples that troubles can emerge for the other two techniques:

A simple example Consider L(θ) = θ2, whose minimum is evidently θ∗ = 0. We find that
all three algorithms will converge to the optimum, but implementing methods #1a or #2 on a
computer presents numerical challenges.

We begin with qSGD #1a, for which

ξtL(Ψt) = ξt
[
Θ2
t + 2εξtΘt + εξ2

t

]

= ξtΘ
2
t + εξ2

t∇L (Θt) + ε2ξ3
t

(4.84)

103

where the second equality follows because ∇L (θ) = 2θ. If ξt =
√

2 sin(ωt) for some ω > 0,
then the final term is zero mean, and the first term has mean approximately zero if Θt is nearly
constant: this is true, provided we are using a small (or vanishing) gain a. Take G = 1 in
(4.79a), giving

d
dtΘt = −at

1

ε
ξtL(Ψt) = −at

{
ξ2
t∇L (Θt) + ξtε

−1Θ2
t + εξ3

t

}

The right hand side is not Lipschitz in Θt, which will make it difficult to approximate using a
simple Euler method.

Algorithm qSGD #1 has a similar representation, with the quadratic term removed:

d
dtΘt = −at

{
ξ2
t∇L (Θt) + εξ3

t

}

As predicted by Prop. 4.10, the right hand side is Lipschitz continuous in Θt.
The evolution of qSGD #2 is more complex:

d
dtΘt = −at ddtξt ddtL(Ψt)

= −atξ′(t)[∇L (Θt) + 2εξt][
d
dtΘt + εξ′(t)]

with ξ′(t) = d
dtξt. The product of Θt and its derivative on the right hand side suggests trouble,

but theory is currently lacking.
Fig. 4.8 shows a comparison of the three algorithms for this example using ξt =

√
2 sin(t),

and exploration gain ε = 0.05. The first three qSGD plots were obtained based on the constant
step-size α = 0.075, which was approximately the maximal gain for which method #2 was stable.
Also shown is the evolution of the ideal gradient flow d

dtϑt = −α∇L(ϑt) (this is the vector field
(4.78) with error removed, and scaled by α/ε).

2

4

6

8

10

12 qSGD #1a
qSGD #1

qSGD #1

qSGD #2

t × 102

θ∗= 0

“High gain”

d
dtϑt =−α∇L(ϑt)

Θt

0 1 2 3 4 5

Figure 4.8: qSGD Comparison.

Each ODE was approximated using the standard
Euler method, with sampling interval equal to one sec-
ond. For the initial condition θ0 = 10 we see that
qSGD #1a is the winner, in the sense that the pa-
rameter estimates are very close to θ∗ = 0 at the end
of the run (1,000 samples). However, the situation
changes with initial condition increased to θ0 = 100:
the plot for qSGD #1 is similar, but both qSGD #1a
and qSGD #2 diverge.

Convergence will hold for all algorithms by reducing
the step-size, or refining the Euler approximation, but
this comes with extra computational cost.

The fourth QSA plot labeled “high gain” shows the evolution of estimates using qSGD #1,
with gain doubled to α = 0.15. With this minor change, qSGD #1 emerges as the winner!
This is a curse of algorithm design: we must experiment with “meta-parameters” to get quick
convergence. ut

4.7 Quasi Policy Gradient Algorithms

It is not difficult to apply these techniques to the “tamer” examples considered in Chapter 2.
Consider the Mountain Car example introduced in Section 2.7.1, and the simple policy (2.55).

104

This cannot be optimal since it is clear the state will remain near zmin far longer than necessary
from certain initial conditions. A more sensible policy will avoid this “western frontier”. Here
is one suggestion, based on a threshold θ in the interval [zmin, zgoal].

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
Po

si
tio

n:

El
ev

at
io

n

z
(k

)

k k
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 50 100 0 50 100 0 50 100 0 100 200 0 100 200 0 100 200

0

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
Goal

u(k) = −1

θ = −0.8

θ = −0.2

Figure 4.9: Trajectories for the Mountain Car for two policies, and three initial conditions.

With z(k) = x1(k) and v(k) = x2(k) denoting position and velocity at time-step k, define
u(k) = φθ(x(k)) as follows:

u(k) =

{
1 if x(k) + v(k) ≤ θ
sign(v(k)) else

(4.85)

If the model is perfect, then x(k + 1) = x(k) + v(k); if this were a real-life application, then
measurements would be noisy, so this is simply a prediction. The policy “panics” and accelerates
the car towards the goal whenever the estimate of x(k + 1) is at or below the threshold θ.

The range of acceptable θ can be estimated by examining the graph of potential energy
shown in Fig. 2.11, in the case of static input u(k) ≡ 1. Its minimum is at z◦ ≈ −0.48. Denoting
v(1) = F2(x, u), we have by definition of z◦,

0 = d
dzU (z◦) = g sin(θ(z◦))− k/m = v(0)− v(1) , u = 1 , x = (z◦, 0)ᵀ

That is, v(1) = v(0) = 0, which implies that the Mountain Car has stalled: x(1) = x(0). We
therefore cannot allow a policy for which φ(x◦) = 1, which means that the policy φθ is not
acceptable if θ > z◦. We don’t observe infinite total cost in experiments that follow because we
artificially bound the value function, as explained below.

Fig. 4.9 shows trajectories of position as a function of time from three initial conditions, and
with two instances of this policy: θ = −0.8, and θ = −0.2. The former is a much better choice
from initial condition z(0) = −0.6: we see that the time to reach the goal is nearly twice as long
when using θ = −0.2 as compared to θ = −0.8.

Let’s see how to adapt qSGD #1a to find the optimal value of θ. A discrete-time counterpart
of the recursion (4.79) is

Θn+1 = Θn + αn+1Gξn+1L(Ψn+1) (4.86a)

Ψn+1 = Θn + εξn+1 (4.86b)

The question is, how do we define L?
The total cost in this example coincides with the time to reach the goal. For fixed initial

condition x0 ∈ Rd, we might estimate the minimum of the corresponding total cost Jθ(x0) over
θ. A natural approach is episodic: at stage n of the algorithm, we initialize the car at state x0,

105

-1.2 -0.96 -0.72 -0.49 -0.25 -0.01 0.23 0.5
Position

-0.07

0.0

0.07

Ve
lo

ci
ty

0

20

40

60

80

100

120

-1.2 -0.96 -0.72 -0.49 -0.25 -0.01 0.23 0.5
Position

z

u = −1

u = 1

J(z, 0)

J∗(z, 0)

Figure 4.10: Policy φθ with θ = −0.8 for MountainCar, and the total cost J(x) with x = (z, 0).

Final samplesFirst samples

Θn

×105n×104n

Typical trajectory Average of �nal 20% of samples

-0.85654

0 1 2 3 4 5

-1

-0.5

0

9.5 9.6 9.7 9.8 9.9 10

-1

-0.5

0

Figure 4.11: qPG #1a for the Mountain Car using the gradient-free optimization algorithm (4.86) using a large
constant step-size.

and run the policy φθ using θ = Ψn+1 = Θn + εξn+1. On reaching the goal state we have a
measurement of L(Ψn+1) = Jθ(x0) for this value of θ.

What if the policy is worthless? There may be values of θ for which L(Ψ) = ∞. It is best
to modify the objective function: L(Ψn+1) = min{Jmax, Jθ(x0)} for a constant Jmax of our
choosing. The value Jmax = 5, 000 was used in these experiments.

It may be more valuable to introduce randomization in the initial condition. In this case we
introduce a second probing signal {ξxn}. We proceed as above, but define L(Ψn+1) = Jθ(xn+1)
with θ as before, but with

xn+1 = [[x0 + εxξxn+1]] (4.87)

where the brackets again indicate projection onto the state space X. The goal then is to minimize
the average cost : with N � 1 a large integer,

E[Jθ(X)] =
1

N

N∑

n=1

min{Jmax, Jθ(ξ
x
n)} (4.88)

A run using (4.86, 4.87) is shown in Fig. 4.11, with constant step-size αn = 0.1, ε = 0.05, and
ξn = sin(n). The large step-size was chosen simply to illustrate the exotic nonlinear dynamics
that emerge from this algorithm. It would seem that the algorithm has failed, since the estimates
oscillate between −1.2 and −0.3 in steady-state, while the actual optimizer is θ∗ ≈ −0.8. The
dashed line shows the average of {Θn} over the final 20% of estimates. This average is very
nearly optimal, since the objective function is nearly flat for θ near the optimizer.

Details on the choice of parameters in (4.87), and an approach to compute the optimal
parameter θ∗ will be explained shortly.

Fig. 4.12 shows results from an experiment with decaying step-size, and a minor change in
the probing signal:

αn = 1/n0.75 , ξn = sin(2πφ+ n) (4.89)

106

The exploration gain was also taken to be vanishing, using εn = αn in (4.86b). The phase
variable φ will be selected randomly in [0, 1] when we perform repeated experiments.

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

E[Jθ(X)]

θ

X uniformly distributed
on the state space

θ∗

avg

N

θ∗
N = 103

Θ

Θ

n

avg

NΘ

50

60

70

80

90

0 200 400 600 800 1000 n
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
Typical trajectory

Figure 4.12: qPG #1a for Mountain
Car: objective function, and typical
behavior of estimates.

The signal {ξxn = (ξzn,ξ
v
n)ᵀ} was chosen to cover the

state space uniformly: introduce two signals that are
quasi-uniform and independent on [0, 1]:

Wv
n = frac(nrv) , Wz

n = frac(nrz) ,

where “frac” denotes the fractional part of a real num-
ber, rv, rz are irrational, and their ratio is also irrational.
Then define

ξvn = v(2Wv
n − 1)

ξzn = zmin + [zgoal − zmin]Wz
n

(4.90)

The values rv = π and rz = e were chosen in these ex-
periments. Also, x0 = 0 and εx = 0 in (4.87), giving
xn+1 = ξxn+1.

The upper plot in Fig. 4.12 shows the average cost
(4.88), with N = 104 for a range of θ. The value of θ∗ was obtained by computing the minimum
of this function. This approach to estimate the optimal threshold is simpler and more reliable
than QSA techniques! Brute-force methods make sense if the dimension of θ is one or two; in
complex situations we need a more clever search strategy.

-1.2
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

-1.2
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

θ θ-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.5
0

20

40

60

80

0

20

40

60

80

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.5

QSA K-W

Histogram
Gaussian approximation

N
um

be
r o

f o
bs

er
va

tio
ns

 in
 i

th
 b

in
Pa

ra
m

et
er

 e
st

im
at

e

Pa
ra

m
et

er
 e

st
im

at
es

N
um

be
r o

f o
bs

er
va

tio
ns

 in
 i

th
 b

in

E[Jθ(X)]

0 1 2 3 4 50 1 2 3 4 5 ×103n×103n

Typical trajectory

θ∗θ∗
Θn Sample trajectoriesΘn

Figure 4.13: Error analysis for two PG algorithms for Mountain Car, using QSA and traditional randomized
exploration.

Fig. 4.13 shows results from 103 independent runs, each with horizon length T = 104. In
each case, the parameter estimates evolve according to (4.86), to obtain estimates {Θin : 1 ≤
n ≤ T , 1 ≤ i ≤ 103}. The two columns are distinguished by the probing signals ξn and ξxn. For
QSA the probing signal ξ was a sinusoid, with phase φ selected independently in the interval
[0, 1), in each of the 103 runs (the phase appears in (4.89)). The probing sequence ξx was fixed
as (4.90).

The results displayed in the second column used an independent sequence for the probing
signals, each uniform on their respective ranges (in particular, the distribution of ξn was chosen
uniform on the interval [−1, 1] for each n). The label “K-W” refers to the algorithms of Kiefer
and Wolfowitz that are also based on i.i.d. exploration (see the Notes section at the end of this
chapter for history).

107

-1.2
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
0

20

40

60

80 Histogram
Gaussian approximation

N
um

be
r o

f o
bs

er
va

tio
ns

 in
 i

th
 b

in
Pa

ra
m

et
er

 e
st

im
at

e

E[Jθ(X)]

θ

Histogram
Gaussian approximation

E[Jθ(X)]

0 1 2 3 4 5 ×103n

Typical trajectory

θ∗
Θn

Figure 4.14: qPG for Mountain Car using
eq. (4.91)

qSGD #2 is also easily adapted to this appli-
cation:

Θn+1 = Θn + αn+1Gξ
′
n+1 L(Ψn+1)′ (4.91a)

Ψn+1 = Θn + εξn+1 (4.91b)

where the primes denote approximations of the
derivatives appearing in (4.83a):

ξ′n+1 =
1

δ

(
ξn+1−ξn

)
, L(Ψn+1)′ =

1

δ

(
Ψn+1−Ψn

)

with δ > 0 is the sampling interval.
A histogram and sample path of parameter es-

timates are shown in Fig. 4.14, based on algo-
rithm (4.91) with δ2 = 0.5, and all of the same
choices for parameters, except that the step-size
in (4.89) was reduced to avoid large initial tran-
sients: αn = min(1/n0.75, 0.05). This results in αn = 1/n0.75 for n ≥ 55.

Based on the histogram, the performance appears slightly worse than observed for method # 1a
in Fig. 4.13, but these outcomes are a product of particular choices for algorithm parameters.

What about high dimensions? The qSGD algorithms are easy to code, and quickly converge
to an approximately optimal parameter for the example considered in this section. In high
dimensions we can’t expect to blindly apply any of these algorithms. For example, consider the
choice of probing signal (4.38), where i ranges from 1 to d = 1000. If the frequencies {ωi} are
chosen in a narrow range, then the limit (4.39b) will converge very slowly. The rate will be
faster if the frequencies are widely separated, but we then need a much higher resolution Euler
approximation to implement an algorithm.

This challenge is well understood in the optimization literature. One approach to create a
reliable algorithm is to employ block coordinate descent to effectively reduce the dimension of
the optimization problem. This requires two ingredients:

(i) A sequence of timepoints T0 = 0 < T1 < T2 < · · ·
(ii) A sequence of “parameter blocks” Bk ⊂ {1, . . . , d} for each k ≥ 0, where the number of

elements dB in Bi is far smaller than d.

The qSGD ODE (4.77) is modified so that Θt(i) is held constant on the interval [Tk, Tk+1) for
i 6∈ Bk, and

d
dtΘt(i) = −at[∇̃L(t)]i i ∈ Bk , t ∈ [Tk, Tk+1)

The alternating direction method of multipliers (ADMM) employs a similar scheme.

4.8 Stability of ODEs*

This “asterisk” on this section title indicates that it contains advanced material. The stability
theory here is needed if you want to fully understand why the ODE methods surveyed in this
chapter are “well behaved”, and the concepts will be useful in the latter chapters of the book.

We begin with the proof of a central result and a simple corollary.

108

4.8.1 Grönwall’s Inequality

Proof of Grönwall’s Inequality, Prop. 4.2. Consider first the simpler equality (4.8):

zt = γt +

∫ t

0
βszs ds

Observe that γ is continuous, under the assumption that z and β are continuous. We can
“solve” this equation through the construction of a state space model with state xt = zt − γt,
and output zt. From the integral equation

xt =

∫ t

0
βs
[
xs + γs

]
ds

we obtain the time varying linear state space model

d
dtxt = βtxt + βtγt , x0 = 0

zt = xt + γt

where the initial condition x0 = z0 − γ0 = 0 follows from the initial specification for z. This
scalar linear state space model, with “input” ut = βtγt, has an explicit solution, even in the
time varying case:

xt =

∫ t

0
us exp

(∫ t

s
βr dr

)
ds

We next turn to the inequality (4.5), which we can write as

zt = αt +

∫ t

0
βszs ds− δt

where δt ≥ 0 for each t. Define γt = αt − δt and obtain, with ut = βtγt as before,

xt =

∫ t

0
us exp

(∫ t

s
βr dr

)
ds ≤

∫ t

0
βsαs exp

(∫ t

s
βr dr

)
ds

Using zt = xt + γt ≤ xt + αt then gives (i).

(ii) If the function α is non-decreasing, then from part (i) and the assumption that β is
non-negative,

zt ≤ αt + αt

∫ t

0
βs exp

(∫ t

s
βr dr

)
ds, 0 ≤ t ≤ T .

This bound implies (ii) on substituting

∫ t

0
βs exp

(∫ t

s
βr dr

)
ds = exp

(∫ t

0
βr dr

)
− 1

ut

Grönwall’s Inequality implies a crude bound that is needed in approximations:

Proposition 4.11. Consider the ODE (4.1), subject to the Lipschitz condition (4.4). Then,

109

(i) There is a constant Bf depending only on f such that

‖ϑt‖ ≤
(
Bf + ‖ϑ0‖

)
e`t −Bf , t ≥ 0

(ii) If there is an equilibrium θ∗, then for each initial condition,

‖ϑt − θ∗‖ ≤ ‖ϑ0 − θ∗‖e`t , t ≥ 0

Proof. We present a complete proof of (ii), and just an outline of the proof of (i), since it is
similar.

If there is an equilibrium θ∗, this means that f(θ∗) = 0. The proof of (i) then begins with
(4.2), in the form

ϑt − θ∗ = ϑ0 − θ∗ +

∫ t

0
f(ϑτ) dτ , 0 ≤ t ≤ T

Under the equilibrium condition and the Lipschitz assumption,

‖f(ϑτ)‖ = ‖f(ϑτ)− f(θ∗)‖ ≤ `‖ϑτ − θ∗‖

Writing zt = ‖ϑt − θ∗‖, this bound combined with (4.2) gives

zt ≤ z0 + `

∫ t

0
zτ dτ , 0 ≤ t ≤ T

Grönwall Inequality then gives (i): apply Prop. 4.2 (ii) using βt ≡ ` and αt ≡ z0.
To establish (i), take any θ• ∈ Rd and use the Lipschitz condition to obtain

‖f(θ)‖ ≤ ‖f(θ)− f(θ•)‖+ ‖f(θ•)‖
≤ `‖θ)− θ•‖+ ‖f(θ•)‖
≤ `‖θ)‖+ ‖θ•‖+ ‖f(θ•)‖

With θ• fixed, define Bf = [‖θ•‖+ ‖f(θ•)‖]/`, so that

‖f(θ)‖ ≤ `[‖θ‖+Bf] , θ ∈ Rd

Applying (4.2) then gives

ϑt +Bf = ϑ0 +Bf +

∫ t

0
f(ϑτ) dτ

≤ ϑ0 +Bf +

∫ t

0
[‖ϑτ‖+Bf] dτ

Grönwall’s Inequality is then used to establish (i), using zt = ϑt+Bf for each t, and αt = z0. ut

4.8.2 Lyapunov methods

The survey contained in Section 2.4.3 tells us much of what we need to know about Lyapunov
functions. Given the goals of algorithm design, our interest is global asymptotic stability, so
that the drift condition of interest is (2.35) with xe replaced by θ∗:

〈∇V (θ), f(θ)〉 < 0, θ 6= θ∗

110

from which we obtain convergence of ϑ by applying Prop. 2.5.

Applications to optimization in Section 4.4.1 makes heavy use of Lyapunov function tech-
niques. We can often take V = L, the loss function we wish to minimize.

Often the first step is establishing consistency of an algorithm is to first show that the
estimates do not “blow up”: the estimates are uniformly bounded in time. The continuous-time
version of this concept is defined here: the ODE is called ultimately bounded if there is a bounded
set S ⊂ Rd such that for each initial condition ϑ0, there is a time T (ϑ0) such that ϑt ∈ S for
t ≥ T (ϑ0).

There is naturally a Lyapunov condition to check:

〈∇V (θ), f(θ)〉 ≤ −1, θ ∈ Sc (4.92)

Proposition 4.12. Assume also that there is a continuously differentiable function V : Rd →
R+ satisfying (4.92) for some set S ⊂ Rd. Then, TS(θ) ≤ V (θ) for θ ∈ Rd, where

TS(θ) = min{t ≥ 0 : ϑt ∈ S}, ϑ0 = θ ∈ Rd

If in addition S is compact, and V is inf-compact, then the ODE (4.1) is ultimately bounded.

Proof. The bound on the first entrance time TS is part of Exercise 2.8! It follows easily from
the sample path interpretation of (4.92):

d
dtV (ϑt) ≤ −1 , 0 ≤ t ≤ TS(θ), ϑ0 = θ ∈ Rd (4.93)

Integrate each side from from time t = 0 to t = TN = min(N,TS(θ)) (the minimum with N
is required since we don’t yet know if TS(θ) < ∞). Next, apply the fundamental theorem of
calculus:

−V (ϑ0) ≤ V (ϑTN)− V (ϑ0) ≤ −TN
giving min(N,TS(θ)) ≤ V (ϑ0), and the desired bound on choosing N > V (ϑ0).

The crucial part of the proposition requires that we modify the set S. Since it is compact,
and V is inf-compact, there exists N <∞ such that S ⊂ SV (N) = {θ : V (θ) ≤ N}, with SV (N)
also compact. Hence,

〈∇V (θ), f(θ)〉 ≤ −1, θ ∈ Rd , V (θ) ≥ N

In fact, we should write V (θ) > N , since this corresponds to θ ∈ SV (N)c, but remember the left
hand side is continuous. Because V (ϑt) is decreasing whenever ϑt ∈ SV (N)c, it follows that the
set SV (N) is absorbing, which means that ϑt ∈ SV (N) for all t ≥ TS(θ). ut

4.8.3 The ODE at ∞
We consider here an entirely different way to verify that the ODE (4.1) is ultimately bounded.

The idea is pretty simple: to see if the ODE is ultimately bounded, we only need to consider
values of ϑ that are “very big”. Rather than bring out a telescope to examine these big states,
we scale the state, and examine the resulting dynamics. To make this explicit requires that
we make dependency on the initial condition explicit, writing ϑ(t; θ0) the solution to (4.1) with
initial condition ϑ0 = θ0.

111

Let r ≥ 1 by a scaling parameter (assumed large), consider the solution of the ODE with
ϑ0 = rθ0, and scale the solution to obtain

ϑrt := r−1ϑ(t; rθ0)

We have ϑr0 = θ0 for any r ≥ 1, and we obtain from (4.1),

d
dtϑ

r
t = r−1 d

dtϑ(t; rθ0) = r−1f
(
ϑ(t; rθ0)

)

On denoting fr(θ) = r−1f(rθ) for θ ∈ Rd, this becomes

d
dtϑ

r
t = fr(ϑ

r
t) (4.94)

Suppose that a limiting vector field exists:

f∞(θ) := lim
r→∞

fr(θ) = lim
r→∞

r−1f(rθ) , θ ∈ Rd , (4.95)

and define the ODE at ∞ as the limiting case of (4.94):

d
dtϑ
∞
t = f∞(ϑ∞t) , θ ∈ Rd (4.96)

Observe that by definition we have f∞(0) = 0, so the origin is an equilibrium of (4.96).

Proposition 4.13. Suppose that f is globally Lipschiz continuous, with Lipschitz constant
`. Suppose that the limit (4.95) exists for all θ to define a continuous function f∞ : Rd → Rd.
Then, if the origin is asymptotically stable for (4.96), it follows that the ODE (2.33) is ultimately
bounded.

To prove the proposition we first need to better understand the special properties of the
solution to (4.96):

Lemma 4.14. Suppose that the assumptions of Prop. 4.13 hold, so in particular the origin is
asymptotically stable for (4.96). Then the following hold:

(i) For each θ ∈ Rd and s ≥ 0,
f∞(sθ) = sf∞(θ)

(ii) If {ϑ∞t : t ≥ 0} is any solution to the ODE (4.96), and s > 0, then {yt = sϑ∞t : t ≥ 0}
is also a solution, starting from y0 = sϑ∞0 ∈ Rd.
(iii) The origin is globally asymptotically stable for (4.96), and convergence to the origin
is exponentially fast: for some R <∞ and ρ > 0,

‖ϑ∞t ‖ ≤ Re−ρt‖ϑ∞0 ‖ , ϑ∞0 ∈ Rd

Proof. Consider first the scaling result in part (i): from the definition (4.95), with s > 0,

f∞(sθ) = s lim
r→∞

(sr)−1f(srθ)sf∞(θ)

The case s = 0 is trivial, since it is clear that f∞(0) = 0. This establishes (i).

112

Next, write

ϑ∞t = ϑ∞0 +

∫ t

0
f∞(ϑ∞τ) dτ

Multiplying both sides by s and applying (i) gives (ii).

Under the assumption that the origin is asymptotically stable, there exists ε > 0 such that
limt→∞ ϑt = 0, whenever ‖ϑ0‖ ≤ ε. Moreover, the convergence is uniform: there exists T0 > 0
such that

‖ϑT0‖ ≤ 1
2ε whenever ‖ϑ0‖ ≤ ε

Next, apply scaling: for any initial condition ϑ0, consider yt = sϑ∞t using s = ε/‖ϑ0‖, chosen so
that ‖y0‖ = ε. Then ‖yT0‖ ≤ 1

2ε = 1
2‖y0‖, implying

‖ϑT0‖ ≤ 1
2‖ϑ0‖ ϑ0 ∈ Rd

This easily implies (iii) by iteration, as follows: for any t we can write t = nT0 + t0, with
0 ≤ t0 < T0, so that

‖ϑt‖ ≤ 1
2‖ϑ(n−1)T0+t0‖ ≤ 2−n‖ϑt0‖

Prop. 4.11 gives ‖ϑt0‖ ≤ e`‖ϑ0‖, so that

‖ϑt‖ ≤ 2e` 2−(n+1)‖ϑ0‖

where the right hand side has been arranged to make use of the bound t ≤ (n + 1)T0, giving
2−(n+1) ≤ exp(− log(2)t/T0). We arrive at the bound in (iii) with R = 2e` and ρ = log(2)/T0.

ut

Proof of Prop. 4.13. Denote

E(θ) = ‖f(θ)− f∞(θ)‖
so that by Lemma 4.14, with s = ‖θ‖,

s−1E(θ) = ‖fs(θ/s)− f∞(θ/s)‖

Because the functions {fs : s ≥ 1} are uniformly Lipschitz continous, the right hand side
converges to zero uniformly in θ 6= 0. Consequently,

E(θ) = o(‖θ‖)

Let’s think about what this means: for any ε > 0, there exists N(ε) <∞, such that E(θ) ≤ ε‖θ‖
whenever ‖θ‖ ≥ N(ε). From this we get the simpler looking bound:

E(θ) ≤ Bε + ε‖θ‖ , where Bε = max{E(θ) : ‖θ‖ ≤ N(ε)} (4.97)

For any initial condition ϑ0 we compare the two solutions:

ϑt = ϑ0 +

∫ t

0
f(ϑτ) dτ

ϑ∞t = ϑ0 +

∫ t

0
f∞(ϑ∞τ) dτ

113

Write zt = ‖ϑt − ϑ∞t ‖ and use the preceding definition to obtain,

zt ≤
∫ t

0
‖f∞(ϑτ)− f∞(ϑ∞τ)‖ dτ +

∫ t

0
E(ϑτ) dτ

≤ `
∫ t

0
‖ϑτ − ϑ∞τ ‖ dτ +

∫ t

0
E(ϑτ) dτ

Grönwall’s Inequality in its second form (4.7) holds, with βt ≡ `, and αt the second integral,
giving

zt ≤ e`t
∫ t

0
E(ϑτ) dτ ≤ e`t

∫ t

0

{
Bε + ε‖ϑτ‖} dτ

where the second inequality uses (4.97), with ε > 0 to be chosen. Prop. 4.11 gives ‖ϑτ‖ ≤{
Bf + ‖ϑ0‖

}
e`τ , so that

zt = ‖ϑt − ϑ∞t ‖ ≤ te`tBε + εe`t
{
Bf + ‖ϑ0‖

}{
`−1e`t

}

And applying the triangle inequality once more,

‖ϑt‖ ≤ ‖ϑ∞t ‖+ ε`−1e2`t‖ϑ0‖+B(ε, t)

where the value B(ε, t) can be obtained by rearranging terms. Finally now we can bring in
Lemma 4.14, which implies the existence of T0 such that ‖ϑ∞t ‖ ≤ 1

2‖ϑ∞0 ‖ = 1
2‖ϑ0‖ when t ≥ T0.

Hence,

‖ϑT0‖ ≤
(

1
2 + ε`−1e2`T0

)
‖ϑ0‖+B(ε, T0)

Choose ε > 0 so small that the term in parentheses is less than 1/4:

‖ϑT0‖ ≤ ρ‖ϑ0‖+B(ε, T0) , ρ = 3/4

Arguing as in the proof of Lemma 4.14, we can iterate to obtain for each integer n, and
t ≤ T0,

‖ϑnT0+t‖ ≤ ρn‖ϑt‖+
1

1− ρB(ε, T0) ≤ ρn
{
Bf + ‖ϑ0‖

}
e`T0 +

1

1− ρB(ε, T0)

This establishes ultimate boundedness, and we can choose

S =
{
θ : ‖θ‖ ≤ 1

1− ρB(ε, T0) + 1
}

ut

4.9 Convergence theory for QSA*

We consider in this section the general nonlinear ODE (4.35), subject to the following assump-
tions. They are required to establish convergence of QSA, and the first steps towards obtaining
bounds on the convergence rate:

114

(QSA1) The process a is non-negative and monotonically decreasing, and

lim
t→∞

at = 0,

∫ ∞

0
ar dr =∞. (4.98)

(QSA2) The functions f and f are Lipschitz conditions: for a constant `f <∞,

‖f(θ′)− f(θ)‖ ≤ `f‖θ′ − θ‖,
‖f(θ′,ξ)− f(θ,ξ)‖ ≤ `f‖θ′ − θ‖, θ′, θ ∈ Rd , ξ ∈ Ω

There exists a constant b0 <∞, such that for all θ ∈ Rd, T > 0,
∥∥∥∥

1

T

∫ T

0
f(θ,ξt) dt− f(θ)

∥∥∥∥ ≤
b0
T

(1 + ‖θ‖) (4.99)

(QSA3) The ODE (4.34) has a globally asymptotically stable equilibrium θ∗.

Justification of (4.99) is provided next for a special class of probing signals.

4.9.1 Deterministic Markovian model

It is most convenient to assume that ξ is defined through state space dynamics,

d
dtξ = H(ξ) (4.100)

where H: Ω→ Ω is continuous, with Ω a compact subset of Euclidean space. An extension of
the mixture of sinusoidal model (4.36b) is obtained on taking the state space for the probing
process equal to the K-dimensional torus: Ω = {x ∈ CK : |xi| = 1 , 1 ≤ i ≤ K}, and ξ defined
to allow modeling of excitation as a mixture of sinusoids:

ξt = [exp(jω1t), . . . , exp(jω1t)]
ᵀ (4.101)

with distinct frequencies, ordered for convenience: 0 < ω1 < ω2 < · · · < ωK . The dynamical
system (4.100) is linear in this special case. Although deterministic, the ODE (4.100) defines a
Markov process on Ω. It is ergodic, in a sense made precise in Lemma 4.15.

Lemma 4.15. Suppose that g : CK → R admits the Taylor series representation,

g(x) =
∑

n1,...,nK

an1,...,nKx
n1
1 · · ·xnKK , x ∈ Ω , (4.102)

where the sum is over all K-length sequences in ZK+ , and the coefficients {an1,...,nK} ⊂ CK are
absolutely summable: ∑

n1,...,nK

|an1,...,nK | <∞ (4.103)

Then,

(i) The ergodic limit holds:

a0 = lim
T→∞

1

T

∫ T

0
g(ξt) dt =

∫ 1

0
· · ·
∫ 1

0
g
(
e2πjt1 , . . . , e2πjtK

)
dt1 · · · dtK

where ξt is defined in (4.101), and a0 is the coefficient when ni = 0 for each i.

115

(ii) There exists a function ĝ : CK → R of the form (4.102):

ĝ(x) =
∑

n1,...,nK

ân1,...,nKx
n1
1 · · ·xnKK (4.104)

in which |ân1,...,nK | ≤ |an1,...,nK |/ω1 for each coefficient, and for each t0, t1,

ĝ(ξt0) =

∫ t1

t0

[g(ξt)− a0] dt+ ĝ(ξt1) (4.105)

Proof. Complex exponentials and the Fourier representation are used to obtain the simple for-
mula:

g(ξt) =
∑

n1,...,nK

an1,...,nK exp
(
{n1ω1 + · · ·+ nKωK}jt

)

The absolute-summability assumption (4.103) justifies Fubini’s Theorem:

∫ t1

t0

[g(ξt)− a0] dt =
∑

n1,...,nK

an1,...,nK

∫ t1

t0

exp
(
{n1ω1 + · · ·+ nKωK}jt

)
dt = ĝ(ξt0)− ĝ(ξt1)

where ĝ is given by (4.104) with â0 = 0 (that is, nk = 0 for each k), and for all other coefficients

ân1,...,nK = an1,...,nK{n1ω1 + · · ·+ nKωK}−1j

ut

ODE QSA solidarity The importance of (4.105) is that it implies a rate of convergence in
the ergodic limit:

1

T

∫ T

0
g(ξt) dt = a0 +

1

T

(
ĝ(ξT)− ĝ(ξ0)

)

Since ĝ is bounded, this means the convergence rate is 1/T . It will be assumed that a similar
approximation holds for the QSA vector field, for every θ ∈ Rd:

f̂(θ,ξt0) =

∫ T

0
[f(θ,ξt)− f(θ)] dt = +

1

T

(
f̂(θ,ξT)− f̂(θ,ξ0)

)
(4.106)

This leads to the solidarity we seek between the QSA ODE (4.35) and the standard ODE (4.34)
with the mean vector field f .

4.9.2 Stability

The first step in establishing convergence of QSA is to show that the solutions are bounded in
time. Two approaches can be borrowed from previous sections: Lyapunov function techniques,
or the ODE at ∞ introduced in Section 4.8.3. We deal exclusively with Θ̂, which solves the
gain-free ODE (4.68). it is on the ‘right’ time scale for comparison with ϑ, the solution of
(4.34).

When applying the techniques of [39, 36] we require the vector field at ∞:

f∞(θ) := lim
r→∞

r−1f(rθ) , θ ∈ Rd (4.107)

116

Theorem 4.16. Suppose that Assumptions (QSA1)–(QSA3) hold, along with the conditions
of Prop. 4.13 in the context of this section:

(i) The limit (4.107) exists for all θ to define a continuous function f∞ : Rd → Rd

(ii) The origin is globally asymptotically stable for the ODE at ∞:

d
dtϑ
∞
t = f∞(ϑ∞t) , θ ∈ Rd

Then the solution to (4.35) converges to θ∗ for each initial condition.

When applying Lyapunov function techniques we impose the following:

(QSV1) There exists a continuous function V : Rd → R+ and a constant c0 > 0 such that, for
any initial condition ϑ0 of (4.34), and any 0 ≤ T ≤ 1, the following bounds hold whenever
‖ϑs‖ > c0,

V (ϑs+T)− V (ϑs) ≤ −T‖ϑs‖.

The Lyapunov function is Lipschitz continuous: there exists a constant `V <∞ such that
‖V (θ′)− V (θ)‖ ≤ `V ‖θ′ − θ‖ for all θ, θ′.

Assumption (QSV1) ensures that there is a Lyapunov function V with a strictly negative drift
whenever ϑ escapes a ball of radius c0. This is used to establish boundedness of Θ.

Verifying (QSV1) for a linear system. Consider the ODE (4.34) in which f(x) = Ax with
A a Hurwitz d× d matrix. There is a quadratic function V2(x) = xᵀPx satisfying the Lyapunov
equation PA+AᵀP = −I, with P > 0. Consequently, solutions to (4.34) satisfy

d
dtV2(ϑt) = −‖ϑt‖2

Choose V = k
√
V2 with k > 0, so that by the chain rule

d
dtV (ϑt) = −k

2

1√
V2(ϑt)

‖ϑt‖2

For k > 0 sufficiently large we obtain

d
dtV (ϑt) ≤ −‖ϑt‖

and hence this V is a Lipschitz solution to (QSV1), for any c0 > 0. ut

Theorem 4.17. Under Assumptions (QSA1)–(QSA3) and (QSV1), the solution to (4.35)
converges to θ∗ for each initial condition.

Define ϑτ(w), w ≥ τ, to be the unique solution to (4.34) ‘starting’ at Θ̂τ:

d
dwϑ

τ(w) = f(ϑτ(w)), w ≥ τ, ϑττ = Θ̂τ. (4.108)

The following result is required to prove Thm. 4.17.

117

Lemma 4.18. Under the assumptions of Thm. 4.17, for any T > 0,

lim
τ→∞

sup
v∈[0,T]

∥∥∥
∫ τ+v

τ

[
f(Θ̂w,ξ(g−1(w))− f(Θ̂w)

]
dw
∥∥∥ = 0

lim
τ→∞

sup
v∈[0,T]

‖Θ̂τ+v − ϑτ(τ+ v)‖ = 0.

The proof of Lemma 4.18 can be found in [24], and is similar to results in the SA literature
(e.g., Lemma 1 in Chapter 2 of [35]).

Proof of Thm. 4.17. The first step in the proof is to establish ultimate boundedness of Θ̂τ: there
exists b <∞ such that for each θ ∈ Rd, there is a Tθ such that

‖Θ̂τ‖ ≤ b for all τ ≥ Tθ , Θ̂0 = θ

The (lengthy) proof is contained in [24].
Thus, for τ ≥ Tθ, ‖ϑττ‖ = ‖Θ̂τ‖ ≤ b. By the definition of global asymptotic convergence, for

every ε > 0, there exists a Tε > 0, independent of the value ϑττ, such that ‖ϑτ(τ + v) − θ∗‖ <
ε for all v ≥ Tε. Lemma 4.18 gives,

lim sup
τ→∞

‖Θ̂τ+Tε − θ∗‖ ≤ lim sup
τ→∞

‖Θ̂τ+Tε − ϑττ+Tε‖+ lim sup
τ→∞

‖ϑττ+Tε − θ∗‖ ≤ ε.

Since ε is arbitrary, we have the desired limit. ut

4.9.3 Gain Selection

This section is devoted to choice of gain (equivalently, stepsize) for the QSA algorithm (4.35).
It is assumed Θ converges to a unique value θ∗ from each initial condition Θ0 ∈ Rd. Sufficient
conditions for this are given in Thm. 4.16 or Thm. 4.17. Our interest is in optimizing the rate
of convergence (4.35) (recall the definition (4.70)).

In some cases we can establish boundedness of the scaled error Zt = (1 + t)Θ̃t. The conver-
gence rate is 1/t in this case, since

Θ̃t = Zt/(1 + t)

Sometimes we can identify a “covariance” for the scaled error:

Σθ := lim
T→∞

1

T

∫ T

0
ZtZ

ᵀ
t dt. (4.109)

Which implies in particular that

lim
t→∞

t2‖Θt − θ∗‖2 = trace (Σθ) (4.110)

This is far faster than what is obtained using standard stochastic approximation: we must
introduce an expectation, and settle for a much slower rate:

lim
t→∞

tE[‖Θt − θ∗‖2] = trace (Σθ) (4.111)

That is, the rate is 1/
√
t rather than 1/t. This theory is fully developed in Section 9.3, along

with a formula for the covariance matrix Σθ.

118

Justification for approximating QSA with a linearization is provided next.
Remainder is WIP, based on a journal article in preparation
To obtain bounds on the rate of convergence for QSA we need to strengthen (4.99):

(QSA4) The probing signal is the solution to (4.100), with Ω a compact subset of Euclidean
space. It has a unique invariant measure π on Ω, and satisfies the following ergodic
theorems for the functions of interest, for each initial condition ξ0 ∈ Ω:

(i) For each θ there exists a function f̂(θ, ·) satisfying

f̂(θ,ξt0) =

∫ t1

t0

[f(θ,ξt)− f(θ)] dt+ f̂(θ,ξt1) , 0 ≤ t0 ≤ t1 (4.112)

with

f(θ) =

∫

Ω

f(θ, x)π(dx) and 0 =

∫

Ω

f̂(θ, x)π(dx)

(ii) The function f̂ , and derivatives ∂θf and ∂θf are Lipschitz continuous in θ. In
particular, f̂ admits a derivative Â satisfying

Â(θ,ξt0) =

∫ t1

t0

[A(θ,ξt)−A(θ)] dt+ Â(θ,ξt1) , 0 ≤ t0 ≤ t1

where A(θ,ξ) = ∂θf(θ,ξ) and A(θ) = ∂θf (θ) was defined in (??). Lipschitz con-
tinuity is assumed uniform with respect to the exploration process: increasing the
constant `f <∞ in (QSA2) if necessary,

‖f̂(θ′,ξ)− f̂(θ,ξ)‖ ≤ `f‖θ′ − θ‖
‖A(θ′,ξ)−A(θ,ξ)‖ ≤ `f‖θ′ − θ‖
‖Â(θ′,ξ)− Â(θ,ξ)‖ ≤ `f‖θ′ − θ‖, θ′, θ ∈ Rd , ξ ∈ Ω

(iii) Denote Υt = [Â(θ∗,ξ0)− Â(θ∗,ξt)]f(θ∗,ξt). The following limit exists:

sΥ := lim
T→∞

1

T

∫ T

0
Υt dt = −

∫

Ω

Â(θ∗, x)f(θ∗, x)π(dx)

and the partial integrals are bounded:

sup
T≥0

∣∣∣
∫ T

0
[Υt − sΥ] dt

∣∣∣ <∞

ut

Assumption (QSA4) (iii) is imposed because the vector sΥ arises in an approximation for the
scaled error Zt: the first appearance of Υt is in Prop. 4.19. The assumption is not much stronger
than the others. In particular, the partial integrals will be bounded if there is a bounded solution
to Poisson’s equation:

Υ̂t0 =

∫ t1

t0

[Υt − sΥ] dt+ Υ̂t1

Recall the definition of the scaled error Zt introduced in (??), and denote for t ≥ 0,

Yt := Zt − ΞI
t(Θt) (4.113)

119

Proposition 4.19. Suppose that rt ≤ bat for a constant b, and all t ≥ 0. Then, the vector-
valued process Y satisfies the differential equation,

d
dtYt = at

[
A∗Yt + ∆Y

t − Υt +A∗ΞI
t

]
+ rt[Yt + ΞI

t] (4.114)

where ΞI
t = ΞI

t(θ
∗), and ‖∆Y

t ‖ = o(1 + ‖Yt‖) as t→∞. That is, for scalars {εYt },

‖∆t‖ ≤ εYt {1 + ‖Yt‖} , t ≥ t0

with εYt → 0 as t→∞.

Proposition 4.20. Suppose that (QSA1)–QSA3) hold, and that solutions to (4.35) converge
to θ∗ for each initial condition. Suppose in addition that f is differentiable, and its derivative
A = ∂θf is also Lipschitz continuous. Then, the scaled error admits the representation

d
dtZt =

[
rtI + atA(Θ̄t)

]
Zt + at∆t + Ξ̃t , Zt0 = 0 (4.115)

where rt = − d
dt log(at), Ξ̃t = f(Θt,ξt)− f(Θt), and ‖∆t‖ = o(‖Zt‖) as t→∞.

In particular, setting A∗ = A(θ∗),

(i) With at = g/(1 + t),

d
dtZt = at

[
g−1I +A∗

]
Zt + at∆t + Ξ̃t (4.116)

(ii) For any ρ ∈ (0, 1), using the gain at = g/(1 + t)ρ gives

d
dtZt = atA

∗Zt + at∆t + Ξ̃t (4.117)

where the definition of ∆t is different in each appearance, but in each case satisfies ‖∆t‖ =
o(‖Zt‖).

The challenge in applying Prop. 4.20 is that the “noise” process Ξ̃t appearing in (4.115)
is non-vanishing, and is not scaled by a vanishing term. We show here that this term can be
removed through a change of variables.

Proposition 4.21. Suppose that (QSA1)–(QSA4) hold, and that A∗ is Hurwitz. Suppose the
gain is at = 1/(1 + t)ρ, with ρ < 1. Then the following hold:

Zt = Ȳ + ΞI
t + o(1)

Θt = θ∗ + at[Ȳ + ΞI
t] + o(at)

(4.118)

Proposition 4.22. Suppose that (QSA1)–(QSA4) hold, and that I +A∗ is Hurwitz. Suppose
the gain is at = 1/(1 + t)ρ, with ρ = 1. Then the following hold:

Zt = Ȳ + ΞI
t + o(1)

Θt = θ∗ + at[Ȳ + ΞI
t] + o(1/t)

(4.119)

4.9.4 Ruppert-Polyak averaging

120

4.10 Exercises

4.1 Compute the Newton-Raphson vector field fNRf defined in (4.14) for the three scalar ex-
amples: f(x) =
(a) −∇J (x) with J(x) = x2(1 + (x+ 10)2)
(b) −∇J (x) with J(x) = log(ex + e−x)
(c) sin(x)

In each case,

• Plot fNRf(θ) as a function of θ

• Obtain the roots of f and fNRf

• Identify the regions of attraction: we say that θ is in the region of attraction an
equilibrium θ◦ for the Newton-Raphson flow if

lim
t→∞

Θt = θ◦

where Θt is the solution to (4.13) at time t, with initial condition Θ0 = θ.
Describe the region of attraction for each root of fNRf.

4.2 Let’s revisit part (a) of Exercise 4.1 to see some of the difficulties minimizing the function
J(x) = x2(1 + (x + 10)2) using gradient descent. One problem is that it is not convex,
and also has multiple local minimum. Another is that its gradient has cubic growth, which
introduces potential numerical problems.

(a) Code an Euler approximation of gradient descent d
dtΘ = −∇J(Θ). Perform multi-

ple runs, with varying initial condition (it will eventually fail when you choose an initial
condition too large).

(b) Introduce a weighting function w : R→ [1,∞), and consider the normalized algorithm:

d
dtΘ = − 1

w(Θ)
∇J(Θ)

Choose a continuous weighting function so that the right hand side is globally Lipschitz
continuous, and test the Euler approximation with a range of initial conditions.

We will revisit this example once more in Exercise 9.2.

4.3 Pendulum swing up

4.4 Rowing game

4.5 Oscillator game

4.11 Notes

Work in progress—comments welcome

ODE methods for algorithm design This is today a significant trend in both RL and ML.
Essays to write on the amazing results on acceleration and Runge-Kutta methods, and more

... [193, 224, 181]
Along side ODE approaches to algorithm design are SDE (stochastic differential equation)

techniques [?].

121

NR flow The ODE (4.13) was introduced in the economics literature, which led to the com-
prehensive analysis by Smale [186] for smooth f . The term Newton-Raphson flow for (4.13)
was introduced in the deterministic control literature [183, 218]. The Zap SA algorithm was
introduced at the same time, and based on the same ODE [71].

QSA Much of Sections 4.5 and 4.6 and section 4.9.3 is adapted from [24, 25], which was inspired
by the prior results in [142, 182]; [52] contains applications to gradient-free optimization with
constraints. The first appearance of QSA methods appears to have originated in the domain of
quasi-Monte Carlo methods applied to finance; see [128, 129].

Ruppert-Polyak averaging was introduced independently by their namesakes [174, 167]. How-
ever, this work has nothing to do with QSA, but concerns optimizing the covariance Σθ appearing
in (4.111) for stochastic approximation—see the Notes section of Chapter 9 for more background.
The application of averaging techniques for rate optimization in QSA appears to be new.

The function ĝ in Lemma 4.15 (ii) is precisely the solution to Poisson’s equation, with forcing
function g̃ = g − a0, that appears in theory of simulation of Markov processes, average-cost
optimal control, and stochastic approximation [91, 7, 145, 23].

The phrase ODE method is frequently tributed to Ljung [134], though most authors use this
to mean a method of analysis, rather than a technique for algorithm design.

The “ODE@∞” (4.95) was introduced in [39] for stability verification in stochastic approxi-
mation: Prop. 4.13 is a very special case of the Borkar-Meyn Theorem [39, 36], which has been
refined considerably in recent years [169, 170]. The use of abstract ODE models to verify sta-
bility of stochastic recursions also appears in queueing networks [58, 59, 147] and MCMC [85].
We will revisit this approach to stability verification in Chapter 9.

SGD and Extremum seeking control Gradient-free optimization has been studied in two,
seemingly disconnected lines of work. The first line of work, typically known as “bandit opti-
mization” (see e.g., [84, 10, 44]) leverages a stochastic estimate of the gradient, based on a single
or multiple evaluations of the objective function. The ideas originate in the paper of Kiefer
and Wolfowitz [114] (see see [36, 188] for more history as well as refined algorithms). These
techniques have been analyzed extensively using tools similar to the classical SA approach, with
similar conclusion on the high variance of the estimates [50].

The second line of work, typically termed “extremum-seeking control” (ESC) [133, 6], lever-
ages a deterministic estimate of the gradient. The gradient-free optimization techniques surveyed
in Section 4.6 are stylized versions of the ESC approach. The gain a is typically assumed con-
stant in this literature, and there is a large literature on how to improve the algorithm, such as
through the introduction of a linear filter on the measurements {L(Ψt)}. Stability of ESC was
analyzed in e.g., [123, 216]; see [6] for a comprehensive overview of the methods.

Policy gradient techniques are traditionally posed in a stochastic setting, in which ξ is
i.i.d. (independent and identically distributed). The most popular approach is the Actor-Critic
method, in which a value function approximation algorithm such as TD-learning acts as a sub-
routine. There is an enormous literature, and it is best to refer to [26, 194] for history, as well
as the recent work [137].

Regret analysis of stochastic and nonstochastic multi-armed bandit problems is the subject
of [45].

122

Chapter 5

Value Function Approximations

We now have all the preliminaries necessary to describe reinforcement learning algorithms de-
signed for value function approximation.

The approximation techniques in this book are built around a parameterized family: for
approximating the Q-function Q? (defined in (3.6) for the total cost criterion), the family is
denoted {Qθ : θ ∈ Rd}, where d ≥ 1 is the dimension of the function class. Standard examples
are discussed inSection 5.1. In this chapter, the focus is on algorithms based on optimization:
an algorithm designed to compute the optimal parameter θ∗ will be based on some loss function
E(θ), with θ∗ = arg minθ E(θ). The algorithm may be recursive, in which case it generates a
sequence of parameter estimates {θn}, designed so that θn → θ∗ as n→∞.

Reinforcement learning algorithms are typically designed to be model free, in which the
inputs to the algorithm consist of three terms: {u(k)} the input sequence to the control system,
the sequence of observed costs c(x(k), u(k)), and observed features that depend on the class of
algorithms. For the linear parameterization Qθ(x, u) =

∑
i θiψi(x, u), the sequence of features

is the d-dimensional sequence {ψ(x(k), u(k))}. Fig. 5.1 is included to emphasize that these are
the only inputs to the algorithm. We don’t require a model, and the state sequence {x(k)} may
not be fully observed.

For any approximation Qθ we define a policy inspired by the Bellman equation, and in
particular eq. (3.8):

φθ(x) = arg min
u

Qθ(x, u) , x ∈ X (5.1)

That is,

u(k) = arg min
u

Qθ(x(k), u)

min E(θ;)
θ

Qθ∗

u,ψ, c
u,ψ, c

Figure 5.1: Online Q-learning:
inputs are observed features, and
costs or rewards

It is assumed that Qθ(x(k), u) depends on x(k) only
through the realized cost and features ψ illustrated in
(5.1). Hence we may regard φθ(x(k)) as a function of
(c(x(k)), ψ(x(k), u(k))). This is an important distinction
if the space on which x evolves is much larger than the
dimension of ψ.

Reinforcement learning can be regarded as collection
of system identification for control. In standard control
textbooks there is a two-step process: 1. identify a model,

such as the ARMA model (2.4), and 2. design a control solution based on this model (perhaps

123

124

through state feedback). Described in this chapter is a one step process in which we estimate a
value function or Q-function, and from this we immediately obtain a policy.

What’s a Good Approximation? If you have read Chapter 3 on optimal control, you surely
want to learn how to approximation the Q-function Q?. However, you are more eager to obtain
an estimate of the optimal policy:

φ?(x) = arg min
u

Q?(x, u) , x ∈ X

A few things to keep in mind as we evaluate an algorithm:

(i) Approximation fidelity. We do not need a highly accurate approximation of the Q-function
if our goal is to obtain a policy that is approximately optimal. Rather, the goal is that
the performance of the policy φθ

∗
is approximately optimal. Ideally then, E(θ) would be

some measure of policy performance. The mean-square Bellman error (5.5) is a common
surrogate, since estimating performance may be computationally costly.

(ii) Policy evaluation. It may not be very expensive to compute or approximate E(θn) based
on a model, in which case we can keep a tally of performance for selected iterations
{E(θnk) : k ≥ 1}. We then select those policies among {φθnk : k ≥ 1} with the highest
performance. Most likely we will do further testing, following the guidelines in Section 2.2,
and suggestions found in Section 5.1.5.

5.1 Function Approximation Architectures

This section might be viewed as the briefest crash course on machine learning. See [32] for a
more leisurely introduction to the function approximation concepts covered here.

The goal is to approximation a function H : Z → R, where interpretation of H and the
definition of the set of points Z depends on context. This is regarded as a learning problem
when the estimate is based on data gathered in an experiment. For example, we might select
H to be the Q-function defined in (3.6), and Z = X × U. The data will be obtained from
experiments on the control system: the input applied to the system, along with functions of the
resulting state process. The techniques described here for function approximation require a few
ingredients:

(i) A function class H. Three examples are described below: a d-dimensional linear function
class, d-dimensional non-linear function class defined by a neural network, and one infinite-
dimensional class: the reproducing kernel Hilbert space (RKHS).

(ii) For each h ∈ H we associate a non-negative “loss”, defined by a loss function E(h). It
is designed so that E(h) is small when h = H; our approximation is lousy if E(h) is very
large. We impose just one requirement on this loss function: assumed given are samples
{zi : 1 ≤ i ≤ N} ⊂ Z, and E depends only on h evaluated at the samples. Consequently,
rather than thinking of the domain of E as the abstract collection H, it is a mapping
E : RN → R, with

E(h) = E(h(z1), . . . , h(zN)) (5.2)

(iii) An algorithm to obtain the minimizer of E(h) over h ∈ H. This book is filled with
techniques for constructing algorithms, and techniques to obtain insight on their rate of
convergence.

125

We begin with two examples of loss functions, and then three examples of the function class H.

5.1.1 Function approximation based on training data

Curve fitting Suppose that we have noisy observations of the function:

yi = H(zi) + di

where the disturbance {di} is not too large, and has nice statistical properties (for example,
its average is close to zero). The sequence {(zi, yi) : 1 ≤ i ≤ N} is called training data. The
quadratic loss function is defined by

E(h) =
1

N

N∑

i=1

[yi − h(zi)]
2 , h ∈ H (5.3)

If E(h∗) = 0 then the function exactly matches the observations: h∗(zi) = yi for each i. This is
good news in the disturbance-free setting (di = 0 for each i), so that h∗(zi) = H(zi) for each i.

y

z

Over-�tting:

z

Smooth function with low error:

z

Under-�tting:

Exessive regularization
results in large error

error

yi = h(zi) for each i yi ≈ h(zi) for each i h(z)

(zi, yi)

Figure 5.2: Three attempts to approximate the data {zi, yi} with a smooth function.

Fig. 5.2 shows function approximation outcomes from three different algorithms: each al-
gorithm constructed the function h based on the training samples {(zi, yi)}. The first plot
illustrates typical results when we put too much trust in the data: we achieved E(h) = 0, which
should be good news. However, it is unlikely that the true function exhibits so many peaks
and valleys – this behavior is most likely the product of a bad algorithm. The wiggly behav-
ior is called over-fitting. A good algorithm produces the smooth approximation shown in the
middle. This is achieved using a regularizer. With too much regularization, you obtain a poor
approximation, as shown on the right.

The preference for the middle plot in Fig. 5.2 is based on a “smoothness prior” for the
underlying data: a substitute for the probabilistic priors used in Bayesian statistics.

Mean-square Bellman error Our goal is to estimate the optimal Q-functionQ?(x, u) defined
in (3.6): we take H = Q? and Z = X × U. Our second glance ahead in Section 3.7 provided
a roadmap, inspired by the Bellman error equation (3.9) for the Q-function. For any function
Q : X×U→ R, and any input-state sequence (u,x), the temporal difference is defined in (3.45),
and recalled here:

Dk+1(Q) :=−Q(x(k), u(k)) + c(x(k), u(k)) +Q(x(k + 1)) (5.4)

126

Given a time horizon K ≥ 1, and the input-state sequence {u(k), x(k) : 0 ≤ k ≤ K}, we
must take N = K + 1 and observations zi = (x(i− 1), u(i− 1)) to match the notation (5.2), and
from this define the loss function

E(h) =
1

N

N∑

i=1

[
Di(h(zi), h(zi+1))

]2
(5.5a)

Di(h(zi), h(zi+1)) = −h(x(i− 1), u(i− 1)) + c(x(i− 1), u(i− 1)) + h(x(i)) (5.5b)

with h(x) = minu h(x, u) for any function h. The complex looking term (5.5a) is the temporal
difference, Di(h(zi), h(zi+1)) = Di(h), as defined in (5.4).

Empirical distributions In the RL literature you will find the term experience replay buffer
in reference to training data, and from this the empirical distribution (or empirical pmf) gener-
ated from this data:

ΓN (x, u, x+) =
1

N

N−1∑

k=0

1{x(k) = x , u(k) = u , x(k + 1) = x+} , x, x+ ∈ X (5.6)

This is a pmf on ∈ X × U × X for any sequence of values {x(k), u(k)} and any N ≥ 1. Simple
accounting leads to the following alternate expression for (5.5):

E(h) =
∑

x,u,x+

ΓN (x, u, x+){−h(x, u) + c(x, u) + h(x+)}2 (5.7)

where the sum is over all (x, , ux+) ∈ X × U × X for which ΓN (x, x+) > 0. This interpretation
of E(h) as an empirical mean is useful for both intuition and theory to come (such as the LP
approach to MDPs that is surveyed in Section 7.2.3).

A bit more terminology: E is also known as the empirical risk, and its minimization over a
function class H is known as empirical risk minimization.

5.1.2 Linear function approximation

This refers to a family of functions, linearly parameterized by θ ∈ Rd:

Hθ(x) =

d∑

i=1

θiψi(x) , x ∈ Z (5.8)

where {ψi} are the basis functions. It is convenient to stack these together to form a function
ψ : Z → Rd, and then write Hθ = θᵀψ. For any smooth loss function, the first-order condition
for optimality is 0 = ∇θE(Hθ). For the mean-square Bellman error (5.5a) this becomes

0 =
N∑

i=1

Di(H
θ(zi),H

θ(zi+1))ζθi

where ζθi = ∇θDi(H
θ(zi), H

θ(zi+1))

(5.9)

127

The choice of basis can be informed by some understanding of the control problem. For
example, if Z = R2 and it is known that H is convex, then it may be sufficient to choose Hθ

quadratic, with d = 7:
ψ1(x) = x1 , ψ2(x) = x2 , ψ3(x) = x3 ,

ψ4(x) = x2
1 , ψ5(x) = x1x2 , ψ6(x) = x2

2 ,

and ψ7(x) = 1 for all x ∈ R2.

Galerkin relaxation The term Galerkin relaxation appears throughout the book as a means
to approximate equality constraints such as (5.9), and sometimes also inequality constraints.
As an example of this technique, consider again the loss function (5.5) associated with the
mean-square Bellman error. An alternative approximation of the Bellman equation is obtained
by constructing a dζ-dimensional sequence {ζk}, and search for a function h that satisfies the
constraint:

0 =
1

N

N∑

i=1

Di(h(zi), h(zi+1))ζi , 1 ≤ i ≤ dζ (5.10)

This is a Galerkin relaxation, and certainly a relaxation of our ultimate if unrealistic goal: to find
a function h for which the temporal difference Di(h(zi), h(zi+1)) is zero for each i. In the context
of RL, the vectors {ζk} appear as eligibility vectors in standard algorithms (see Section 5.4).

For a finite-dimensional function class we take dζ = d, so that (5.10) represents d constraints,
which is consistent with the d unknowns, {θ∗i : 1 ≤ i ≤ d}.

Equation (5.10) appears similar to (5.9). However, ζi = ζθi is not a valid choice, since the
Galerkin relaxation does not allow ζi to depend on the θ. In practice we might design {ζk} so
that ζi ≈ ζθi for θ in a region of interest.

We are not always so fortunate to have intuition regarding the shape of H, which is why
there has been so much attention focused on “black box” function approximation architectures.

5.1.3 Neural networks

Neural networks can be used to define a parameterized family of approximations {Hθ} that are
highly nonlinear in θ. The purpose of this very brief introduction is to explain how a neural
network can be used for function approximation, and especially for applications to value function
approximation.

Fig. 5.3 shows an example of a feed-forward neural network with a single input layer, a
single output layer, and three hidden layers (the optional bias terms are not included). For our
purposes, this figure represents a function approximation H : R3 → R, so that the input layer is
x = (x1, x2, x3)ᵀ.

This is called a feed-forward network because calculation of y as a function of x is performed
sequentially, moving from left to right. For given weight vectors {wjk} (whose dimensions will
be clear from the definitions), the calculations proceed as follows:

The first step is to calculate values h1 ∈ R4 in hidden layer one, via

h1
k = σ(〈w1

k, x〉) , 1 ≤ k ≤ 4

where the notation 〈w1
k, x〉 represents the usual dot product of two vectors, and σ : R → R+ is

known as the activation function. Two standard choices:

Sigmoid: σ(r) = 1/(1 + e−r) ReLu: σ(r) = max(0, r)

128

Input Layer Hidden Layers Output Layer

x

y

h1 h2 h3

Figure 5.3: Neural network with three hidden layers.

Calculation of h2, h3 ∈ R4 is similar:

h2
k = σ(〈w2

k, h
1〉) , h3

k = σ(〈w3
k, h

2〉) , 1 ≤ k ≤ 4

The output is then defined by y = 〈w4
k, h

3〉, which is a linear function of the third hidden layer,
but a complex nonlinear function of the input x. The weights are identified with the parameter
θ: we may write y = Hθ(x), with

{θi : 1 ≤ i ≤ d} = {wjk} , d = 3× 4 + 4× 4 + 4× 4 + 4 = 48

5.1.4 Kernels

Let’s start at the conclusion: when applying kernel methods, our approximation of H takes the
form

Hθ(x) =

N∑

i=1

θik(x, zi) , x ∈ Z , (5.11)

where k is the kernel function that we choose from a large library.

You might argue that this is simply the linear function approximation approach described
earlier, with d = n and ψi(x) = k(x, zi) for each i and x. Your argument is absolutely correct!
To appreciate the kernel method, you need to see how we arrive at this particular form for Hθ.

We return to the “beginning”, which is the choice of kernel.

Choice of kernel, and requirements Three standard examples are

Gaussian: k(x, y) = e
−‖x−y‖2

2σ2

Laplacian: k(x, y) = e
−‖x−y‖

σ

Polynomial: k(x, y) = (r〈x, y〉+ 1)m , x, y ∈ Z

where σ > 0, r > 0 and m ≥ 1 are design parameters.

Recall that in some control applications we may know that H is convex and non-negative.
In this case, the polynomial kernel is attractive because Hθ in (5.11) is convex if m is even, and
{θi} are non-negative.

129

Each of these three examples has the symmetry property, k(x, y) = k(y, x). This is one of
the several required properties of a kernel. A crucial requirement is that it is positive definite:
for every n ≥ 1, every collection {zi : 1 ≤ i ≤ n} ⊂ Z, and every α ∈ Rn,

n∑

i,j=1

αiαjk(zi, xj) ≥ 0 (5.12)

with equality if and only if α = 0.

Function class for approximation Once we have selected a kernel, we arrive at a function
class H: an infinite-dimensional analog of the set of functions {Hθ : θ ∈ Rd} defined in (5.8).
The collection H contains every function of the form,

hα(x) =

n∑

i=1

αik(x, zi) , x ∈ Z

for any integer n, scalars {αi}, and {zi} ⊂ Z. The primitive functions hα are also dense in H.
That is, if h ∈ H, then for each ε > 0, there is an integer n, scalars {αi}, and {zi} ⊂ Z (all
depending on ε), with ‖h−hα‖H ≤ ε. The choice of norm ‖ · ‖H is a critical part of the theory.

For the primitive functions hα and hβ (with m and {zi} arbitrary), an inner product is
introduced that defines the norm:

〈hα, hβ〉H =

n∑

i,j=1

αiβjk(zi, xj) (5.13a)

‖hα‖H =
√
〈hα, hα〉H (5.13b)

The positivity assumption (5.12) ensures that 〈hα, hα〉H is non-negative. The definition of the
inner product and norm can be extended to the larger collection of functions H, and endowed
with this inner product it is known as a reproducing kernel Hilbert space (RKHS).

For our purposes, details regarding H are not required because the Representer Theorem
tells us we can restrict to the primitive functions in the function approximation problems of
interest to us. To present this theorem requires one more ingredient.

Regularized loss function In addition to the loss function E we require a regularizer, defined
here as an increasing function G : R+ → R+. A typical choice is G(r) = λr2 or G(r) = λr, with
λ > 0. The regularizer is introduced to manage the over-fitting problem illustrated in Fig. 5.2.

Our interest is solving the optimization problem

h∗ = arg min{E(h) +G(‖h‖H) : h ∈ H} (5.14)

Theorem 5.1. (Representer Theorem) Consider a positive-definite real-valued kernel
k : Z × Z → R. Suppose that {zi : 1 ≤ i ≤ N} are given, along with a loss function of the
form (5.2) and regularizer G. Then, any minimizer of the optimization problem (5.14) can be
expressed

h∗(·) =
N∑

i=1

α∗i k(·, zi), (5.15)

for some α∗ ∈ RN . ut

130

We now return to the two examples:

Curve fitting Consider the quadratic loss (5.3). If the regularizer is also quadratic, G(r) =
λr2, then the Representer Theorem provides an explicit solution to (5.14). We are left to obtain
the optimal parameter:

α∗ = arg min
α

{ N∑

i=1

[yi − hα(zi)]
2 + λ‖hα‖2H

}

Let K denote the n×n matrix with entries Ki,j = k(zi, xj). We then have ‖hα‖2H = αᵀKα, and
hα(zi) =

∑
j αjk(zi, xj) = [Kα]i. To compute α∗ we set the partial derivatives of the loss equal

to zero:

0 =
∂

∂αj

{ N∑

i=1

[yi − [Kα]i]
2 + λαᵀKα

}
= 2

N∑

i=1

[yi − [Kα]i]Ki,j + 2λ[Kα]j

With y, α∗ ∈ RN column vectors, this gives7

α∗ = (KᵀK + λK)−1Kᵀy (5.16)

Mean-square Bellman error We no longer have an explicit solution to (5.14), even with
G quadratic, but we know that h∗ is of the form (5.15) for some vector α∗. A more successful
approach may proceed using a convex loss function E : RN → R+, constructed by applying the
representations in Section 3.5.

5.1.5 Are We Done Yet?

This is mainly a guide to how to receive a passing grade on your experimental oriented homework.

Let’s think about how to answer the question within the context of minimizing the mean-
square Bellman error using linear function approximation, which results in the root finding
problem (5.9): fN (θ∗N) = 0, with

fN (θ) =
N∑

i=1

Di(H
θ(zi), H

θ(zi+1))ζθi

While it may take you a long time to compute θ∗N , you are far from done.

Some experiments you can perform to obtain more confidence that you have a useful solution:

Is your parameterization redundant? Consider Qθ = θᵀψ, an approximate Q-function,
and estimate the covariance Σψ using samples:

Σ̂ψ =
1

N

N∑

i=1

ψ(zi)ψ(zi)
ᵀ

7We have assumed that K = Kᵀ: the transpose is included anyway, since this is a standard approximation of
the inverse of a matrix K

131

Look at the eigenvalues of this positive semidefinite matrix—if there is a null space, then you are
in trouble. That is, if Σ̂ψv = 0 for some non-zero vector v, then obviously vᵀΣ̂ψv = 0, meaning
that

0 = vᵀΣ̂ψv =
1

N

N∑

i=1

(
vᵀψ(zi)

)2

It follows that Qθ, with θ = v, is identically zero on the samples observed. And it means your
basis is highly redundant, in the sense that one ψk is a linear combination of the others: if
vk 6= 0, then for each i,

ψk(zi) = − 1

vk

∑

j 6=k
vjψj(zi)

There are two potential explanations: either your basis is truly linearly dependent in an
algebraic sense:

vᵀψ(z) = 0 , z ∈ Z

A second potential explanation is insufficient exploration, so that your samples z evolve in a
low-dimensional subset of Z.

Is your parameter predictive using fresh data? Obtain M � 1 more batches of data
{zm : 1 ≤ m ≤M}, and compute f

m
N (θ∗N) for each m, with

f
m
N (θ) =

N∑

i=1

Di(H
θ(zmi), Hθ(zmi+1))ζθi , 1 ≤ m ≤M

If there is large variability in the M values, then you need to increase N .

Is the output of your algorithm predictive of what really matters? This will take
some work, but it is truly essential. With M � 1 batches of data, estimate the performance
you obtain with the output of your algorithm. This means that for each m you must

(i) Obtain an estimate θ∗m using your algorithm.

(ii) Obtain φm(x) ∈ arg minuQ
θ∗m(x, u)

(iii) Run more experiments to estimate the performance. For the total cost problems con-
sidered here, choose a pmf µ with finite support. For each initial condition xi satis-
fying µ(xi) > 0 run a simulation to estimate J(xi) under policy φm, and then obtain
Lm =

∑
i µ(xi)Ĵm(xi). Look at the sample mean and variance of {Lm : 1 ≤ m ≤ M}.

High variance means you need a longer run.
Or, you might decide to look more closely at those policies for which Lm is smallest—

maybe you got lucky! To know for sure, you need a deeper investigation of performance,
using data independent of what was used for training.

If we are talking about real life, rather than a homework problem, then you need advice from
experts! For example, if your θ∗ is supposed to define an optimal policy for an autonomous
car, then you need experts in sociology as well as highway engineering to conduct realistic
experiments.

132

5.2 Exploration and ODE Approximations

The success of the RL algorithms surveyed in this chapter depends in part on the choice of input
u used for training. The purpose of this section is to make this precise, and present our main
assumption on the input designed for generating data to train the algorithm (that is, exploration,
as first surveyed in Section 2.5.3). Throughout this chapter it is assumed that the input used
for training is state-feedback with perturbation, of the form

u(k) = φ̃(x(k),ξ(k)) (5.17)

where ξ is a bounded sequence evolving on Rp for some p ≥ 1. It plays the same role as
the probing signal introduced for gradient-free optimization in Section 4.6, with applications to
policy gradient algorithms in Section 4.7.

It is sometimes convenient to assume that the exploration itself evolves as an autonomous
state space model

ξ(k + 1) = H(ξ(k)) (5.18)

in which H: Rp → Rp is continuous. Subject to the policy (5.17), it follows that the triple
Φ(k) = (x(k), u(k),ξ(k))ᵀ has a similar recursive form, evolving on the larger state space Z =
X×U×Rp. In some cases, such as in TD(λ) learning, it is necessary to add additional components
to Φ(k), and extend the state space Z. This is the reason for the abstract description of Φ in
Assumption (Aξ) below.

For any continuous function g : Z→ R and N ≥ 1, denote

gN =
1

N

N∑

k=1

g(Φ(k))

For any ` > 0 denote

G` = {g : ‖g(z′)− g(z)‖ ≤ `‖z − z′‖, for all z, z′ ∈ Z}
The “quasi-randomized” policy structure defined by eqs. (5.17) and (5.18) is imposed simplify
analysis of algorithms, along with assumptions on a slight generalization of the larger process
Φ:

(Aξ) The state and action spaces X and U are each closed subsets of Euclidean
space; F defined in (3.1), φ̃ defined in (5.17), and H in (5.18) are each continuous on
their domains. There is a larger state process Φ with the following properties:

(i) Φ evolves on a closed subset of Euclidean space, denoted Z, and (x(k), u(k),ξ(k)) =
w(Φ(k)) for each k, where w : Z→ R is continuous.

(ii) Φ: is ergodic in the following sense: There is a probability measure $ such
that for any continuous function g : Z→ R, the following ergodic average exists
for each initial condition Φ(0)

E$[g(Φ)] := lim
N→∞

gN (5.19)

(iii) The limit in (5.19) is uniform on G`, for each ` <∞:

lim
N→∞

sup
g∈G`
|gN − E$[g(Φ)]| = 0

Please remember that these assumptions are not essential for successful implementation of
algorithms. They are introduced to simplify analysis.

133

ODE approximations Just as in the previous chapter, ergodicity allows for approximation
of algorithms by simpler ODE approximations. In particular, consider a recursion of the form

θn+1 = θn + αn+1fn+1(θn) , n ≥ 0 (5.20)

in which {fn} is a sequence of functions that admits an ergodic limit:

f(θ) := lim
N→∞

1

N

N∑

k=1

fk(θ) , θ ∈ Rd

The associated ODE is defined using this vector field:

d
dtϑt = f(ϑt) (5.21)

An ODE approximation is defined by mimicking the usual Euler construction: the time-scale
for the ODE is defined by the non-decreasing time points t0 = 0 and tn =

∑n
0 αk for n ≥ 1.

Define a continuous time processΘ by Θtn = θn for each n, and extend to all t through piecewise
linear interpolation. The next step is to fix a time horizon for analysis of length T > 0, where
the choice of T is determined based on properties of the ODE. Denote T0 = 0, and

Tn+1 = min{tn : tn − Tn ≥ T } , n ≥ 0 (5.22)

Let {ϑnt : t ≥ Tn} denote the solution to the ODE (5.21) with initial condition ϑnTn = θk(n),
with index defined so that tk(n) = Tn. We then say that the algorithm (5.20) admits an ODE
approximation if for each initial θ0,

lim
n→∞

sup
Tn≤t≤Tn+1

‖Θt − ϑnt ‖ = 0 (5.23)

5.3 TD-learning and SARSA

TD learning is defined as methods to approximate a value function for a fixed policy φ. This
may be just one step in the PIA introduced in Section 3.2.2, which requires estimation of Jn to
be used in the policy improvement step (3.15).

In our second glance ahead discussion, contained in Section 3.7, we learned that it is much
better to estimate the fixed-policy Q-function. An example of application to approximate policy
iteration is contained in Section 4.5.3. For the policy φ, we may let Jφ denote the associated
value function, and then the fixed-policy Q-function is defined by

Qφ(x, u) = c(x, u) + Jφ(F(x,φ(x)))

In this notation, he fixed point equation (3.44) becomes

Qφ(x, u) = c(x, u) +Qφ(x+, u+) , x+ = F(x, u) , u+ = φ(x+) (5.24)

For any approximation Q, we can observe the error in this fixed point equation as another
temporal difference: for any input-state sequence (u,x), denote

Dk+1(Q) :=−Q(x(k), u(k)) + c(x(k), u(k)) +Q
φ
(x(k + 1)) (5.25)

134

with the fresh definition,

Q
φ
(x) = Q(x,φ(x)) , x ∈ X (5.26)

The temporal difference (5.25) is zero for all k if we substitute Qφ for Q.

Algorithms to approximate Qφ based on the temporal difference sequence (5.25) are called
SARSA. These algorithms are only a minor variation on the TD-learning algorithms designed
to estimate Jφ, so we opt for the simpler terminology “TD-learning” throughout the book.

There are two distinct flavors of TD-learning: on policy and off policy. The on-policy
versions choose u(k) = φ(x(k)) in the definition (5.25). Theory for on-policy algorithms is
elegant (with origins mainly in the Markovian setting, rather than the deterministic control
problems considered in this part of the book). The difficulties with on-policy algorithms should
be clear following the discussion in Section 2.5.3 regarding exploration: if φ is a good policy, in
the sense that x(k)→ xe, u(k) = φ(x(k))→ ue as k →∞, then for any function Q

lim
k→∞

Dk+1(Q) = lim
k→∞

{
−Q(x(k), u(k)) + c(x(k), u(k)) +Q(x(k + 1),φ(x(k + 1))

}

= c(xe, ue) = 0 , if u(k) = φ(x(k)) for each k
(5.27)

Recall that the convention c(xe, ue) = 0 is required so that Jφ is finite valued for some policy.

In this part of the book we focus mainly on off-policy algorithms. More depth on the elegant
theory for on-policy algorithms is surveyed in Part 3.

5.3.1 TD-Learning and linear regression

Consider a parameterization introduced previously in (4.55):

Qθ(x, u) = d(x, u) + θᵀψ(x, u) , θ ∈ Rd. (5.28)

in which d : X × U → R is regarded as an estimate of the cost function (or d = c if the cost
function is given). In strict mathematical terms, this is an affine function class, but most would
continue to use the term linear function class.

Given the assumption that Q(xe, ue) = c(xe, ue) = 0, it is important to construct the function
class with this in mind:

d(xe, ue) = 0 , and ψi(x
e, ue) = 0 1 ≤ i ≤ d (5.29)

From the definition (5.25) we obtain

Dk+1(Qθ) = −Qθ(x(k), u(k)) + c(x(k), u(k)) +Qθ
φ
(x(k + 1))

This can be expressed in a form that will inspire any young statistician. On denoting

γ(k + 1) = c(x(k), u(k))− d(x(k), u(k)) + d(x(k + 1),φ(x(k + 1))) (5.30a)

Υ(k + 1) = ψ(x(k), u(k))− ψ(x(k + 1),φ(x(k + 1))) (5.30b)

we obtain the representation

γ(k + 1) = Υ(k + 1)ᵀθ +Dk+1(Qθ) (5.30c)

135

This is the form of a standard regression problem:

γ(k) = Υ(k)ᵀθ∗ + εk

where {εk = Dk(Qθ
∗
) : k ≥ 0} is regarded as “noise”, and θ∗ is typically defined as the minimum

variance parameter: θ∗ = arg minθ L(θ), with

L(θ) = lim
N→∞

1

N

N−1∑

k=0

[γ(k)−Υ(k)ᵀθ]2 (5.31)

Convergence of this limit require conditions on the input, and further conditions are required so
that this loss function is meaningful. In particular, for the on-policy approach in which (5.27)
holds, L(θ) = 0 for every θ!

This is where exploration comes in. Consider a “randomized” feedback law

u(k) = φ̃(x(k),ξ(k)) (5.32)

in which ξ(k) is a sampled exploratory signal of the form used in QSA. For example, it may be
a vector-valued sequence, with components of the form (4.44) with varying frequencies:

ξi(k) = ξi(0) + 2πωik (mod 1)

It is not unreasonable to expect convergence of the limit (5.31) in this case. For the limit L
to define a meaningful loss function requires several considerations: the frequencies must be
selected with care, and the dimension of ξ should be at least as large as d (the dimension of θ).
Justification for these restrictions is possible in the case of LQR—see Exercise 5.2.

Least Squares Temporal Difference Learning

For a given d× d matrix W > 0, integer N , and observed samples {u(k), x(k) : 0 ≤ k ≤ N}, the
minimizer is obtained:

θ∗N = arg min
θ

LN (θ) , LN (θ) = θᵀWθ +

N−1∑

k=0

[γ(k)−Υ(k)ᵀθ]2 (5.33)

This defines the approximation of the Q-function Qθ
∗
N = d+

∑
i θ
∗
N (i)ψi.

The objective is a positive definite quadratic, so the solution to (5.33) is obtained on setting
∇LN to zero:

Proposition 5.2. θ∗N = [N−1W + ÂN]−1b̂N , with

ÂN =
1

N

N−1∑

k=0

Υ(k)Υ(k)ᵀ , b̂N =
1

N

N−1∑

k=0

Υ(k)γ(k)

ut

136

On uniqueness of θ∗ The regularizer θᵀWθ is required to get a unique solution, since there
is little theory available to tell us if ÂN is invertible for any N , or if the loss function L defined
in (5.31) has a unique minimizer θ∗.

It is worth investigating the implications if ÂN is not invertible. It then follows that there
is a non-zero vector v satisfying vᵀÂNv = 0, which means

0 = vᵀÂNv =
1

N

N−1∑

k=0

(
vᵀΥ(k)

)2

That is, vᵀΥ(k) = 0 for every observed sample, which means

vᵀψ(x(k), u(k)) = vᵀψ(x(k + 1),φ(x(k + 1))) , 0 ≤ k ≤ N − 1 (5.34)

One appeal of on-policy methods is that the question of invertibility has a simple answer. If
u(k) = φ(x(k)) for all k then,

Υ(k + 1) = ψ(x(k), u(k))− ψ(x(k + 1), u(x(k + 1)))

That is, from the representation of Υ(k) in this special case,

vᵀψ(x(k), u(k)) = vᵀψ(x(k + 1), u(x(k + 1))) , 0 ≤ k ≤ N − 1

This does not seem likely for any reasonable basis. If it holds true for every k, and if the policy
is stable, then

vᵀψ(x(0), u(0)) = vᵀψ(x(k), u(k)) = lim
j→∞

vᵀψ(x(j), u(x(j)) = vᵀψ(xe, ue) = 0

where the final equation uses (5.29). Hence your basis falls into the “redundant” category
discussed in Section 5.1.5. These conclusions are summarized in the following:

Proposition 5.3. Suppose that ÂN has rank less than d. Then, there is a non-zero parameter
θn for which the following hold, for each 0 ≤ k ≤ N − 1:

(i) Qθ
n
(x(k), u(k))− d(x(k), u(k)) = Qθ

n

φ
(x(k + 1))− d(x(k + 1),φ(x(k + 1)))

(ii) For the on-policy implementation,

θnᵀψ(x(0), u(0)) = θnᵀψ(x(k), u(k))

Proof. In both parts, the vector θn is any non-zero vector v in the null space of ÂN . Part (ii)
was stated before the proposition, and part (i) is a re-interpretation of (5.34). ut

Given the desirable properties of the on-policy setting, in some examples it may be best to
go with the re-start option (2.51):

137

Least Squares Temporal Difference Learning (on-policy, with re-start)

For a given d× d matrix W > 0, integers N and M , and observed samples

{ui(k), xi(k) : 0 ≤ i ≤ N , 1 ≤ i ≤M} ,

with user-defined initial conditions {xi(0) : 1 ≤ i ≤M}, and with ui(k) = φ(xi(k)) (on-policy).
The approximation of the Q-function Qθ

∗
N = d + ψᵀθ∗N is obtained, in which the optimal

parameter is defined by the following steps:

(i) Introduce a per-batch loss function LiN (θ): defined by (5.33) using the ith batch, Bi =
{ui(k), xi(k) : 0 ≤ k ≤ N}.

(ii) Define θ∗N = arg minθ LN (θ), with

LN (θ) =
1

M

M∑

i=1

LiN (θ) (5.35)

What do you do if d = 106? There is not yet consensus. Practitioners in machine learning
often face high dimensional optimization problems, and claim that dimensions of one million
are no longer a concern. This success story is attributed to advances in optimization theory,
computer engineering, and computing power. In the RL research community it is typical to
modify the objective in order to reduce computational complexity.

5.3.2 ODE analysis and Zap

5.4 Projected Dynamic Programming and TD Algorithms

Recall that in motivating the value iteration algorithm we began with the interpretation of
the Bellman equation (3.2) as a fixed point equation in the “variable” J . VIA is simply the
successive approximation technique for solving such fixed point equations. This section concerns
approximation of such fixed point equations, and how they motivate the oldest approaches to
RL.

The style of this section is very different from the previous sections in this chapter: it contains
a survey of popular algorithms, often “translated” to the deterministic control setting of this
part of the book. Stochastic analogs will be defined in later chapters. These algorithms are
successfully applied in practice, but unfortunately there is not much theory to explain success
or failure. So, consider this section more of a cookbook, and less of a guide to understanding.

The motivation behind these algorithms requires a bit more background on function approx-
imation, described here using the notation of Section 5.1. We begin with an abstraction: find a
function h∗ that solves a fixed point equation:

h∗ = T (h∗) (5.36)

The specifics of the domain and range of h∗, and the meaning of the mapping T , depends on
the problem we would like to solve. The Bellman equation (3.5) is one example, with h∗ = J?.
Solving (5.36) is intractable, so we seek an approximation.

138

We choose a function class H, which in this section is defined by a basis (though this is not
essential). A projection operator PH is constructed, which takes any function h to PH(h) ∈ H,
and we then turn to the approximation of (5.36):

ĥ = T̂ (ĥ) := PH{T (ĥ)} (5.37)

The solution ĥ must lie in H because of the constraints we impose on PH.
In some cases this approach fails or is too complex, so we consider the alternative: given a

second function class G, find a function ĥ ∈ H solving

0 = PG{ĥ− T (ĥ)} (5.38)

This is a generalization of (5.37):

Proposition 5.4. If H = G then the solutions to (5.37) and (5.38) coincide. ut

When we put these ideas to practice in control, T̂ will define the projected Bellman operator,
and (5.38) the projected Bellman equation.

5.4.1 Galerkin relaxations and projection

We begin with a bit more detail about the meaning of the projection PG , with each g ∈ G a
function g : Z→ R, with Z the larger state space used in Assumption (Aξ).

It is assumed at the start that the function class is linear: we choose d functions {γi : 1 ≤ i ≤
d}, stack these together to define a function γ : Z→ Rd, and then define the finite-dimensional
linear function class G = {g = θᵀγ : θ ∈ Rd}. We will denote ζk = γ(Φ(k)), and call this the
sequence of eligibility vectors, since they will play a role in a Galerkin relaxation (first introduced
in (5.10)).

The expectation introduced in (Aξ) is used to define an inner product and norm on functions
h1, h2 : Z→ R:

〈h1, h2〉$ = E$[h1(Φ)h2(Φ)] , ‖h1‖$ =
√

E$[(h1(Φ))2] =
√
〈h1, h1〉$

The function class L2($) is defined to be all functions h for which ‖h‖$ is finite. With this
background, we can define the projection: for any h ∈ L2($), the projection ĥ ∈ G is

ĥ := arg min
g
{‖g − h‖$: g ∈ G}

Proposition 5.5. Suppose that γi ∈ L2($) for each i, and that these functions are linearly
independent in L2($). That is, ‖θᵀγ‖$ = 0 implies that θ = 0.

For each h ∈ L2($) the projection exists, is unique, and given by ĥ = θᵀγ with

θ = Σ−1
γ bh (5.39)

where bh ∈ Rd and the d× d matrix Σγ are defined by

bh(i) = 〈γi, h〉$
Σγ(i, j) = 〈γi, γj〉$, 1 ≤ i, j ≤ d

(5.40)

139

The proof is via the orthogonality principle:

〈h− ĥ, γi〉$ = 0 , 1 ≤ i ≤ d

and the fact that necessarily ĥ = θᵀγ for some θ since ĥ ∈ G by assumption.
Prop. 5.5 is the motivation for Galerkin approaches to root finding. Regardless of the meaning

of the operator T appearing in (5.37), this equation holds if and only if be = 0 with e = ĥ−T (ĥ):

0 = 〈γi, ĥ− T (ĥ)〉$, 1 ≤ i ≤ d (5.41)

This is by definition a Galerkin relaxation of (5.36).

5.4.2 TD(λ)-learning

The fixed-point equation (5.24) is precisely of the form (5.36): define for any function h : X×U→
R,

T (h)
∣∣∣
(x,u)

= c(x, u) + h(x+, u+) , x+ = F(x, u) , u+ = φ(x+)

so that Qφ = T (Qφ).
Galerkin relaxations lead to the oldest and most celebrated RL algorithms. Consider spec-

ification of H as a finite dimensional function class {h = θᵀψ : θ ∈ Rd}, where ψi : X × U → R
for each i. We arrive at the projected Bellman equation by applying the approximation (5.37)
to this problem, in its equivalent form (5.41): for each i,

0 = E$
[
ζk(i){ĥ(x(k), u(k))− [c(x(k), u(k)) + ĥ(x(k + 1),φ(x(k + 1)))]}

]

where we have used the definition of the inner product, along with the notation ζk = γ(Φk).
The solution of this root finding problem defines Qθ

∗
= ĥ, since ĥ ∈ H.

Recalling the definition (5.27), the projected Bellman equation is equivalently expressed

0 = E$
[
ζkDk+1(Qθ)

]∣∣∣
θ=θ∗

(5.42)

Given N observations, an approximation is obtained via

0 =
1

N

N−1∑

k=0

ζkDk+1(Qθ)
∣∣∣
θ=θ∗

(5.43)

which is precisely of the form (5.10).
From this we can now define the meaning of “λ” in TD(λ) learning, which depends entirely

on the choice of G. The special case TD(0) is simple: G = H, so that we substitute ζk =
ψ(x(k), u(k)) in (5.42). For general λ ∈ (0, 1) we require the following abstraction:

ζk =

∞∑

j=0

λjψ(x(k − j), u(k − j))

Of course, this is not physical: the control system has not been running for eternity! However,
this is the only way to describe what the TD(λ) algorithm is attempting to compute. The state
process Φ can be defined on the two-sided interval, so this abstract definition is valid. Finally,

140

we can assume that ζk is a linear function of Φ(k), by extending the definition of this state
process.

To obtain a practical algorithm we use the fact that this eligibility vector sequence evolves
according to the first-order linear system equation,

ζk = λζk−1 + ψ(x(k), u(k)) , k ∈ Z
Denote fλ(θ) = E$

[
ζkDk+1(Qθ)

]
, and consider the ODE

d
dtϑ = fλ(ϑ)

In the on-policy setting, subject to linear independence of ψ in L2($), it can be shown that this
ODE is globally asymptotically stable. This motivates the celebrated algorithm:

TD(λ) Learning

For a given λ ∈ [0, 1], non-negative stepsize sequence {αn}, initial conditions θ0, ζ0, and observed
samples {u(k), (x(k) : 0 ≤ k ≤ N}, the sequence of estimates are defined by the coupled
equations:

θn+1 = θn + αn+1Dn+1ζn (5.44a)

ζn+1 = λζn + ψ(x(n+ 1), u(n+ 1)) (5.44b)

with Dn+1 = Dk+1(Qθ)
∣∣
θ=θn

.

This defines the approximation of the Q-function Qθ
∗
N =

∑
i θ
∗
N (i)ψi.

The ODE introduced to motivate the algorithm is linear, fλ(θ) = A(θ − θ∗), in which

A = E$
[
ζk[−ψ(x(k), u(k) + ψ(x(k + 1),φ(x(k + 1))]

]

For on-policy implementation we have u(k+1) = φ(x(k+1)) which simplifies analysis, but then
poses a challenge because we are not likely to obtain the required linear independence of the
basis functions.

Stability of TD(λ) learning is not guaranteed in the off-policy setting, even with λ = 0, Ideas
found in the proof of Prop. 5.3 can be used to obtain conditions under which A is Hurwitz for
the “near” on-policy setting, in which u is defined using a small perturbation of the policy φ.

In the remainder of this section we change course, turning to the Q-function associated with
the optimal control problem: Q?, defined in (3.6).

5.4.3 Projected Bellman operator and Q-learning

The Q-function for the total cost optimal control problem solves the fixed point equation (3.9),
copied here for convenience:

Q?(x, u) = c(x, u) +Q?(F(x, u))

with Q(x) = minuQ(x, u) for any Q. For a parameterized family of approximations {Qθ : θ ∈
Rd}, recall that for each θ we define a policy via (3.43):

φθ(x) ∈ arg min
u

Qθ(x, u) , x ∈ X

We obtain an algorithm for approximation via “pattern matching” with (5.44):

141

Q(λ) Learning

For a given λ ∈ [0, 1], non-negative stepsize sequence {αn}, initial conditions θ0, ζ0, and observed
samples {u(k), (x(k) : 0 ≤ k ≤ N}, the sequence of estimates are defined by the coupled
equations:

θn+1 = θn + αn+1Dn+1ζn (5.45a)

ζn+1 = λζn + ψ(x(n+ 1), u(n+ 1)) (5.45b)

Dn+1 = c(x(n), u(n)) +Qθn(x(n+ 1),φθn(x(n+ 1))) (5.45c)

The major change is (5.45c), where we use the current policy estimate φθn rather than the
fixed policy φ in TD(λ). Note that in (5.45c) we can substitute

Qθn(x(n+ 1),φθn(x(n+ 1))) :=Qθn(x(n+ 1))

And ODE theory predicts that a limit θ∗ for Q(λ)-learning will solve f(θ∗) = 0, with

f(θ) = E
[
Dk+1(θ)ζk

]
(5.46)

The Q(0)-learning algorithm and variants are commonly applied because they are the natural
extension of Watkins’ Q-learning algorithm for controlled Markov chains. With λ = 0 we can
apply Prop. 5.4 to conclude that Qθ

∗
solves the projected Bellman equation

Qθ
∗

= PH{T (Qθ
∗
)}

in which the Bellman operator is redefined:

T (h)
∣∣∣
(x,u)

= c(x, u) + min
u
h(x+, u) , x+ = F(x, u)

There is a firm theory for convergence of Q(0)-learning in the special case considered by Watkins,
in part because it is assumed that the function class is “complete” (contains every possible
function on X× U). Convergence is established using ODE methods in Chapter 11.

We can attempt to apply the same reasoning here: an ODE analysis of Q(λ)-learning requires
that we look at global asymptotic stability of the ODE with vector field f defined in (5.46). As
a first step, we must find conditions under which the root finding problem admits a solution!
Unfortunately, very little is known, even in the case λ = 0. And, if an equilibrium does exist,
stability theory is nearly absent.

5.4.4 GQ-learning

If we are concerned that f(θ∗) = 0 does not admit a solution, then we might turn to the next
best option: solve the optimization problem:

min
θ
L(θ) = min

θ

1
2f(θ)ᵀMf(θ), with M > 0 (5.47)

142

We can then apply the ODE method to devise an algorithm. One approach is gradient descent:

d
dtϑt = −[∂θf (ϑt)]

ᵀMf(ϑt) (5.48)

The GQ-learning algorithm of [136] can be regarded as a direct discrete-time translation of this
ODE, using M = E[ζnζ

ᵀ
n]−1.

To do: insert pretty algorithm that doesn’t require matrix inversion

There are several important challenges and questions:

(i) The function f is not convex, so we may have difficulty obtaining a global minimum of
(5.47).

(ii) Suppose that in fact f(θ∗) = 0 does have a solution. One might turn to (5.47) for
computation of θ∗. We are then faced with numerical challenges beyond lack of convexity.
Nesterov discusses this approach to root finding in his monograph. In [160, Section 4.4.1]
he warns that it can lead to numerical instability: “...if our system of equations is linear,
then such a transformation squares the condition number of the problem’ ’. He goes on to
warn that it can lead to a “squaring the number of iterations” to obtain the desired error
bound. To see this, consider the second-order approximation of the loss function L at θ∗:

L(θ) ≈ L(θ∗) + (θ − θ∗)ᵀ[A∗MA∗ᵀ](θ − θ∗)

which uses f(θ∗) = 0, and the error is o(‖θ − θ∗‖2) provided ∂θf is Lipschitz continuous.
The appearance of A∗MA∗ᵀ is the “squaring” that Nesterov warns about. If A∗ has a
large condition number, then we may make things much worse by squaring. The numerical
challenge can be addressed with a good choice for M , provided this can be introduced
without introducing additional complexity.

(iii) Last but not least: is solving f(θ∗) = 0 a worthwhile goal? The answer to that question
is currently a topic for research.

5.4.5 Batch Methods and DQN

The Deep Q Network (DQN) algorithm was designed for neural network function approximation;
the term “deep” refers to a large number of hidden layers. The basic algorithm is summarized
here, without imposing any particular form for Qθ.

An important component of this approach is to abandon the purely recursive form of the
preceding RL algorithms. In a batch RL algorithm, the time-horizon N is broken into B batches
of more reasonable size, defined by the sequence of intermediate times T0 = 0 < T1 < T2 < · · · <
TB−1 < TB = N . The architecture is designed to reduce complexity, and there are many other
potential benefits that are more obvious when we come to RL design for stochastic control
systems.

DQN

With θ0 ∈ Rd given, along with a sequence of positive scalars {αn}, define recursively,

θn+1 = arg min
θ

{
Eεn(θ) +

1

αn+1
‖θ − θn‖2

}
(5.49a)

143

where for each n:

Eεn(θ) =
1

rn

Tn+1−1∑

k=Tn

[
−Qθ(x(k), u(k)) + c(x(k), u(k)) +Qθn(x(k + 1))

]2
(5.49b)

with rn = 1/(Tn+1 − Tn).
Output of the algorithm: θB, to define the final approximation QθB .

The elegance and simplicity of DQN is clear. Most significant: if Qθ is defined via lin-
ear function approximation, then the minimization (5.49a) is the unconstrained minimum of a
quadratic. On denoting

yn(k) = c((x(k), u(k)) +Qθn(x(k + 1))

we obtain θn+1 by taking the gradient of the left hand side of (5.49a), and setting it equal to
zero:

0 =
1

rn

Tn+1−1∑

k=Tn

ψ(x(k), u(k))
[
Qθ(x(k), u(k))− yn(k)

]∣∣∣
θ=θn+1

+
1

αn+1
[θn+1 − θn]

where Qθ = ψᵀθ. After simplifying terms this becomes

θn+1 = θn + αn+1

{
Anθn+1 − bn

}
(5.50a)

with An =
1

rn

Tn+1−1∑

k=Tn

ψ(x(k), u(k))ψ(x(k), u(k))ᵀ (5.50b)

bn =
1

rn

Tn+1−1∑

k=Tn

yn(k)ψ(x(k), u(k)) (5.50c)

This simplicity does not come for free, since the convex structure of the overall function
approximation problem has been abandoned.

Proposition 5.6. Consider the DQN algorithm with possibly nonlinear function approxima-

tion, and with ζk = ∇θQθ(x(k), u(k))
∣∣∣
θ=θk

. Assume that Qθ is continuously differentiable, and

its gradient ∇Qθ(x, u) is globally Lipschitz continuous, with Lipschitz constant independent of
(x, u). Suppose that B = ∞, the non-negative step-size sequence satisfies αn = α1/n, with
α1 > 0, and suppose that the sequence {θn} defined by the DQN algorithm is convergent to some
θ∞ ∈ Rd.

Then, this limit is a solution to (5.46), and moreover the algorithm admits the ODE approx-
imation d

dtϑt = f(ϑt) using the vector field f defined in (5.46). ut

The assumption on the step-size is to facilitate a simple proof. This can be replaced by the
standard assumptions: ∑

αn =∞ ,
∑

α2
n <∞

The proof of Prop. 5.6 is contained at the end of Section 5.5. Its conclusion should raise a
warning, since we do not know if (5.46) has a solution, or if a solution has desirable properties.

144

5.5 Convex Q-learning

So far in this chapter we have surveyed algorithms that have been popular for the past decade and
have been successfully applied, but at this stage there is little supporting theory. In particular,
we currently lack strong motivation for focusing on the projected Bellman equation as a guide
to approximating the optimal policy.

The following transformation was presented in Section 5.1.1: For any function Q : X×U→ R,
denoteQ(x) = minuQ(x, u). Then (3.5) impliesQ? = J?, and hence also the fixed point equation

Q?(x, u) = c(x, u) +Q?(F(x, u)) (5.51)

and the sample path representation, based on (3.1):

Q?(x(k), u(k)) = c((x(k), u(k)) +Q?(x(k + 1)) (5.52)

Consider a parameterized family of functions {Qθ : θ ∈ Rd}. It is common to use gradient
descent to find a local minimum of E(Qθ), with E(h)defined in (5.5) for any h : X×U→ R. This
(with various refinements) is how the complex Go and chess games were tamed in [184].

A challenge is that E(Qθ) may be a horrible function of θ, even for linear function approx-
imation. Gradient descent may not find a good value of θ even if there is a value θ∗ satisfying
Qθ
∗

= Q?. This difficulty is easily resolved by applying the convex representations of the
dynamic programming equations to obtain a convex loss function. For this, we need a joint
parameterization: in the notation of Section 5.1, Hθ = (Jθ, Qθ).

Consider the direct translation of (3.34) based on a parameterized family:

max
θ
〈µ,Qθ〉

s.t. Qθ(x, u) ≤ c(x, u) + Jθ(F(x, u))

Qθ(x, u) ≥ Jθ(x) x ∈ X , u ∈ U(x)

(5.53)

We can if we wish strengthen the first constraint to equality:

max
θ
〈µ,Qθ〉

s.t. Qθ(x, u) = c(x, u) + Jθ(F(x, u))

Qθ(x, u) ≥ Jθ(x) x ∈ X , u ∈ U(x)

(5.54)

The latter may be reasonable if we have a good model. In this case, we might first create a
parameterized family {Jθ}, and then define Qθ(x, u) = c(x, u) + Jθ(F(x, u)) for each θ, x, u.

However, if we don’t have a highly accurate model, it is then better to relax our constraints.
Several options are surveyed in the following. In each case, the value function approximation
algorithm is designed to make use of input-state pairs {(u(k), x(k) : 0 ≤ k ≤ N}.

LP Q-Learning

Choose a linear function class for Hθ = (Jθ, Qθ), and use (5.53) to define the optimal parameter:

θ∗ = arg max
θ

〈µ,Qθ〉

s.t. Qθ(x(k), u(k)) ≤ c(x(k), u(k)) + Jθ(x(k + 1))

Qθ(x(k), u(k)) ≥ Jθ(x(k)) 0 ≤ k ≤ N − 1

(5.55)

145

An obvious challenge with this algorithm is that there are N constraints, where in many
cases N will be over one million.

The RL algorithms introduced in this paper are all motivated by the “DPLP” (3.34). We
search for an approximate solution among a finite-dimensional family {Jθ , Qθ : θ ∈ Rd}. The
value θi might represent the ith weight in a neural network function approximation architecture,
but to justify the adjective convex we require a linearly parameterized family:

Jθ(x) = θᵀψJ(x) , Qθ(x, u) = θᵀψ(x, u) (5.56)

The function class is normalized with Jθ(xe) = 0 for each θ. For the linear approximation
architecture this requires ψJi (xe) = 0 for each 1 ≤ i ≤ d; for a neural network architecture, this
normalization is imposed through definition of the output of the network. Convex Q-learning
based on a reproducing kernel Hilbert space (RKHS) are contained in Section 5.5.2.

Recall the MSE loss (??) presents challenges because it is not convex for linear function
approximation. The quadratic program (3.37) obtained from the DPLP motivates the variation
of (??):

Eε(θ) =
1

N

N−1∑

k=0

[
D◦k+1(θ)

]2
(5.57)

with temporal difference defined by a modification of (??):

D◦k+1(θ) :=−Qθ(x(k), u(k)) + c(x(k), u(k)) + Jθ(x(k + 1)) (5.58)

The algorithms are designed so that Jθ approximates Qθ, and hence D◦k+1(θ) ≈ Dk+1(θ) (recall
from below (??), Q(x) = minuQ(x, u) for any function Q).

The first of several versions of “CQL” involves a Galerkin relaxation of the constraints in
the DPLP (3.34). This requires specification of two vector valued sequences {ζk, ζ+

k } based on
the data, and denote

zε(θ) =
1

N

N−1∑

k=0

D◦k+1(θ)ζk (5.59a)

z+(θ) =
1

N

N−1∑

k=0

[
Jθ(x(k))−Qθ(x(k), u(k))

]
ζ+
k (5.59b)

with temporal difference sequence {D◦k+1(θ)} defined in (5.58). It is assumed that ζk takes values

in Rd, and that the entries of the vector ζ+
k are non-negative for each k.

LP Convex Q-Learning

θ∗ = arg max
θ

〈µ, Jθ〉 (5.60a)

s.t. zε(θ) = 0 (5.60b)

z+(θ) ≤ 0 (5.60c)

146

This algorithm is introduced mainly because it is the most obvious translation of the general
DPLP (3.34). A preferred algorithm described next is motivated by the quadratic program
(3.37), which directly penalizes Bellman error. The objective function is modified to include the
empirical mean-square error (5.57) and a second loss function:

E+(θ) =
1

N

N−1∑

k=0

[
{Jθ(x(k))−Qθ(x(k), u(k))}+

]2
(5.61a)

or E+(θ) =
1

N

N−1∑

k=0

[
{Jθ(x(k))−Qθ(x(k))}+

]2
(5.61b)

where {z}+ = max(z, 0). The second option (5.61b) more strongly penalizes deviation from
the constraint Qθ ≥ Jθ. The choice of definition (5.61a) or (5.61b) will depend on the relative
complexity, which is application-specific.

Convex Q-Learning

For positive scalars κε and κ+, and a tolerance Tol ≥ 0,

θ∗ = arg min
θ

{
−〈µ, Jθ〉+ κεEε(θ) + κ+E+(θ)

}
(5.62a)

s.t. zε(θ) = 0 (5.62b)

z+(θ) ≤ Tol (5.62c)

To understand why the optimization problem (5.60) or (5.62) may present challenges, con-
sider their implementation based on a kernel. Either of these optimization problems is a convex
program. However, due to the Representer Theorem [32], the dimension of θ is equal to the
number of observations N . Even in simple examples, the value of N for a reliable estimate may
be larger than one million.

The following batch RL algorithm is designed to reduce complexity, and there are many
other potential benefits [127]. The time-horizon N is broken into B batches of more reasonable
size, defined by the sequence of intermediate times T0 = 0 < T1 < T2 < · · · < TB−1 < TB = N .
Also required are a sequence of regularizers: Rn(J,Q, θ) is a convex functional of J,Q, θ, that
may depend on θn. Examples are provided below.

Batch Convex Q-Learning

With θ0 ∈ Rd given, along with a sequence of positive scalars {κεn, κ+
n }, define recursively,

θn+1 = arg min
θ

{
−〈µ, Jθ〉+ κεnEεn(θ) + κ+

n E+
n (θ) +Rn(Jθ, Qθ, θ)

}
(5.63a)

147

where for 0 ≤ n ≤ B − 1,

Eεn(θ) =
1

rn

Tn+1−1∑

k=Tn

[
−Qθ(x(k), u(k)) + c(x(k), u(k)) + Jθ(x(k + 1))

]2
(5.63b)

E+
n (θ) =

1

rn

Tn+1−1∑

k=Tn

[
{Jθ(x(k))−Qθ(x(k), u(k))}+

]2
(5.63c)

or E+
n (θ) =

1

rn

Tn+1−1∑

k=Tn

[
{Jθ(x(k))−Qθ(x(k))}+

]2
(5.63d)

with rn = 1/(Tn+1 − Tn).
Output of the algorithm: θB, to define the final approximation QθB .

The constraints (5.62b, 5.62c) are relaxed in BCQL only to streamline the discussion that
follows.

How to choose a regularizer? It is expected that design of Rn will be inspired by proximal
algorithms, so that it will include a term of the form ‖θ−θn‖2 (most likely a weighted norm—see
discussion in Section 5.5.1). With a simple scaled norm, the recursion becomes

θn+1 = arg min
θ

{
−〈µ, Jθ〉+ κεnEεn(θ) + κ+

n E+
n (θ) +

1

αn+1

1
2‖θ − θn‖2

}
(5.64)

where {αn} plays a role similar to the step-size in stochastic approximation.

Convergence in this special case is established in the the following result, based on the
steady-state expectations (recall (5.19)):

Ēε(θ) = E$
[
{−Qθ(x(k), u(k)) + c(x(k), u(k)) + Jθ(x(k + 1))

}2]
(5.65a)

Ē+(θ) = E$[{Jθ(x(k))−Qθ(x(k), u(k))}2+] (5.65b)

Proposition 5.7. Consider the BCQL algorithm (5.64) subject to the following assump-
tions:

(i) The parameterization (Jθ, Qθ) is linear, and Ēε is strongly convex.

(ii) The non-negative step-size sequence is of the form αn = α1/n, with α1 > 0.

(iii) The parameters reach steady-state limits:

r := lim
n→∞

rn , κε := lim
n→∞

κεn , κ+ := lim
n→∞

κ+
n

Then, the algorithm is consistent: θn → θ∗ as n→∞, where the limit is the unique optimizer:

θ∗ = arg min
θ

{
−〈µ, Jθ〉+ κεĒε(θ) + κ+Ē+(θ)

}
(5.66)

148

To do: migrate proof from [143] Strong convexity of Ēε is obtained by design, which is not
difficult since it is a quadratic function of θ:

Ēε(θ) = θᵀMθ + 2θᵀb+ k

with b ∈ Rd, k ≥ 0, and

M = E$
[
Υk+1Υ

ᵀ
k+1

]
, with Υk+1 = ψ(x(k), u(k))− ψJ(x(k + 1))

A few words on constraints It is found in experiments that a pure penalty approach leads
to numerical instability.

The pd-BCQL algorithm defined in (5.70) is motivated by a relaxation of the inequality
constraint (3.34b) required in the DPLP:

zε(θ) ≥ −Tol (5.67)

Recall that this is a valid relaxation only if we impose positivity on the entries of ζk. In
experiments it is found that imposing hard constraints in the convex program is more effective
than the pure penalty approach used in BCQL.

The CQL algorithms introduce data-driven relaxations of the constraint (3.34c) in the DPLP:
consider the constraint (5.60c) or (5.62c), or the penalty E+

n (θ) in BCQL. A data driven approach
may be convenient, but it is unlikely that this is the best option. The purpose of these constraints
is to enforce non-negativity of the difference

Aθ(x, u) = Qθ(x, u)− Jθ(x) (5.68)

This is known as the advantage function. There are at least two options to enforce or approximate
the inequality Aθ ≥ 0:
1. Choose a parameterization, along with constraints on θ, so that non-negativity of Aθ is
automatic. Consider for example a linear parameterization in which d = dJ +dQ, and with basis
functions {ψJ , ψA} satisfying the following constraints:

ψJi (x) = 0 for all x, and all i > dJ

ψAi (x, u) = 0 for all x, u, and all i ≤ dJ

subject to the further constraint that ψAi (x, u) ≥ 0 for all i, x, u.

We then define ψ = ψJ + ψA, Jθ(x) = θᵀψJ(x, u), Qθ(x, u) = θᵀψ(x, u), and Aθ(x, u) =
θᵀψA(x, u), so that for any θ ∈ Rd,

Qθ(x, u) = Jθ(x) +Aθ(x, u)

It follows that Qθ(x, u) ≥ Jθ(x) for all x, u, provided we impose the constraint θi ≥ 0 for
i > dJ . Using this approach, the penalty term κ+E+(θ) may be eliminated from (5.62), as well
as the constraint z+(θ) ≤ Tol. It was found that this approach was most reliable in experiments
conducted so far, along with the relaxation (5.67), since the algorithm reduces to a convex
program (much like DQN).

149

2. Choose a grid of points G ⊂ X×U, and replace (5.62c) with the simple inequality constraint

Aθ(xi, ui) ≥ −Tol for (xi, ui) ∈ G.

For example, this approach is reasonable for the LQR problem and similar control problems that
involve linear matrix inequalities (such as eq. (3.42b)). In particular, the constraints in (3.42)
cannot be captured by a linear parameterization of the matrices M , so application of approach 1
can only approximate a subset of the constraint set.

Based on these considerations we introduce a modification of BCQL: the definition of Eεn
from (5.63b) is maintained, and we bring back inequality constraints on the temporal difference,
consistent with the DPLP constraint (3.34b). The batch version of (5.59a) is denoted

zεn(θ) =
1

rn

Tn+1−1∑

k=Tn

D◦k+1(θ)ζk (5.69)

We require ζk(i) ≥ 0 for all k, i to ensure that the inequality constraint zεn(θ) ≥ 0 is consistent
with (3.34b)

With θ0 ∈ Rd given, along with a positive scalar κε, consider the primal dual variant of
BCQL (pd-BCQL):

θn+1 = arg min
θ∈Θ

{
−〈µ, Jθ〉+ κεEεn(θ)− λᵀnzεn(θ) +

1

αn+1

1
2‖θ − θn‖2

}
(5.70a)

λn+1 =
[
λn − αn+1z

ε
n(θ)

]
+

(5.70b)

where the subscript “+” in the second recursion is a component-wise projection: for each i, the
component λn+1(i) is constrained to an interval [0, λmax(i)].

This algorithm is designed to solve the convex program

min
θ
− 〈µ, Jθ〉+ κεE

[{
D◦k+1(θ)

}2]

s.t. E
[
D◦k+1(θ)ζk(i)

]
≥ 0 , i ≥ 1

(5.71)

Corollary 5.8. Suppose that assumptions (i) and (ii) of Prop. 5.7 hold. In addition, assume
that Aθ(x, u) = Qθ(x, u)− Jθ(x) is non-negative valued for θ ∈ Θ, where Θ is a polyhedral cone
with non-empty interior. Then, the sequence {θn, λn} obtained from the pd-BCQL algorithm
(5.70) is convergent to a pair (θ∗, λ∗), and the following hold:

(i) The limit θ∗ is the solution of the convex program (5.71), and λ∗ is the Lagrange
multiplier for the linear inequality constraint in (5.71).

(ii) Consider the special case: the state space and action space are finite, µ has full support,
and the dimension of ζk is equal to dζ = |X| × |U|, with

ζk(i) = 1{(x(k), u(k)) = (xi, ui)}

where {(xi, ui)} is an enumeration of all state action pairs. Suppose moreover that (J?, Q?)
is contained in the function class. Then,

(Jθ, Qθ)
∣∣∣
θ=θ∗

= (J?, Q?)

ut

150

Corollary 5.8 is a corollary to Prop. 5.7, in the sense that it follows the same proof for the
joint sequence {θn, λn}. Both the proposition and corollary start with a proof that {θn} is
a bounded sequence, using the “Borkar-Meyn” Theorem [39, 36, 169, 170] (based on a scaled
ODE). The cone assumption on Θ is imposed to simplify the proof that the algorithm is stable.
Once boundedness is established, the next step is to show that the algorithm (5.70) can be
approximated by a primal-dual ODE for the saddle point problem

max
λ≥0

min
θ∈Θ

L̄(θ, λ) , L̄(θ, λ) :=−〈µ, Jθ〉+ κεĒε(θ)− λᵀz̄εn(θ) (5.72)

The function L̄ is quadratic and strictly convex in θ, and linear in λ. A suitable choice for the
upper bound λmax can be found through inspection of this saddle-point problem.

This approximation suggests improvements to the algorithm. For example, the use of an
augmented Lagrangian to ensure strict convexity in λ. We might also make better use of the
solution to the quadratic program (5.70a) to improve estimation of λ∗.

The choice of regularizer is more subtle when we consider kernel methods, so that the “pa-
rameterization” is infinite dimensional. Discussion on this topic is postponed to Section 5.5.2.

5.5.1 Gain selection and SA approximations

Consider the introduction of a weighted norm in (5.64):

θn+1 = arg min
θ

{
En(θ) +

1

αn+1

1
2‖θ − θn‖2Wn

}

En(θ) = −〈µ, Jθ〉+ κεnEεn(θ) + κ+
n E+

n (θ)

(5.73)

where ‖ϑ‖2Wn
= 1

2ϑ
ᵀWnϑ for ϑ ∈ Rd, with Wn > 0.

The recursion can be represented in a form similar to stochastic approximation (SA):

Lemma 5.9. Suppose that {En(θ)} are continuously differentiable in θ. Then, the parameter
update in BCQL is the solution to the fixed point equation:

θn+1 = θn − αn+1W
−1
n ∇En(θn+1) (5.74)

Suppose in addition that ∇En is Lipschitz continuous (uniformly in n), and the sequences {θn}
and {trace (W−1

n)} are uniformly bounded. Then,

θn+1 = θn − αn+1{W−1
n ∇En(θn) + εn+1} (5.75)

where ‖εn+1‖ = O(αn+1).

Proof. The fixed point equation (5.74) follows from the first-order condition for optimality:

0 = ∇
{
En(θ) +

1

αn+1

1
2‖θ − θn‖2Wn

}∣∣
θ=θn+1

= ∇En(θn+1) +
1

αn+1

1
2Wn[θn+1 − θn]

To obtain the second conclusion, note that (5.74) implies ‖θn+1 − θn‖ = O(αn+1) under the
boundedness assumptions, and then Lipschitz continuity of {∇En} in θ then gives the desired
representation (5.75). ut

151

The Zap SA algorithm of [70] is designed for recursions of the form (5.75) so that

Wn ≈ ∇2Ē(θn)

in which the bar designates a steady-state expectation (recall (5.19)).
For the problem at hand, this is achieved in the following steps. First, define for each n,

An+1 = ∇2En (θn)

For the linear parametrization using (5.63c) we obtain simple expressions. To compress notation,
denote

ψ(k) = ψ(x(k), u(k)) , ψJ(k) = ψJ(x(k)) .

so that (5.73) gives

∇En (θ) = 2
1

rn

Tn+1−1∑

k=Tn

{
− 〈µ, ψJ〉+ κεnD◦k+1(θ)

[
ψJ(k+1) − ψ(k)

]

+ κ+
n {Jθ(x(k))−Qθ(x(k))}+

[
ψJ(k) − ψ(k)

]}

where 〈µ, ψJ〉 is the column vector whose ith entry is 〈µ, ψJi 〉. Taking derivatives once more
gives

An+1 = 2
1

rn

Tn+1−1∑

k=Tn

{[
ψ(k) − ψJ(k+1)

][
ψ(k) − ψJ(k+1)

]ᵀ

+ κ+
n

[
ψ(k) − ψJ(k)

][
ψ(k) − ψJ(k)

]ᵀ
1{Jθ(x(k)) > Qθ(x(k))}

}

We then take W0 > 0 arbitrary, and for n ≥ 0,

Wn+1 = Wn + βn+1[An+1 −Wn] (5.76)

in which the step-size for this matrix recursion is relatively large:

lim
n→∞

αn
βn

= 0

In [70] the choice βn = αηn is proposed, with 1
2 < η < 1.

The original motivation in [71, 72, 67] was to minimize algorithm variance It is now known
that the “Zap gain” (5.76) often leads to a stable algorithm, even for nonlinear function approx-
imation (such as neural networks) [48].

It may be advisable to simply use the recursive form of the batch algorithm: make the change
of notation Ân = Wn (to highlight the similarity with the Zap algorithms in [70]), and define
recursively

θn+1 = θn − αn+1Â
−1
n ∇En(θn)

Ân+1 = Ân + βn+1[An+1 − Ân]

In preliminary experiments it is found that this leads to much higher variance, but this may be
offset by the reduced complexity.

152

5.5.2 BCQL and kernel methods

The reader is referred to other sources, such as [32], for the definition of a reproducing kernel
Hilbert space (RKHS) and surrounding theory. In this subsection, the Hilbert space H defines
a two dimensional function class that defines approximations (J,Q). One formulation of this
method is to choose a kernel k on (X×U)2, in which k((x, u), (x′, u′)) is a symmetric and positive
definite matrix for each x, x′ ∈ X and u, u′ ∈ U. The function J does not depend on u, so for
(f, g) ∈ H we associate g with Q, but take

J(x) = f(x, u◦)

for some distinguished u◦ ∈ U.
A candidate regularizer in this case is

Rn(J,Q) =
1

αn+1

1
2‖(J,Q)− (Jn, Qn)‖2H (5.77)

where (Jn, Qn) ∈ H is the estimate at stage n based on the kernel BCQL method.
The notation must be modified in this setting:

Kernel Batch Convex Q-Learning

With (J0, Q0) ∈ H given, along with a sequence of positive scalars {κεn, κ+
n }, define recursively,

(Jn+1, Qn+1) = arg min
J,Q

{
−〈µ, J〉+ κεnEεn(J,Q) + κ+

n E+
n (J,Q) +Rn(J,Q)

}
(5.78a)

where for 0 ≤ n ≤ B − 1,

Eεn(J,Q) =
1

rn

Tn+1−1∑

k=Tn

[
−Q(x(k), u(k)) + c(x(k), u(k)) + J(x(k + 1))

]2
(5.78b)

E+
n (J,Q) =

1

rn

Tn+1−1∑

k=Tn

[
{J(x(k))−Q(x(k), u(k))}+

]2
(5.78c)

or E+
n (J,Q) =

1

rn

Tn+1−1∑

k=Tn

[
{J(x(k))−Q(x(k))}+

]2
(5.78d)

The regularizer (5.77) is chosen so that we can apply the Representer Theorem to solve
this infinite-dimensional optimization problem (5.78). The theorem states that computation of
(Jn, Qn) reduces to a finite dimensional setting, with a linearly parameterized family similar to
(5.56). However, the “basis functions” ψJ and ψ depend upon n: for some {θn∗i } ⊂ R2,

Jn(x) =
∑

i

{θn?i ᵀk((xi, ui), (x, u
◦))}1

Qn(x, u) =
∑

i

{θn?i ᵀk((xi, ui), (x, u))}2

where {xi, ui} are the state-input pairs observed on the time interval {Tn−1 ≤ k < Tn}.

List of Figures

1.1 Maximum Bellman error {Bn : n ≥ 0} for various Q-learning algorithms. 11

1.2 Comparison of Q-learning and Relative Q-learning algorithms for the stochastic
shortest path problem of [71]. The relative Q-learning algorithm is unaffected by
large discounting. 12

2.1 Feedback + Feedforward control architecture . 18

2.2 Trajectory of a 2D nonlinear state space model 24

2.3 If x0 ∈ B(δ), then X (k;x0) ∈ B(ε) for all k ≥ 0. 26

2.4 Inf-compact and oercive functions . 27

2.5 If V is a Lyapunov function, then V (xt) is non-increasing with time. 30

2.6 Geometric interpretations of a Lyapunov drift condition 31

2.7 Sample paths of deterministic and stochastic linear models 35

2.8 Frictionless pendulum: stable and unstable equilibria for the state space model. . 35

2.9 Mountain Car . 39

2.10 Two forces on the Mountain Car . 40

2.11 Potential energy for Mountain Car. 40

2.12 Position as a function of time for Mountain Car, from three different initial con-
ditions, using the policy (2.55). 41

2.13 Magnetically Suspended Ball . 42

2.14 CartPole . 44

2.15 The Illinois Pendubot and Sutton’s Acrobot . 45

2.17 Coordinate description of the Pendubot . 46

2.16 Continuum of equilibrium positions for the Pendubot 46

2.18 Cooperative rowing with partial information. 48

3.1 If a better control existed on [km,∞), we would have chosen it. 57

3.2 Value function for Mountain Car . 64

3.3 Optimal value function for MountainCar . 73

3.4 Optimal policy for MountainCar . 73

4.1 Sample paths of Quasi Monte-Carlo estimates. 88

4.2 Histograms of Monte-Carlo and Quasi Monte-Carlo estimates after 104 indepen-
dent runs. The optimal parameter is θ∗ ≈ −0.4841. 89

4.3 Comparison of QSA and Stochastic Approximation (SA) for policy evaluation. . 93

4.4 Iterations of PIA . 95

4.5 Evolution of Zt = (1 + t)Θ̃t using Quasi Monte-Carlo estimates for a range of gains. 97

301

302

4.6 Extremum seeking control for gradient free optimization 99
4.7 Extremum seeking control: avoiding a saddle point 100
4.8 qSGD – A simple example . 103
4.9 Trajectories for the Mountain Car for two policies, and three initial conditions. . 104
4.10 Threshold policy and its performance for MountainCar 105
4.11 qPG #1a via Gradient-Free Optimization . 105
4.12 qPG for Mountain Car . 106
4.13 qPG for Mountain Car: Error analysis . 106
4.14 qPG for Mountain Car using eq. (4.91) . 107

5.1 Online Q-learning: inputs are features and rewards 123
5.2 Three attempts to approximate the data {zi, yi} with a smooth function. 125
5.3 Neural network with three hidden layers. 128

6.1 Simulation of the M/M/1 queue during a transient. 162
6.2 Simulation of the M/M/1 queue in steady-state. 162
6.3 Communication diagram and eigenvalues for a four-state Markov chain. 164
6.4 Rate of convergence of Pn to 1⊗ π for the four-state Markov chain. 165

7.1 The Policy Iteration Algorithm interpreted as an application of Newton-Raphson.
The functional T is piecewise linear for a finite-state / finite-action MDP. 183

8.1 Comparison of optimal policies for the fluid and MDP models. 196
8.2 The convergence of value iteration for the quadratic cost function. 197
8.3 The Kumar-Seidman-Rybko-Stolyar model. 198
8.4 Sample paths of the KSRS model under a priority policy 199
8.5 Distributed control in a two station queueing network. 200

9.1 Asymptotic covariance for Monte-Carlo estimates (9.15) for the scalar recursion. 213
9.2 Histogram of estimates of the mean in the M/M/1 queue 214

11.1 Histogram of 103 estimates of θn(15), with n = 106 for the Watkins algorithm
applied to the 6-state example . 247

11.2 Six-state directed graph for the finite state-action MDP example 247
11.3 The trace of the asymptotic covariance matrix Σθ(g) for the scaled Watkins al-

gorithm with different scalar gains, applied to the 6-state example 248
11.4 Comparison of theoretical and empirical asymptotic variance for the scaled Watkin’s

algorithm, with gain g = 70, applied to the 6-state example 249
11.5 Maximum Bellman error {Bn : n ≥ 0} for five different Q-learning algorithms . . 250

Bibliography

[1] B. D. O. Anderson and J. B. Moore. Optimal Control: Linear Quadratic Methods. Prentice-
Hall, Englewood Cliffs, NJ, 1990.

[2] L. L. Andrew, M. Lin, and A. Wierman. Optimality, fairness, and robustness in speed
scaling designs. SIGMETRICS Perform. Eval. Rev., 38(1):37–48, June 2010.

[3] C. Andrieu, E. Moulines, and P. Priouret. Stability of stochastic approximation under
verifiable conditions. SIAM J. Control Optim., 44(1):283–312, 2005.

[4] O. Anschel, N. Baram, and N. Shimkin. Averaged-DQN: Variance reduction and stabi-
lization for deep reinforcement learning. In Proc. of the 34th International Conference on
Machine Learning - Volume 70, ICML’17, pages 176–185. JMLR.org, 2017.

[5] A. Arapostathis, V. S. Borkar, E. Fernandez-Gaucherand, M. K. Ghosh, and S. I. Marcus.
Discrete-time controlled Markov processes with average cost criterion: a survey. SIAM J.
Control Optim., 31:282–344, 1993.

[6] K. B. Ariyur and M. Krstić. Real Time Optimization by Extremum Seeking Control. John
Wiley & Sons, Inc., New York, NY, USA, 2003.

[7] S. Asmussen and P. W. Glynn. Stochastic Simulation: Algorithms and Analysis, volume 57
of Stochastic Modelling and Applied Probability. Springer-Verlag, New York, 2007.

[8] K. Åström and K. Furuta. Swinging up a pendulum by energy control. Automatica,
36(2):287 – 295, 2000.

[9] K. J. Astrom and R. M. Murray. Feedback Systems: An Introduction for Scientists and
Engineers. Princeton University Press, USA, 2008.

[10] B. Awerbuch and R. Kleinberg. Online linear optimization and adaptive routing. Journal
of Computer and System Sciences, 74(1):97 – 114, 2008. Learning Theory 2004.

[11] M. G. Azar, R. Munos, M. Ghavamzadeh, and H. Kappen. Speedy Q-learning. In Advances
in Neural Information Processing Systems, 2011.

[12] F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with
convergence rate o(1/n). In Advances in Neural Information Processing Systems 26, pages
773–781. Curran Associates, Inc., 2013.

303

304

[13] L. Baird. Residual algorithms: Reinforcement learning with function approximation. In
A. Prieditis and S. Russell, editors, Machine Learning Proceedings 1995, pages 30 – 37.
Morgan Kaufmann, San Francisco (CA), 1995.

[14] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage energy and temperature.
J. ACM, 54(1):1–39, Mar. 2007.

[15] A. Barto, R. Sutton, and C. Anderson. Neuron-like adaptive elements that can solve diffi-
cult learning control problems. IEEE Trans. on Systems, Man and Cybernetics, 13(5):835–
846, 1983.

[16] A. G. Barto, R. S. Sutton, and C. J. C. H. Watkins. Learning and sequential decision
making. In LEARNING AND COMPUTATIONAL NEUROSCIENCE, pages 539–602.
MIT Press, 1989.

[17] T. Basar, S. Meyn, and W. R. Perkins. Lecture notes on control system theory and design.
UIUC lecture notes, 2010.

[18] N. Bäuerle and J. Ott. Markov decision processes with average-value-at-risk criteria.
Mathematical Methods of Operations Research, 74(3):361–379, 2011.

[19] N. Bäuerle and U. Rieder. Partially observable risk-sensitive markov decision processes.
Mathematics of Operations Research, 42(4):1180–1196, 2017.

[20] J. Beck. Strong Uniformity and Large Dynamical Systems. World Scientific, 2017.

[21] R. Bellman. The stability of solutions of linear differential equations. Duke Math. J.,
10(4):643–647, 12 1943.

[22] M. Benäım. Dynamics of stochastic approximation algorithms. In Séminaire de Proba-
bilités, XXXIII, pages 1–68. Springer, Berlin, 1999.

[23] A. Benveniste, M. Métivier, and P. Priouret. Adaptive algorithms and stochastic approxi-
mations. Springer, 2012.

[24] A. Bernstein, Y. Chen, M. Colombino, E. Dall’Anese, P. Mehta, and S. Meyn. Optimal
rate of convergence for quasi-stochastic approximation. arXiv:1903.07228, 2019.

[25] A. Bernstein, Y. Chen, M. Colombino, E. Dall’Anese, P. Mehta, and S. Meyn. Quasi-
stochastic approximation and off-policy reinforcement learning. In Proc. of the IEEE
Conf. on Dec. and Control, pages 5244–5251, Mar 2019.

[26] D. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Atena Scientific, Cam-
bridge, Mass, 1996.

[27] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 2. Athena Scientific,
4th edition, 2012.

[28] J. Bhandari, D. Russo, and R. Singal. A finite time analysis of temporal difference learning
with linear function approximation. arXiv preprint arXiv:1806.02450, 2018.

305

[29] S. Bhatnagar and V. S. Borkar. Multiscale chaotic spsa and smoothed functional algo-
rithms for simulation optimization. Simulation, 79(10):568–580, 2003.

[30] S. Bhatnagar, M. C. Fu, S. I. Marcus, and I.-J. Wang. Two-timescale simultaneous pertur-
bation stochastic approximation using deterministic perturbation sequences. ACM Trans-
actions on Modeling and Computer Simulation (TOMACS), 13(2):180–209, 2003.

[31] S. Bhatnagar, D. Precup, D. Silver, R. S. Sutton, H. R. Maei, and C. Szepesvári. Con-
vergent temporal-difference learning with arbitrary smooth function approximation. In
Advances in neural information processing systems, pages 1204–1212, 2009.

[32] C. M. Bishop. Pattern recognition and machine learning. Springer, 2006.

[33] J. R. Blum. Multidimensional stochastic approximation methods. The Annals of Mathe-
matical Statistics, pages 737–744, 1954.

[34] V. S. Borkar. Convex analytic methods in Markov decision processes. In Handbook of
Markov decision processes, volume 40 of Internat. Ser. Oper. Res. Management Sci., pages
347–375. Kluwer Acad. Publ., Boston, MA, 2002.

[35] V. S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Hindustan
Book Agency and Cambridge University Press (jointly), Delhi, India and Cambridge, UK,
2008.

[36] V. S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint (2nd ed., to
appear). Hindustan Book Agency, Delhi, India and Cambridge, UK, 2020.

[37] V. S. Borkar and V. Gaitsgory. Linear programming formulation of long-run average
optimal control problem. Journal of Optimization Theory and Applications, 181(1):101–
125, 2019.

[38] V. S. Borkar, V. Gaitsgory, and I. Shvartsman. LP formulations of discrete time long-run
average optimal control problems: The non ergodic case. SIAM Journal on Control and
Optimization, 57(3):1783–1817, 2019.

[39] V. S. Borkar and S. P. Meyn. The ODE method for convergence of stochastic approxima-
tion and reinforcement learning. SIAM J. Control Optim., 38(2):447–469, 2000. (see also
IEEE CDC, 1998).

[40] J. A. Boyan. Technical update: Least-squares temporal difference learning. Mach. Learn.,
49(2-3):233–246, 2002.

[41] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in
System and Control Theory, volume 15. SIAM, 1994.

[42] S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference
learning. Mach. Learn., 22(1-3):33–57, 1996.

[43] W. L. Brogan. Modern control theory. Pearson, 3rd edition, 1990.

306

[44] S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends R© in Machine Learning, 5(1):1–122,
2012.

[45] S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Machine Learning, 5(1):1–122, 2012.

[46] J. C. Butcher. Numerical methods for ordinary differential equations. John Wiley & Sons,
2016.

[47] D. Chatterjee, A. Patra, and H. K. Joglekar. Swing-up and stabilization of a cart–
pendulum system under restricted cart track length. Systems & control letters, 47(4):355–
364, 2002.

[48] S. Chen, A. M. Devraj, A. Bušić, and S. Meyn. Zap Q Learning with nonlinear function
approximation. Submitted for publication NeurIPS and arXiv e-prints 1910.05405, 2019.

[49] S. Chen, A. M. Devraj, A. Bušić, and S. Meyn. Explicit mean-square error bounds for
Monte-Carlo and linear stochastic approximation. AISTATS, page arXiv:2002.02584, Feb.
2020.

[50] T. Chen and G. B. Giannakis. Bandit convex optimization for scalable and dynamic iot
management. IEEE Internet of Things Journal, 6(1):1276–1286, Feb 2019.

[51] W. Chen, D. Huang, A. A. Kulkarni, J. Unnikrishnan, Q. Zhu, P. Mehta, S. Meyn, and
A. Wierman. Approximate dynamic programming using fluid and diffusion approximations
with applications to power management. In Proc. of the 48th IEEE Conf. on Dec. and
Control; held jointly with the 2009 28th Chinese Control Conference, pages 3575–3580,
2009.

[52] Y. Chen, A. Bernstein, A. Devraj, and S. Meyn. Model-Free Primal-Dual Methods for
Network Optimization with Application to Real-Time Optimal Power Flow. In Proc. of
the American Control Conf., pages 3140–3147, Sept. 2019.

[53] Z. Chen, S. Zhang, T. T. Doan, S. T. Maguluri, and J.-P. Clarke. Performance of Q-
learning with linear function approximation: Stability and finite-time analysis. arXiv:
Optimization and Control, 2019.

[54] A. Chorin, O. Hald, and R. Kupferman. Optimal prediction and the Mori-Zwanzig repre-
sentation of irreversible processes. Proc. Nat. Acad. Sci., 97:2968–2973, 2000.

[55] A. J. Chorin. Conditional expectations and renormalization. J. Multiscale Modeling Simul.,
1(1):105–118, 2003.

[56] K. L. Chung et al. On a stochastic approximation method. The Annals of Mathematical
Statistics, 25(3):463–483, 1954.

[57] B. Dai, A. Shaw, L. Li, L. Xiao, N. He, Z. Liu, J. Chen, and L. Song. SBEED: Convergent
reinforcement learning with nonlinear function approximation. In International Conference
on Machine Learning, pages 1133–1142, 2018.

307

[58] J. G. Dai. On positive Harris recurrence of multiclass queueing networks: a unified ap-
proach via fluid limit models. Ann. Appl. Probab., 5(1):49–77, 1995.

[59] J. G. Dai and S. P. Meyn. Stability and convergence of moments for multiclass queueing
networks via fluid limit models. IEEE Trans. Automat. Control, 40:1889–1904, November
1995.

[60] G. Dalal, B. Szörényi, G. Thoppe, and S. Mannor. Concentration bounds for two timescale
stochastic approximation with applications to reinforcement learning. Proceedings of the
Conference on Computational Learning Theory, and ArXiv e-prints, pages 1–35, 2017.

[61] D. P. de Farias and B. Van Roy. The linear programming approach to approximate dynamic
programming. Operations Res., 51(6):850–865, 2003.

[62] D. P. De Farias and B. Van Roy. On constraint sampling in the linear programming
approach to approximate dynamic programming. Mathematics of operations research,
29(3):462–478, 2004.

[63] D. P. de Farias and B. Van Roy. A cost-shaping linear program for average-cost approxi-
mate dynamic programming with performance guarantees. Math. Oper. Res., 31(3):597–
620, 2006.

[64] A. Dembo and O. Zeitouni. Large Deviations Techniques And Applications. Springer-
Verlag, New York, second edition, 1998.

[65] C. Derman. Finite State Markovian Decision Processes, volume 67 of Mathematics in
Science and Engineering. Academic Press, Inc., 1970.

[66] J.-D. Deuschel and D. W. Stroock. Large deviations. Pure and applied mathematics.
Academic Press, New York, London, 1989. édition révisée de : An introduction to the
theory of large deviations / D.W. Stroock. cop.1984.

[67] A. M. Devraj. Reinforcement Learning Design with Optimal Learning Rate. PhD thesis,
University of Florida, 2019.

[68] A. M. Devraj, A. Bušić, and S. Meyn. On matrix momentum stochastic approximation
and applications to Q-learning. In Allerton Conference on Communication, Control, and
Computing, pages 749–756, Sep 2019.

[69] A. M. Devraj, A. Bušić, and S. Meyn. Zap Q-Learning – a user’s guide. In Proc. of the
Fifth Indian Control Conference, January 9-11 2019.

[70] A. M. Devraj, A. Bušić, and S. Meyn. Fundamental design principles for reinforcement
learning algorithms. In Handbook on Reinforcement Learning and Control. Springer, 2020.

[71] A. M. Devraj and S. P. Meyn. Fastest convergence for Q-learning. ArXiv e-prints, July
2017.

[72] A. M. Devraj and S. P. Meyn. Zap Q-learning. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, 2017.

308

[73] A. M. Devraj and S. P. Meyn. Q-learning with Uniformly Bounded Variance: Large
Discounting is Not a Barrier to Fast Learning. arXiv e-prints, page arXiv:2002.10301,
Feb. 2020.

[74] P. Diaconis. The Markov chain Monte Carlo revolution. Bull. Amer. Math. Soc. (N.S.),
46(2):179–205, 2009.

[75] R. Douc, E. Moulines, P. Priouret, and P. Soulier. Markov Chains. Springer, 2018.

[76] K. Duffy and S. Meyn. Large deviation asymptotics for busy periods. Stochastic Systems,
4(1):300–319, 2014.

[77] K. R. Duffy and S. P. Meyn. Most likely paths to error when estimating the mean of a
reflected random walk. Performance Evaluation, 67(12):1290–1303, 2010.

[78] K. Dupree, P. M. Patre, M. Johnson, and W. E. Dixon. Inverse optimal adaptive control of
a nonlinear Euler-Lagrange system, part i: Full state feedback. In Proceedings of the 48h
IEEE Conference on Decision and Control, held jointly with 2009 28th Chinese Control
Conference, pages 321–326, 2009.

[79] E. B. Dynkin and A. A. Yushkevich. Controlled Markov processes, volume 235 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathemat-
ical Sciences]. Springer-Verlag, Berlin, 1979. Translated from the Russian original by J.
M. Danskin and C. Holland.

[80] E. Even-Dar and Y. Mansour. Learning rates for Q-learning. Journal of Machine Learning
Research, 5(Dec):1–25, 2003.

[81] E. Feinberg and A. Shwartz, editors. Markov Decision Processes: Models, Methods, Di-
rections, and Open Problems. Kluwer Acad. Publ., Holland, 2001.

[82] E. A. Feinberg and A. Shwartz, editors. Handbook of Markov decision processes. In-
ternational Series in Operations Research & Management Science, 40. Kluwer Academic
Publishers, Boston, MA, 2002. Methods and applications.

[83] Y. Feng, L. Li, and Q. Liu. A kernel loss for solving the Bellman equation. In Advances
in Neural Information Processing Systems, pages 15456–15467, 2019.

[84] A. D. Flaxman, A. T. Kalai, and H. B. McMahan. Online convex optimization in the bandit
setting: Gradient descent without a gradient. In Proceedings of the Sixteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’05, pages 385–394, Philadelphia, PA,
USA, 2005. Society for Industrial and Applied Mathematics.

[85] G. Fort, E. Moulines, S. P. Meyn, and P. Priouret. ODE methods for Markov chain sta-
bility with applications to MCMC. In Valuetools ’06: Proceedings of the 1st international
conference on Performance evaluation methodolgies and tools, page 42, New York, NY,
USA, 2006. ACM Press.

[86] K. Furuta, M. Yamakita, and S. Kobayashi. Swing up control of inverted pendulum. In
Proceedings International Conference on Industrial Electronics, Control and Instrumenta-
tion, pages 2193–2198. IEEE, 1991.

309

[87] P. A. Gagniuc. Markov chains: from theory to implementation and experimentation. John
Wiley & Sons, 2017.

[88] V. Gaitsgory, A. Parkinson, and I. Shvartsman. Linear programming formulations of
deterministic infinite horizon optimal control problems in discrete time. Discrete and
Continuous Dynamical Systems - Series B, 22(10):3821 – 3838, 2017.

[89] V. Gaitsgory and M. Quincampoix. On sets of occupational measures generated by a
deterministic control system on an infinite time horizon. Nonlinear Analysis: Theory,
Methods and Applications, 88:27 – 41, 2013.

[90] J. M. George and J. M. Harrison. Dynamic control of a queue with adjustable service rate.
Operations Res., 49(5):720–731, Sept. 2001.

[91] P. W. Glynn and S. P. Meyn. A Liapounov bound for solutions of the Poisson equation.
Ann. Probab., 24(2):916–931, 1996.

[92] G. J. Gordon. Reinforcement learning with function approximation converges to a region.
In Proc. of the 13th International Conference on Neural Information Processing Systems,
pages 996–1002, Cambridge, MA, USA, 2000. MIT Press.

[93] A. Gosavi. Reinforcement learning: A tutorial survey and recent advances. INFORMS
Journal on Computing, 21(2):178–192, 2009.

[94] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation
for Computer Science. Addison-Wesley Longman Publishing Co., Inc., USA, 2nd edition,
1994.

[95] L. Greenemeier. AI versus AI: self-taught AlphaGo Zero vanquishes its predecessor.
Scientific American, October 2017.

[96] A. Gupta, R. Jain, and P. W. Glynn. An empirical algorithm for relative value iteration
for average-cost MDPs. In IEEE Conference on Decision and Control, pages 5079–5084,
2015.

[97] B. Hajek. Random Processes for Engineers. Cambridge University Press, 2015.

[98] H. V. Hasselt. Double Q-learning. In Advances in Neural Information Processing Systems,
pages 2613–2621, 2010.

[99] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer
Series in Statistics. Springer-Verlag, second edition, 2001. Corr. 3rd printing, 2003.

[100] D. Hernández-Hernández, O. Hernández-Lerma, and M. Taksar. The linear program-
ming approach to deterministic optimal control problems. Applicationes Mathematicae,
24(1):17–33, 1996.

[101] O. Hernández-Lerma and J. B. Lasserre. The linear programming approach. In Handbook
of Markov decision processes, volume 40 of Internat. Ser. Oper. Res. Management Sci.,
pages 377–407. Kluwer Acad. Publ., Boston, MA, 2002.

310

[102] O. Hernández-Lerma and J. B. Lasserre. Discrete-time Markov control processes: basic
optimality criteria, volume 30. Springer Science & Business Media, 2012.

[103] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press, 2012.

[104] D. Huang, W. Chen, P. Mehta, S. Meyn, and A. Surana. Feature selection for neuro-
dynamic programming. In F. Lewis, editor, Reinforcement Learning and Approximate
Dynamic Programming for Feedback Control. Wiley, 2011.

[105] A. Iserles. A First Course in the Numerical Analysis of Differential Equations, volume 44.
Cambridge University Press, 2009.

[106] T. Jaakola, M. Jordan, and S. Singh. On the convergence of stochastic iterative dynamic
programming algorithms. Neural Computation, 6:1185–1201, 1994.

[107] C. Jin, Z. Yang, Z. Wang, and M. I. Jordan. Provably efficient reinforcement learning with
linear function approximation. arXiv preprint arXiv:1907.05388, 2019.

[108] G. L. Jones. On the Markov chain Central Limit Theorem. Probab. Surv., 1:299–320
(electronic), 2004.

[109] R. E. Kalman. Contribution to the theory of optimal control. Bol. Soc. Mat. Mexicana,
5:102–119, 1960.

[110] R. E. Kalman. When is a linear control system optimal? Journal of Basic Engineering,
86:51, 1964.

[111] A. Kamoutsi, T. Sutter, P. Mohajerin Esfahani, and J. Lygeros. On infinite linear pro-
gramming and the moment approach to deterministic infinite horizon discounted optimal
control problems. IEEE Control Systems Letters, 1(1):134–139, July 2017.

[112] P. Karmakar and S. Bhatnagar. Two time-scale stochastic approximation with controlled
Markov noise and off-policy temporal-difference learning. Math. Oper. Res., 43(1):130–151,
2018.

[113] H. K. Khalil. Nonlinear systems. Prentice-Hall, Upper Saddle River, NJ, 3rd edition,
2002.

[114] J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function.
Ann. Math. Statist., 23(3):462–466, 09 1952.

[115] V. R. Konda and J. N. Tsitsiklis. Actor-critic algorithms. In Advances in neural informa-
tion processing systems, pages 1008–1014, 2000.

[116] V. R. Konda and J. N. Tsitsiklis. On actor-critic algorithms. SIAM J. Control Optim.,
42(4):1143–1166 (electronic), 2003.

[117] V. R. Konda and J. N. Tsitsiklis. Convergence rate of linear two-time-scale stochastic
approximation. Ann. Appl. Probab., 14(2):796–819, 2004.

[118] V. V. G. Konda. Actor-critic algorithms. PhD thesis, Massachusetts Institute of Technol-
ogy, 2002.

311

[119] I. Kontoyiannis, L. A. Lastras-Montaño, and S. P. Meyn. Relative entropy and exponential
deviation bounds for general Markov chains. In Proc. of the IEEE International Symposium
on Information Theory, pages 1563–1567, Sept. 2005.

[120] I. Kontoyiannis and S. P. Meyn. Spectral theory and limit theorems for geometrically
ergodic Markov processes. Ann. Appl. Probab., 13:304–362, 2003.

[121] A. Krener. Feedback linearization. In Mathematical control theory, pages 66–98. Springer,
1999.

[122] V. Krishnamurthy. Structural results for partially observed Markov decision processes.
ArXiv e-prints, page arXiv:1512.03873, 2015.

[123] M. Krstić and H.-H. Wang. Stability of extremum seeking feedback for general nonlinear
dynamic systems. Automatica, 36(4):595 – 601, 2000.

[124] H. J. Kushner and G. G. Yin. Stochastic approximation algorithms and applications,
volume 35 of Applications of Mathematics (New York). Springer-Verlag, New York, 1997.

[125] H. Kwakernaak and R. Sivan. Linear Optimal Control Systems. Wiley-Interscience, New
York, NY, 1972.

[126] C. Lakshminarayanan and C. Szepesvari. Linear stochastic approximation: How far does
constant step-size and iterate averaging go? In International Conference on Artificial
Intelligence and Statistics, pages 1347–1355, 2018.

[127] S. Lange, T. Gabel, and M. Riedmiller. Batch reinforcement learning. In Reinforcement
learning, pages 45–73. Springer, 2012.

[128] B. Lapeybe, G. Pages, and K. Sab. Sequences with low discrepancy generalisation and
application to Robbins-Monro algorithm. Statistics, 21(2):251–272, 1990.

[129] S. Laruelle and G. Pagès. Stochastic approximation with averaging innovation applied to
finance. Monte Carlo Methods and Applications, 18(1):1–51, 2012.

[130] J.-B. Lasserre. Moments, positive polynomials and their applications, volume 1. World
Scientific, 2010.

[131] T. Lattimore and C. Szepesvari. Bandit Algorithms. Cambridge University Press, 2020.

[132] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[133] S. Liu and M. Krstic. Introduction to extremum seeking. In Stochastic Averaging and
Stochastic Extremum Seeking, Communications and Control Engineering. Springer, Lon-
don, 2012.

[134] L. Ljung. Analysis of recursive stochastic algorithms. IEEE Transactions on Automatic
Control, 22(4):551–575, 1977.

312

[135] D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge
University Press, 2003. available from http://www.inference.phy.cam.ac.uk/mackay/itila/.

[136] H. R. Maei, C. Szepesvári, S. Bhatnagar, and R. S. Sutton. Toward off-policy learning
control with function approximation. In Proceedings of the 27th International Conference
on International Conference on Machine Learning, ICML’10, pages 719–726, USA, 2010.
Omnipress.

[137] H. Mania, A. Guy, and B. Recht. Simple random search provides a competitive approach
to reinforcement learning. In Advances in Neural Information Processing Systems, pages
1800–1809, 2018.

[138] A. S. Manne. Linear programming and sequential decisions. Management Sci., 6(3):259–
267, 1960.

[139] N. Matni, A. Proutiere, A. Rantzer, and S. Tu. From self-tuning regulators to reinforce-
ment learning and back again. In Proc. of the IEEE Conf. on Dec. and Control, pages
3724–3740, 2019.

[140] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert. Constrained model predictive control:
Stability and optimality. Automatica, 36(6):789–814, 2000.

[141] D. Q. Mayne. Model predictive control: Recent developments and future promise. Auto-
matica, 50(12):2967–2986, 2014.

[142] P. G. Mehta and S. P. Meyn. Q-learning and Pontryagin’s minimum principle. In Proc.
of the IEEE Conf. on Dec. and Control, pages 3598–3605, Dec. 2009.

[143] P. G. Mehta and S. P. Meyn. Convex Q-learning, part 1: Deterministic optimal control.
ArXiv e-prints:2008.03559, 2020.

[144] F. S. Melo, S. P. Meyn, and M. I. Ribeiro. An analysis of reinforcement learning with
function approximation. In ICML ’08: Proceedings of the 25th international conference
on Machine learning, pages 664–671, New York, NY, USA, 2008. ACM.

[145] M. Metivier and P. Priouret. Theoremes de convergence presque sure pour une classe
d’algorithmes stochastiques a pas decroissants. Prob. Theory Related Fields, 74:403–428,
1987.

[146] S. P. Meyn. Large deviation asymptotics and control variates for simulating large functions.
Ann. Appl. Probab., 16(1):310–339, 2006.

[147] S. P. Meyn. Control Techniques for Complex Networks. Cambridge University Press, 2007.
Pre-publication edition available online.

[148] S. P. Meyn and G. Mathew. Shannon meets Bellman: Feature based Markovian models
for detection and optimization. In Proc. 47th IEEE CDC, pages 5558–5564, 2008.

[149] S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Cambridge Univer-
sity Press, Cambridge, second edition, 2009. Published in the Cambridge Mathematical
Library. 1993 edition online.

313

[150] D. Michie and R. A. Chambers. Boxes: An experiment in adaptive control. Machine
intelligence, 2(2):137–152, 1968.

[151] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Interna-
tional conference on machine learning, pages 1928–1937, 2016.

[152] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. CoRR,
abs/1602.01783, 2016.

[153] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A.
Riedmiller. Playing Atari with deep reinforcement learning. ArXiv, abs/1312.5602, 2013.

[154] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529, 2015.

[155] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. A. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level
control through deep reinforcement learning. Nature, 518:529–533, 2015.

[156] A. W. Moore. Efficient memory-based learning for robot control. PhD thesis, University
of Cambridge, Computer Laboratory, 1990.

[157] E. Moulines and F. R. Bach. Non-asymptotic analysis of stochastic approximation algo-
rithms for machine learning. In Advances in Neural Information Processing Systems 24,
pages 451–459. Curran Associates, Inc., 2011.

[158] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[159] A. Nedic and D. Bertsekas. Least squares policy evaluation algorithms with linear function
approximation. Discrete Event Dynamic Systems: Theory and Applications, 13(1-2):79–
110, 2003.

[160] Y. Nesterov. Lectures on Convex Optimization. Springer Optimization and Its Applica-
tions. Springer International Publishing, 2018.

[161] J. Norris. Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics.
Cambridge University Press, Cambridge, 1997.

[162] E. Nummelin. General Irreducible Markov Chains and Nonnegative Operators. Cambridge
University Press, Cambridge, 1984.

[163] D. Ormoneit and P. Glynn. Kernel-based reinforcement learning in average-cost problems.
IEEE Transactions on Automatic Control, 47(10):1624–1636, Oct 2002.

[164] I. Osband, B. Van Roy, and Z. Wen. Generalization and exploration via randomized value
functions. In International Conference on Machine Learning, pages 2377–2386, 2016.

314

[165] J. B. Park and J. Y. Lee. Nonlinear adaptive control based on Lyapunov analysis: Overview
and survey. Journal of Institute of Control, Robotics and Systems, 20(3):261–269, 2014.

[166] B. T. Polyak. A new method of stochastic approximation type. Avtomatika i telemekhanika
(in Russian). translated in Automat. Remote Control, 51 (1991), pages 98–107, 1990.

[167] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging.
SIAM J. Control Optim., 30(4):838–855, 1992.

[168] M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

[169] A. Ramaswamy and S. Bhatnagar. A generalization of the Borkar-Meyn Theorem for
stochastic recursive inclusions. Mathematics of Operations Research, 42(3):648–661, 2017.

[170] A. Ramaswamy and S. Bhatnagar. Stability of stochastic approximations with ‘controlled
Markov’ noise and temporal difference learning. IEEE Transactions on Automatic Control,
pages 1–1, 2018.

[171] H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400–407, 1951.

[172] G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist systems. Techni-
cal report 166, Cambridge Univ., Dept. Eng., Cambridge, U.K. CUED/F-INENG/, 1994.

[173] D. Ruppert. A Newton-Raphson version of the multivariate Robbins-Monro procedure.
The Annals of Statistics, 13(1):236–245, 1985.

[174] D. Ruppert. Efficient estimators from a slowly convergent Robbins-Monro processes. Tech-
nical Report Tech. Rept. No. 781, Cornell University, School of Operations Research and
Industrial Engineering, Ithaca, NY, 1988.

[175] D. J. Russo, B. Van Roy, A. Kazerouni, I. Osband, and Z. Wen. A Tutorial on Thompson
Sampling. now, 2018.

[176] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez,
E. Lockhart, D. Hassabis, T. Graepel, T. P. Lillicrap, and D. Silver. Mastering atari, go,
chess and shogi by planning with a learned model. ArXiv, abs/1911.08265, 2019.

[177] E. Seneta. Non-Negative Matrices and Markov Chains. Springer, New York, NY, 2nd
edition, 1981.

[178] C. Shannon. A mathematical theory of communication. Bell System Tech. J., 27:379–423,
623–656, 1948.

[179] H. Sharma, R. Jain, and A. Gupta. An empirical relative value learning algorithm for non-
parametric MDPs with continuous state space. In European Control Conference, pages
1368–1373. IEEE, 2019.

[180] S. D.-C. Shashua and S. Mannor. Kalman meets Bellman: Improving policy evaluation
through value tracking. arXiv preprint arXiv:2002.07171, 2020.

315

[181] B. Shi, S. S. Du, W. Su, and M. I. Jordan. Acceleration via symplectic discretization
of high-resolution differential equations. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Process-
ing Systems 32, pages 5744–5752. Curran Associates, Inc., 2019.

[182] S. Shirodkar and S. Meyn. Quasi stochastic approximation. In Proc. of the 2011 American
Control Conference (ACC), pages 2429–2435, July 2011.

[183] S. Shivam, I. Buckley, Y. Wardi, C. Seatzu, and M. Egerstedt. Tracking control by the
newton-raphson flow: Applications to autonomous vehicles. CoRR, abs/1811.08033, 2018.

[184] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, et al. A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

[185] S. P. Singh and R. S. Sutton. Reinforcement learning with replacing eligibility traces.
Machine learning, 22(1-3):123–158, 1996.

[186] S. Smale. A convergent process of price adjustment and global Newton methods. Journal
of Mathematical Economics, 3(2):107–120, July 1976.

[187] R. D. Smallwood and E. J. Sondik. The optimal control of partially observable Markov
processes over a finite horizon. Oper. Res., 21(5):1071–1088, Oct. 1973.

[188] J. C. Spall. Introduction to stochastic search and optimization: estimation, simulation,
and control. John Wiley & Sons, 2003.

[189] M. W. Spong and D. J. Block. The pendubot: A mechatronic system for control research
and education. In Proceedings of 1995 34th IEEE Conference on Decision and Control,
volume 1, pages 555–556. IEEE, 1995.

[190] M. W. Spong and L. Praly. Control of underactuated mechanical systems using switching
and saturation. In Control using logic-based switching, pages 162–172. Springer, 1997.

[191] M. W. Spong and M. Vidyasagar. Robot dynamics and control. John Wiley & Sons, 2008.

[192] R. Srikant and L. Ying. Finite-time error bounds for linear stochastic approximation and
TD learning. CoRR, abs/1902.00923, 2019.

[193] W. Su, S. Boyd, and E. Candes. A differential equation for modeling nesterov’s accelerated
gradient method: Theory and insights. In Advances in neural information processing
systems, pages 2510–2518, 2014.

[194] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press. On-
line edition at http://www.cs.ualberta.ca/~sutton/book/the-book.html, Cambridge,
MA, 2nd edition, 2018.

[195] R. S. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD thesis, Uni-
versity of Massachusetts, Amherst, 1984.

[196] R. S. Sutton. Learning to predict by the methods of temporal differences. Mach. Learn.,
3(1):9–44, 1988.

http://www.cs.ualberta.ca/~sutton/book/the-book.html

316

[197] R. S. Sutton. Generalization in reinforcement learning: Successful examples using sparse
coarse coding. In Proceedings of the 8th International Conference on Neural Information
Processing Systems, NIPS’95, pages 1038–1044, Cambridge, MA, USA, 1995. MIT Press.

[198] R. S. Sutton. Generalization in reinforcement learning: Successful examples using sparse
coarse coding. In Advances in neural information processing systems, pages 1038–1044,
1996.

[199] R. S. Sutton and A. G. Barto. Toward a modern theory of adaptive networks: expectation
and prediction. Psychological review, 88(2):135, 1981.

[200] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. In Advances in neural information
processing systems, pages 1057–1063, 2000.

[201] R. S. Sutton, C. Szepesvári, and H. R. Maei. A convergent o(n) algorithm for off-policy
temporal-difference learning with linear function approximation. In Proceedings of the
21st International Conference on Neural Information Processing Systems, NIPS’08, pages
1609–1616, Red Hook, NY, USA, 2008. Curran Associates Inc.

[202] C. Szepesvári. The asymptotic convergence-rate of Q-learning. In Proceedings of the
10th International Conference on Neural Information Processing Systems, NIPS’97, pages
1064–1070, Cambridge, MA, USA, 1997. MIT Press.

[203] C. Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers, 2010.

[204] A. Tanzanakis and J. Lygeros. Data-driven control of unknown systems: A linear pro-
gramming approach. ArXiv, abs/2003.00779, 2020.

[205] G. Thoppe and V. Borkar. A concentration bound for stochastic approximation via Alek-
seev’s formula. Stochastic Systems, 9(1):1–26, 2019.

[206] J. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine Learning,
16:185–202, 1994.

[207] J. N. Tsitsiklis and B. V. Roy. Average cost temporal-difference learning. Automatica,
35(11):1799 – 1808, 1999.

[208] J. N. Tsitsiklis and B. Van Roy. Feature-based methods for large scale dynamic program-
ming. Machine Learning, 22(1-3):59–94, 1996.

[209] J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function
approximation. IEEE Trans. Automat. Control, 42(5):674–690, 1997.

[210] J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function
approximation. IEEE Transactions on Automatic Control, 42(5):674–690, May 1997.

[211] J. N. Tsitsiklis and B. Van Roy. Optimal stopping of Markov processes: Hilbert space
theory, approximation algorithms, and an application to pricing high-dimensional financial
derivatives. IEEE Trans. Automat. Control, 44(10):1840–1851, 1999.

317

[212] L. Vandenberghe and S. Boyd. Applications of semidefinite programming. Applied Nu-
merical Mathematics, 29(3):283 – 299, 1999. Proceedings of the Stieltjes Workshop on
High Performance Optimization Techniques.

[213] J. Venter et al. An extension of the Robbins-Monro procedure. The Annals of Mathematical
Statistics, 38(1):181–190, 1967.

[214] R. Vinter. Convex duality and nonlinear optimal control. SIAM Journal on Control and
Optimization, 31(2):518–21, 03 1993.

[215] M. J. Wainwright. Stochastic approximation with cone-contractive operators: Sharp `∞-
bounds for Q-learning. CoRR, abs/1905.06265, 2019.

[216] H.-H. Wang and M. Krstić. Extremum seeking for limit cycle minimization. IEEE Trans-
actions on Automatic Control, 45(12):2432–2436, Dec 2000.

[217] Y. Wang and S. Boyd. Performance bounds for linear stochastic control. Systems Control
Lett., 58(3):178–182, 2009.

[218] Y. Wardi, C. Seatzu, M. Egerstedt, and I. Buckley. Performance regulation and tracking
via lookahead simulation: Preliminary results and validation. In Proc. of the IEEE Conf.
on Dec. and Control, pages 6462–6468, 2017.

[219] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Cam-
bridge, Cambridge, UK, 1989.

[220] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-4):279–292, 1992.

[221] D. J. White. Real applications of markov decision processes. Interfaces, 15(6):73–83, 1985.

[222] D. J. White. A survey of applications of markov decision processes. Journal of the opera-
tional research society, 44(11):1073–1096, 1993.

[223] P. Whittle. Risk-Sensitive Optimal Control. John Wiley and Sons, Chichester, NY, 1990.

[224] A. Wibisono, A. C. Wilson, and M. I. Jordan. A variational perspective on accelerated
methods in optimization. Proceedings of the National Academy of Sciences, 113:E7351 –
E7358, 2016.

[225] V. G. Yaji and S. Bhatnagar. Stochastic recursive inclusions with non-additive iterate-
dependent markov noise. Stochastics, 90(3):330–363, 2018.

[226] H. Yu and D. P. Bertsekas. Q-learning and policy iteration algorithms for stochastic
shortest path problems. Annals of Operations Research, 208(1):95–132, 2013.

[227] J. Zhao and M. Spong. Hybrid control for global stabilization of the cart–pendulum
system. Automatica, 37(12):1941 – 1951, 2001.

[228] K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice-Hall, 1996.

318

Index

Absorbing, 266
ACOE, 179

LP, 184
Action space, 20
Admissible input, 178
Advantage function, 148
Approximate Dynamic Programming, 240
ARMA model, 19
Asymptotic Covariance, 209
Asymptotic stability, 26

Global, 26
Asymptotic variance, 281
Average Cost Optimal Control, 179
Average Cost Optimality Equation, 179

Basis
Linearly independent, 232

Belief state, 291
Bellman equation, 57

fixed-policy, 60
Bellman Error, 66

Central Limit Theorem, 279
Asymptotic variance, 281

Coercive, 27
Communicating class, 266
Comparison Theorem, 269
Comparison theorem, 28
Conditional Expectation, 228
Controlled transition matrix, 177
Convex, 83

Strict, 83
Strong, 83

Cost to go, 56
Continuous time, 298

Coupling, 271
C. Inequality, 275

C. time, 271

DCOE, 180
Discount factor, 63
Discounted cost, 178
Discounted Cost Optimality Equation, 180
Disturbance rejection, 21
Drift condition, 31
Drift inequality, 26
Dynamic Programming, 58
Dynamic Programming Equation, 57

Eligibility vector, 127, 139
Empirical

distribution, 126
mean, 126
pmf, 126

Empirical risk, 126
Empirical risk minimization, 126
Equilibrium, 25

Region of attraction, 26
Ergodicity, 271
Euler approximation, 79
Examples

Acrobot, 45
CartPole, 44
Dynamic speed scaling, 194
Frictionless pendulum, 35
KSRS, 198
Linear State Space Model, 160
M/M/1 queue, 161
MagBall, 41
Mountain Car, 39, 73, 104
Rover with partial information, 189

exogenous, 19
Expectation

Conditional, 228

319

320

Experience replay buffer, 126
Exploration, 38
extremum seeking control, 99

Feedback law, 17
Feedforward control, 17
First entrance time, 264
First return time, 264
Fixed point equation, 57
Fluid model, 193

Galerkin, 127, 139
Grönwall Inequality, 78
Gradient Descent

Stochastic, 99
Graveyard state, 63, 178

Hamilton-Jacobi-Bellman equation, 298
History state, 20
HJB equation, 298
Hurwitz, 34

Inf-compact, 267
Information state, 291
Input

Admissible, 178
Input space, 20
Integral control, 22
Internal Model Principle, 22
Inverse Dynamic Programming, 66

Law of Large Numbers, 279
Linear Quadratic Regulator, 56
Linear State Space Model, 160
Linear state space model, 22

cts. time, 24
Linearization, 36
Lipschitz continuous, 78
Load, 161
LQR, 56

Continuous time, 297
LSTD Learning, 233
LTI system, 19

Gain matrix, 23
Lyapunov equation, 33

cts. time, 34
Lyapunov function, 26

Control, 66

MagBall, 41
Markov

Transition kernel, 158
Transition matrix, 158

Markov chain
Communication diagram, 164
Ergodic, 163

Markov Decision Processes, 177
Martingale

Super m., 269
Mean-field dynamics, 193
Memoryless Property, 158
Minorization condition, 281, 285
Model Predictive Control, 65, 182

Newton-Raphson flow
Regularized, 81

Nonlinear State Space Model, 158

Observations, 17
ODE

Vector field, 31
Optimal control

Risk sensitive, 192
Optimality Equation

Average Cost, 179
Discounted Cost, 180

Optimality equation
Average cost, 188

Optimization
stationary point, 51

Poisson’s equation
Poisson inequality, 267

Poisson’s inequality, 28, 165
cts. time, 32

Policy, 17
linear optimal, 70
Randomized stationary, 185

Policy Iteration
Average cost, 182
Discounted cost, 230

Policy iteration
Approximate, 92

Polyak-Ruppert Averaging, 223

321

Potential matrix, 282, 285
Principle of Optimality, 57
Principle of optimality

Continuous time, 298
Probing signal, 87

Q function
Fixed policy, 235

Q-function
Fixed policy, 231

Q-learning GQ, 141
Quasi-Stochastic Approximation, 86
Queue

CRW, 194
M/M/1, 161

Random walk, 161
Reflected r.w., 161

Reference signal, 17
Regular

c-r., 270
Representer Theorem, 129
Reproducing kernel Hilbert space, 129
Resolvent

Equation, 265
R. matrix, 265

Riccati equation, 70
Risk sensitive optimal control, 192
RKHS, 129

Sample complexity, 211
SARSA, 231
Shortest Path Problem, 178
Shortest path problem, 63
Simplex, 291
Simulation

Batch Means Method, 246
Small, 281
Small measure, 281
Small set, 281
spectral gap, 164
Split sampling, 242
SPP, 63
Stability

Asymptotic, 26
Stable

Asymptotically stable, 26

Globally asymptotically stable, 26

in sense of Lyapunov, 26

in the sense of Lyapunov, 26

Ultimately bounded, 110

State, 19

State feedback

linear, 70

State space, 20

State space model, 20

Stochastic Approximation

Algorithm, 210

Averaging, 223

SNR, 215

Zap, 215

Stochastic Gradient Descent

quasi, 99

Stochastic Newton Raphson, 215

Stopping time, 268

Successive Approximation, 58

Sufficient statistic, 19, 158

TD Learning, 231

LSTD, 233

State weighting, 233

TD-learning, 134

Off policy, 134

On policy, 134

Temporal difference, 37, 72, 125, 232

Total cost, 25

Total-variation norm, 276

f -t.-v. n., 276

Tracking, 17, 21

regulation, 22

Transition matrix

controlled, 177

Value function, 25

Continuous time, 297

Discounted cost, 63, 178

Finite horizon, 64

Optimal, 55

Relative, 188

Value Iteration, 58, 181

Boundary condition, 65

Vector field, 31

N-R flow, 81

322

VIA, 58
Virtual station, 199

Workload

Virtual w. process, 199

Zap
QSA, 98

Symbols and Notation

B : Bellman Error, 66
D : Temporal difference, 125
σx• : First entrance time, 264
(V2), 268

(V3), 270

(V4), 278

qSGD, 99

323

	Preface
	Introduction
	What You Can Find in Here
	What's Missing?
	Words of Thanks
	Resources

	I Fundamentals Without Noise
	Control Crash Course
	You Have a Control Problem
	What To Do About It?
	State Space Models
	Stability and Performance
	A Glance Ahead: From Control Theory to RL
	How Can We Ignore Noise?
	Examples
	Exercises
	Notes

	Optimal Control
	Value Function for Total Cost
	Bellman Equation
	Variations
	Inverse Dynamic Programming
	Bellman Equation is a Linear Program
	Linear Quadratic Regulator
	A Second Glance Ahead
	Examples
	Exercises
	Notes

	ODE Methods for Algorithm Design
	Ordinary Differential Equations
	A Brief Return to Reality
	Newton-Raphson Flow
	Optimization
	Quasi-Stochastic Approximation
	Gradient-Free Optimization
	Quasi Policy Gradient Algorithms
	Stability of ODEs*
	Convergence theory for QSA*
	Exercises
	Notes

	Value Function Approximations
	Function Approximation Architectures
	Exploration and ODE Approximations
	TD-learning and SARSA
	Projected Dynamic Programming and TD Algorithms
	Convex Q-learning
	Safety Constraints
	Examples
	Exercises
	Notes

	II Stochastic State Space Models
	Markov Chains
	Markov Models are State Space Models
	Simple Examples
	Spectra and Ergodicity
	Poisson's Equation
	Lyapunov functions
	Simulation: Confidence Bounds & Control Variates
	Exercises

	Markov Decision Processes
	Total Cost and Every Other Criterion
	Computational Aspects of MDPs
	Relative DP Equatons
	Inverse Dynamic Programming
	Exercises
	Notes

	Examples
	Fluid Models for Policy Approximation
	LQG
	Queues
	Speed scaling
	Contention for resources and instability
	A Queueing Game
	Controlling Rover with Partial Information
	Bandits
	Wall Street
	Exercises
	Notes

	III Reinforcement Learning and Stochastic Control
	Stochastic Approximation
	Themes
	Stability and Convergence
	Rates of Convergence
	Optimal Rate of Convergence
	Exercises
	Notes

	Temporal Difference Methods
	Function Approximation and Smoothing
	Loss Functions
	Approximate Policy Iteration
	TD() Learning
	SARSA
	Average Cost
	Exercises
	Notes

	Approximating the Q-Function
	Goals and Basic Algorithms
	Variance Matters
	Convex Q-Learning
	Exercises
	Notes

	Appendices
	Probability Background
	Events and Sample Space
	Strong Markov Property
	Martingales and the Law of Large Numbers

	Markov Models
	Equilibrium equations
	Communication
	Criteria for stability
	Ergodic theorems and coupling
	Perron-Frobenious Techniques

	Partial Observations and Belief States
	POMDP Model
	State estimation
	A fully observed MDP
	Belief state dynamics

	Optimal Control in Continuous Time
	List of Figures
	References
	Index
	Glossary of Symbols

