
Simons Tutorial: Online Learning and
Bandits Part I

Wouter Koolen and Alan Malek
August 31st, 2020

Positioning this Tutorial

• Building up tools in support of RL
• Exploring surrounding viewpoints, problems and methods
• Soaking up “Culture”

Working Definitions

Context: interactive decision making in unknown environment

Aim: Design systems to amass reward in many environments.

Main distinction: model of environment

• Reinforcement Learning action affects future state
• Bandits action affects observation
• Full Inf. Online Learning action affects reward

Working Definitions

Context: interactive decision making in unknown environment

Aim: Design systems to amass reward in many environments.

Main distinction: model of environment

• Reinforcement Learning action affects future state
• Bandits action affects observation
• Full Inf. Online Learning action affects reward

On the Menu

Two parts:

(1) Full Information Online Learning
(2) Bandits (w. Alan Malek)

Full Information Online Learning

1. Two Basic Problems

Online Convex Optimisation; Online Gradient Descent

The Experts Problem; Exponential Weights

2. Two Peeks Beyond the Basics

Follow the Regularised Leader and Mirror Descent

Online Quadratic Optimisation; Online Newton Step

3. Applications

Classical Optimisation

Stochastic Optimisation

Saddle Points in Two-player Zero-Sum Games

4. Conclusion and Extensions

Two Basic Problems

Setup

• Focus on losses (negative rewards)
• Model Environment as Adversary
• Online Convex Optimisation (OCO) abstraction.

OCO Problem

Protocol: Online Convex Optimisation
Given: game length T, convex action space U ⊆ Rd

For t = 1,2, . . . ,T,
• The learner picks action wt ∈ U
• The adversary picks convex loss ft : U → R
• The learner observes ft / full information
• The learner incurs loss ft(wt)

The goal: control the regret (w.r.t. the best point after T rounds)

RT =
T∑
t=1

ft(wt)− min
u∈U

T∑
t=1

ft(u)

using a computationally efficient algorithm for learner.

OCO Problem

Protocol: Online Convex Optimisation
Given: game length T, convex action space U ⊆ Rd

For t = 1,2, . . . ,T,
• The learner picks action wt ∈ U
• The adversary picks convex loss ft : U → R
• The learner observes ft / full information
• The learner incurs loss ft(wt)

The goal: control the regret (w.r.t. the best point after T rounds)

RT =
T∑
t=1

ft(wt)− min
u∈U

T∑
t=1

ft(u)

using a computationally efficient algorithm for learner.

Design Principle

Learner needs to “chase” the best point arg minu∈U
∑T

t=1 ft(wt).
But doing so naively overfits.

Idea: add regularisation. Two manifestations:

• Penalise excentricity “FTRL style”
• Update iterates, but only slowly “MD style”

Will see examples of both. For our purposes, these are roughly
equivalent

Online Gradient Descent (OGD) Algorithm

Let U be a convex set containing 0. Fix a learning rate η > 0.
Algorithm: Online Gradient Descent (OGD)
OGD with learning rate η > 0 plays

w1 = 0 and wt+1 = ΠU (wt − η∇ft(wt))

where ΠU (w) = arg minu∈U‖u−w‖ is the projection onto U .

U

wt add −η∇
ft(wt)

wt+1
project

Figure 1: OGD update

Online Gradient Descent Result

Algorithm: OGD

w1 = 0 and wt+1 = ΠU (wt − η∇ft(wt))

Assumption: Boundedness
Bounded domain maxu∈U‖u‖ ≤ D and gradients ‖∇ft(wt)‖ ≤ G.

Theorem (OGD regret bd, Zinkevich 2003)

RT =
T∑
t=1

ft(wt)− min
u∈U

T∑
t=1

ft(u) ≤ 1
2ηD

2 +
η

2TG
2

Corollary
Tuning η = D

G
√
T
results in RT ≤ DG

√
T .

Sublinear regret: learning overhead per round → 0.

Online Gradient Descent Result

Algorithm: OGD

w1 = 0 and wt+1 = ΠU (wt − η∇ft(wt))

Assumption: Boundedness
Bounded domain maxu∈U‖u‖ ≤ D and gradients ‖∇ft(wt)‖ ≤ G.

Theorem (OGD regret bd, Zinkevich 2003)

RT =
T∑
t=1

ft(wt)− min
u∈U

T∑
t=1

ft(u) ≤ 1
2ηD

2 +
η

2TG
2

Corollary
Tuning η = D

G
√
T
results in RT ≤ DG

√
T .

Sublinear regret: learning overhead per round → 0.

Online Gradient Descent Result

Algorithm: OGD

w1 = 0 and wt+1 = ΠU (wt − η∇ft(wt))

Assumption: Boundedness
Bounded domain maxu∈U‖u‖ ≤ D and gradients ‖∇ft(wt)‖ ≤ G.

Theorem (OGD regret bd, Zinkevich 2003)

RT =
T∑
t=1

ft(wt)− min
u∈U

T∑
t=1

ft(u) ≤ 1
2ηD

2 +
η

2TG
2

Corollary
Tuning η = D

G
√
T
results in RT ≤ DG

√
T .

Sublinear regret: learning overhead per round → 0.

Online Gradient Descent Result

Algorithm: OGD

w1 = 0 and wt+1 = ΠU (wt − η∇ft(wt))

Assumption: Boundedness
Bounded domain maxu∈U‖u‖ ≤ D and gradients ‖∇ft(wt)‖ ≤ G.

Theorem (OGD regret bd, Zinkevich 2003)

RT =
T∑
t=1

ft(wt)− min
u∈U

T∑
t=1

ft(u) ≤ 1
2ηD

2 +
η

2TG
2

Corollary
Tuning η = D

G
√
T
results in RT ≤ DG

√
T .

Sublinear regret: learning overhead per round → 0.

Proof of OGD regret bound

Using convexity, we may analyse the tangent upper bound

ft(wt)− ft(u) ≤ 〈wt − u,∇ft(wt)〉

Moreover,

‖wt+1 − u‖2 = ‖ΠU (wt − η∇ft(wt))− u‖2

≤ ‖wt − η∇ft(wt)− u‖2

= ‖wt − u‖2 − 2η〈wt − u,∇ft(wt)〉+ η2‖∇ft(wt)‖2

Hence

〈wt − u,∇ft(wt)〉 ≤
‖wt − u‖2 − ‖wt+1 − u‖2

2η +
η

2‖∇ft(wt)‖2

Proof of OGD regret bound (ctd)

Summing over T rounds, we find

Ru
T ≤

T∑
t=1
〈wt − u,∇ft(wt)〉

≤
T∑
t=1

‖wt − u‖2 − ‖wt+1 − u‖2

2η︸ ︷︷ ︸
telescopes

+
η

2

T∑
t=1
‖∇ft(wt)‖2

≤ ‖u‖
2 −������
‖wT+1 − u‖2

2η +
η

2

T∑
t=1
‖∇ft(wt)‖2

≤ D2

2η +
η

2TG
2

OCO Lower Bound

Is OGD regret bound of RT ≤ GD
√
T any good?

Scaling with G and D is natural. What about
√
T?

Theorem
Any OCO algorithm can be made to incur RT = Ω(

√
T).

Proof (by probabilistic argument).
Consider interval U = [−1,1] and linear losses ft(u) = xt · u with
i.i.d. Rademacher coefficients xt ∈ {±1}. Any algorithm has
expected loss zero. The expected loss of the best action (±1)
is −E[|

∑T
t=1 xt|] = −Ω(

√
T). Then as the expected regret is

E[RT] = Ω(
√
T), there is a deterministic witness.

Here, the regret arises from overfitting of the best point.

OCO Lower Bound

Is OGD regret bound of RT ≤ GD
√
T any good?

Scaling with G and D is natural. What about
√
T?

Theorem
Any OCO algorithm can be made to incur RT = Ω(

√
T).

Proof (by probabilistic argument).
Consider interval U = [−1,1] and linear losses ft(u) = xt · u with
i.i.d. Rademacher coefficients xt ∈ {±1}. Any algorithm has
expected loss zero. The expected loss of the best action (±1)
is −E[|

∑T
t=1 xt|] = −Ω(

√
T). Then as the expected regret is

E[RT] = Ω(
√
T), there is a deterministic witness.

Here, the regret arises from overfitting of the best point.

OCO Lower Bound

Is OGD regret bound of RT ≤ GD
√
T any good?

Scaling with G and D is natural. What about
√
T?

Theorem
Any OCO algorithm can be made to incur RT = Ω(

√
T).

Proof (by probabilistic argument).
Consider interval U = [−1,1] and linear losses ft(u) = xt · u with
i.i.d. Rademacher coefficients xt ∈ {±1}. Any algorithm has
expected loss zero. The expected loss of the best action (±1)
is −E[|

∑T
t=1 xt|] = −Ω(

√
T). Then as the expected regret is

E[RT] = Ω(
√
T), there is a deterministic witness.

Here, the regret arises from overfitting of the best point.

OCO Lower Bound

Is OGD regret bound of RT ≤ GD
√
T any good?

Scaling with G and D is natural. What about
√
T?

Theorem
Any OCO algorithm can be made to incur RT = Ω(

√
T).

Proof (by probabilistic argument).
Consider interval U = [−1,1] and linear losses ft(u) = xt · u with
i.i.d. Rademacher coefficients xt ∈ {±1}. Any algorithm has
expected loss zero. The expected loss of the best action (±1)
is −E[|

∑T
t=1 xt|] = −Ω(

√
T). Then as the expected regret is

E[RT] = Ω(
√
T), there is a deterministic witness.

Here, the regret arises from overfitting of the best point.

OGD Discussion

• Adversarial result, super strong!
• Proof reveals it is really about linear losses.
• Matching lower bounds

Successful in practise:

• Practically all deep learning uses versions of online gradient
descent (e.g. TensorFlow has AdaGrad [Duchi et al., 2011])
even though objective not convex.

From Learning Parameters to Picking Actions

We now turn to the second elementary online learning task.

• Decision Theoretic Online Learning
• Experts setting (also: Hedge setting)
• Prediction with Expert Advice

Protocol: Prediction With Expert Advice
Given: game length T, number K of experts
For t = 1,2, . . . ,T,
• Learner chooses a distribution wt ∈ 4K on K “experts”.
• Adversary reveals loss vector `t ∈ [0,1]K .
• Learner’s loss is the dot loss wᵀ

t `t =
∑K

k=1wk
t `

k
t

The goal: control the regret (w.r.t. the best expert after T rounds)

RT =
T∑
t=1

wᵀ
t `t − min

k∈[K]

T∑
t=1

`kt

using a computationally efficient algorithm for learner.

From Learning Parameters to Picking Actions

We now turn to the second elementary online learning task.

• Decision Theoretic Online Learning
• Experts setting (also: Hedge setting)
• Prediction with Expert Advice
Protocol: Prediction With Expert Advice
Given: game length T, number K of experts
For t = 1,2, . . . ,T,
• Learner chooses a distribution wt ∈ 4K on K “experts”.
• Adversary reveals loss vector `t ∈ [0,1]K .
• Learner’s loss is the dot loss wᵀ

t `t =
∑K

k=1wk
t `

k
t

The goal: control the regret (w.r.t. the best expert after T rounds)

RT =
T∑
t=1

wᵀ
t `t − min

k∈[K]

T∑
t=1

`kt

using a computationally efficient algorithm for learner.

From Learning Parameters to Picking Actions

We now turn to the second elementary online learning task.

• Decision Theoretic Online Learning
• Experts setting (also: Hedge setting)
• Prediction with Expert Advice
Protocol: Prediction With Expert Advice
Given: game length T, number K of experts
For t = 1,2, . . . ,T,
• Learner chooses a distribution wt ∈ 4K on K “experts”.
• Adversary reveals loss vector `t ∈ [0,1]K .
• Learner’s loss is the dot loss wᵀ

t `t =
∑K

k=1wk
t `

k
t

The goal: control the regret (w.r.t. the best expert after T rounds)

RT =
T∑
t=1

wᵀ
t `t − min

k∈[K]

T∑
t=1

`kt

using a computationally efficient algorithm for learner.

Let’s apply what we know

Observations:

• Dot loss u 7→ uᵀ`t is linear (hence convex).
• Gradient `t ∈ [0,1]K bounded by ‖`t‖ ≤

√
K.

• Probability simplex 4K is contained in unit ball.

So: Instance of Online Convex Optimisation.

OGD with D = 1 and G =
√
K gives RT ≤

√
KT.

Q: Optimal?

Maybe not. There are no points with loss difference
√
K in the

simplex . . .

Let’s apply what we know

Observations:

• Dot loss u 7→ uᵀ`t is linear (hence convex).
• Gradient `t ∈ [0,1]K bounded by ‖`t‖ ≤

√
K.

• Probability simplex 4K is contained in unit ball.

So: Instance of Online Convex Optimisation.

OGD with D = 1 and G =
√
K gives RT ≤

√
KT.

Q: Optimal?

Maybe not. There are no points with loss difference
√
K in the

simplex . . .

Let’s apply what we know

Observations:

• Dot loss u 7→ uᵀ`t is linear (hence convex).
• Gradient `t ∈ [0,1]K bounded by ‖`t‖ ≤

√
K.

• Probability simplex 4K is contained in unit ball.

So: Instance of Online Convex Optimisation.

OGD with D = 1 and G =
√
K gives RT ≤

√
KT.

Q: Optimal?

Maybe not. There are no points with loss difference
√
K in the

simplex . . .

Exponential Weigths / Hedge Algorithm

Algorithm: Exponential Weights (EW)
EW with learning rate η > 0 plays weights in round t:

wk
t =

e−η
∑t−1

s=1 `
k
s∑K

j=1 e−η
∑t−1

s=1 `
j
s
. (EW)

or, equivalently, wk
1 = 1

K and

wk
t+1 =

wk
t e−η`

k
t∑K

j=1w
j
te−η`

j
t

(EW, incremental)

Theorem (EW regret bd, Freund and Schapire 1997)
The regret of EW is bounded by RT ≤ ln K

η + T η8 .

Corollary

Tuning η =
√

8 ln K
T yields RT ≤

√
T/2 lnK.

Exponential Weigths / Hedge Algorithm

Algorithm: Exponential Weights (EW)
EW with learning rate η > 0 plays weights in round t:

wk
t =

e−η
∑t−1

s=1 `
k
s∑K

j=1 e−η
∑t−1

s=1 `
j
s
. (EW)

or, equivalently, wk
1 = 1

K and

wk
t+1 =

wk
t e−η`

k
t∑K

j=1w
j
te−η`

j
t

(EW, incremental)

Theorem (EW regret bd, Freund and Schapire 1997)
The regret of EW is bounded by RT ≤ ln K

η + T η8 .

Corollary

Tuning η =
√

8 ln K
T yields RT ≤

√
T/2 lnK.

Exponential Weigths / Hedge Algorithm

Algorithm: Exponential Weights (EW)
EW with learning rate η > 0 plays weights in round t:

wk
t =

e−η
∑t−1

s=1 `
k
s∑K

j=1 e−η
∑t−1

s=1 `
j
s
. (EW)

or, equivalently, wk
1 = 1

K and

wk
t+1 =

wk
t e−η`

k
t∑K

j=1w
j
te−η`

j
t

(EW, incremental)

Theorem (EW regret bd, Freund and Schapire 1997)
The regret of EW is bounded by RT ≤ ln K

η + T η8 .

Corollary

Tuning η =
√

8 ln K
T yields RT ≤

√
T/2 lnK.

EW Analysis

Applying Hoeffding’s Lemma to the loss of each round gives
T∑
t=1

wᵀ
t `t ≤

T∑
t=1

(
−1
η

ln

(K∑
k=1

wk
t e−η`

k
t

)
︸ ︷︷ ︸

“mix loss”

+ η/8︸︷︷︸
overhead

)

Crucial observation is that cumulative mix loss telescopes
T∑
t=1

−1
η

ln

(K∑
k=1

wk
t e−η`

k
t

)
=

T∑
t=1

−1
η

ln

(K∑
k=1

e−η
∑t−1

s=1 `
k
s∑K

j=1 e−η
∑t−1

s=1 `
j
s
e−η`

k
t

)

=
T∑
t=1

−1
η

ln

(∑K
k=1 e−η

∑t
s=1 `

k
s∑K

j=1 e−η
∑t−1

s=1 `
j
s

)

telescopes
=

−1
η

ln

(K∑
k=1

e−η
∑T

t=1 `
k
t

)
+

lnK
η

≤ min
k∈[K]

T∑
t=1

`kt +
lnK
η
.

Summary so far

Balancing act: “model complexity” vs “overfitting”

Theorem (OGD)

RT ≤ D2

2η + η
2G

2T

Theorem (EW)
RT ≤ ln K

η + η
8T

Generates many follow-up questions:

• What if horizon T is not fixed? Anytime guarantees?
• What if gradient bound G is not known a priori?
• Can we have the actual gradient norms?
• What if model complexity (D) is not known? Not uniformly
bounded? See Orabona and Cutkosky ICML’20 tutorial.

Need refined analyses ⇒ Restarts (doubling trick), decreasing ηt
(AdaGrad/AdaHedge), learning the learning rate η (MetaGrad),
. . .

Active research area!

https://parameterfree.com/icml-tutorial/

Summary so far

Balancing act: “model complexity” vs “overfitting”

Theorem (OGD)

RT ≤ D2

2η + η
2G

2T

Theorem (EW)
RT ≤ ln K

η + η
8T

Generates many follow-up questions:

• What if horizon T is not fixed? Anytime guarantees?
• What if gradient bound G is not known a priori?
• Can we have the actual gradient norms?
• What if model complexity (D) is not known? Not uniformly
bounded? See Orabona and Cutkosky ICML’20 tutorial.

Need refined analyses ⇒ Restarts (doubling trick), decreasing ηt
(AdaGrad/AdaHedge), learning the learning rate η (MetaGrad),
. . .

Active research area!

https://parameterfree.com/icml-tutorial/

Summary so far

Balancing act: “model complexity” vs “overfitting”

Theorem (OGD)

RT ≤ D2

2η + η
2G

2T

Theorem (EW)
RT ≤ ln K

η + η
8T

Generates many follow-up questions:

• What if horizon T is not fixed? Anytime guarantees?
• What if gradient bound G is not known a priori?
• Can we have the actual gradient norms?
• What if model complexity (D) is not known? Not uniformly
bounded? See Orabona and Cutkosky ICML’20 tutorial.

Need refined analyses ⇒ Restarts (doubling trick), decreasing ηt
(AdaGrad/AdaHedge), learning the learning rate η (MetaGrad),
. . .

Active research area!

https://parameterfree.com/icml-tutorial/

Summary so far

Balancing act: “model complexity” vs “overfitting”

Theorem (OGD)

RT ≤ D2

2η + η
2G

2T

Theorem (EW)
RT ≤ ln K

η + η
8T

Generates many follow-up questions:

• What if horizon T is not fixed? Anytime guarantees?
• What if gradient bound G is not known a priori?
• Can we have the actual gradient norms?
• What if model complexity (D) is not known? Not uniformly
bounded? See Orabona and Cutkosky ICML’20 tutorial.

Need refined analyses ⇒ Restarts (doubling trick), decreasing ηt
(AdaGrad/AdaHedge), learning the learning rate η (MetaGrad),
. . .

Active research area!

https://parameterfree.com/icml-tutorial/

Two Peeks Beyond the
Basics

FTRL/MD “sneak peek”

Q: What if my domain does not look like either ball or simplex?

Algorithm: Follow the Regularised Leader (FTRL)

wt+1 = arg min
u∈U

t∑
s=1
〈u,∇fs(ws)〉+

1
η
R(u)

Algorithm: Mirror Descent (MD)

wt+1 = arg min
u∈U

〈u,∇ft(wt)〉+
1
η
B(u‖wt)

Examples:
Regularizer R Bregman Divergence B

OGD sq. Euclidean norm sq. Euclidean distance
EW Shannon entropy Kullback-Leibler divergence

Other entropies: Burg, Tsallis, Von Neumann, . . . Connections to
continuous exponential weights [van der Hoeven et al., 2018].

FTRL/MD “sneak peek”

Q: What if my domain does not look like either ball or simplex?
Algorithm: Follow the Regularised Leader (FTRL)

wt+1 = arg min
u∈U

t∑
s=1
〈u,∇fs(ws)〉+

1
η
R(u)

Algorithm: Mirror Descent (MD)

wt+1 = arg min
u∈U

〈u,∇ft(wt)〉+
1
η
B(u‖wt)

Examples:
Regularizer R Bregman Divergence B

OGD sq. Euclidean norm sq. Euclidean distance
EW Shannon entropy Kullback-Leibler divergence

Other entropies: Burg, Tsallis, Von Neumann, . . . Connections to
continuous exponential weights [van der Hoeven et al., 2018].

FTRL/MD “sneak peek”

Q: What if my domain does not look like either ball or simplex?
Algorithm: Follow the Regularised Leader (FTRL)

wt+1 = arg min
u∈U

t∑
s=1
〈u,∇fs(ws)〉+

1
η
R(u)

Algorithm: Mirror Descent (MD)

wt+1 = arg min
u∈U

〈u,∇ft(wt)〉+
1
η
B(u‖wt)

Examples:
Regularizer R Bregman Divergence B

OGD sq. Euclidean norm sq. Euclidean distance
EW Shannon entropy Kullback-Leibler divergence

Other entropies: Burg, Tsallis, Von Neumann, . . . Connections to
continuous exponential weights [van der Hoeven et al., 2018].

FTRL/MD “sneak peek”

Q: What if my domain does not look like either ball or simplex?
Algorithm: Follow the Regularised Leader (FTRL)

wt+1 = arg min
u∈U

t∑
s=1
〈u,∇fs(ws)〉+

1
η
R(u)

Algorithm: Mirror Descent (MD)

wt+1 = arg min
u∈U

〈u,∇ft(wt)〉+
1
η
B(u‖wt)

Examples:
Regularizer R Bregman Divergence B

OGD sq. Euclidean norm sq. Euclidean distance
EW Shannon entropy Kullback-Leibler divergence

Other entropies: Burg, Tsallis, Von Neumann, . . . Connections to
continuous exponential weights [van der Hoeven et al., 2018].

FTRL/MD “sneak peak” performance

Algorithm: Follow the Regularised Leader (FTRL)

wt+1 = arg min
u∈U

t∑
s=1
〈u,∇fs(ws)〉+

1
η
R(u)

Algorithm: Mirror Descent

wt+1 = arg min
u∈U

〈u,∇ft(wt)〉+
1
η
B(u‖wt)

Theorem (AdaFTRL, Orabona and Pál 2015)
Fix a norm ‖·‖ with associated dual norm ‖·‖?. Let
R : U → [0,D2] be strongly convex w.r.t. ‖·‖. AdaFTRL ensures

RT ≤ 2D

√√√√ T∑
t=1
‖∇ft(wt)‖2? + 2 · loss range.

FTRL/MD “sneak peak” performance

Algorithm: Follow the Regularised Leader (FTRL)

wt+1 = arg min
u∈U

t∑
s=1
〈u,∇fs(ws)〉+

1
η
R(u)

Algorithm: Mirror Descent

wt+1 = arg min
u∈U

〈u,∇ft(wt)〉+
1
η
B(u‖wt)

Theorem (AdaFTRL, Orabona and Pál 2015)
Fix a norm ‖·‖ with associated dual norm ‖·‖?. Let
R : U → [0,D2] be strongly convex w.r.t. ‖·‖. AdaFTRL ensures

RT ≤ 2D

√√√√ T∑
t=1
‖∇ft(wt)‖2? + 2 · loss range.

Quadratic Losses

So far we used convexity to “linearise”

ft(u) ≥ ft(wt) + 〈u−wt,∇ft(wt)〉,

and our methods essentially operated on linear losses. But what
if we know there is curvature?

• How to represent/quantify curvature?
• How to efficiently manipulate curvature?
• How much can we reduce the regret?

Curvature assumptions

Assumption: Quadratic loss lower bound
There is a matrix Mt � 0 such that

ft(u) ≥ ft(wt) + 〈u−wt,∇ft(wt)〉+
1
2 (u−wt)

ᵀMt(u−wt)︸ ︷︷ ︸
=:qt(u)

for each u ∈ U .

Two main classes of instances

• squared Euclidean distance: ft(u) = 1
2‖u− xt‖

2 satisfies the
assumption with Mt = I. More generally, strongly convex
functions have Mt ∝ I.

• linear regression: ft(u) = (yt − 〈u,xt〉)2 satisfies the
assumption with Mt = xtx

ᵀ
t . More generally, exp-concave

functions have Mt ∝ ∇tft(wt)∇tft(wt)
ᵀ.

Curvature assumptions

Assumption: Quadratic loss lower bound
There is a matrix Mt � 0 such that

ft(u) ≥ ft(wt) + 〈u−wt,∇ft(wt)〉+
1
2 (u−wt)

ᵀMt(u−wt)︸ ︷︷ ︸
=:qt(u)

for each u ∈ U .

Two main classes of instances

• squared Euclidean distance: ft(u) = 1
2‖u− xt‖

2 satisfies the
assumption with Mt = I. More generally, strongly convex
functions have Mt ∝ I.

• linear regression: ft(u) = (yt − 〈u,xt〉)2 satisfies the
assumption with Mt = xtx

ᵀ
t . More generally, exp-concave

functions have Mt ∝ ∇tft(wt)∇tft(wt)
ᵀ.

ONS Algorithm

Algorithm: Online Newton Step (FTRL variant)

wt+1 = arg min
u∈U

t∑
s=1

qs(u) +
1
2‖u‖

2

Computing the iterate wt+1 amounts to minimising a convex
quadratic. Often (depending on U) closed-form solution or 1d
line search.

• For Mt ∝ I, takes O(d) per round.
• For rank-one Mt, can do update in O(d2) per round.
• In both cases, need to take care of projection onto U .

ONS Performance

Algorithm: Online Newton Step (FTRL version)

wt+1 = arg min
u∈U

t∑
s=1

qs(u) +
1
2‖u‖

2

Theorem (ONS strcvx bd, Hazan et al. 2006)
For the strongly convex case Mt ∝ I, ONS guarantees

RT = O(lnT)

Algorithm reduces to OGD with specific decreasing step-size ηt

Theorem (ONS expccv bd, Hazan et al. 2006)
For the exp-concave case Mt ∝ gtg

ᵀ
t , ONS guarantees

RT = O(d lnT)

ONS Discussion

• Convex quadratics closed under taking sums. Run-time
independent of T.

• Curvature gives huge reduction in regret:
√
T to lnT.

• Matrix sketching techniques allow trading off run-time O(d2)

vs O(d) with regret O(lnT) vs O(
√
T) [Luo et al., 2016].

Applications

Application 1: Offline Optimisation

Problem
Given gradient access to a convex f , find a near-optimal point.

Idea: run OGD on ft = f for T rounds. Regret bound gives

T∑
t=1

f (wt)− T min
u∈U

f (u) ≤ GD
√
T

We may divide by T and apply convexity to find

f

(
1
T

T∑
t=1

wt

)
− min

u∈U
f (u) ≤ GD√

T

Find ε-suboptimal point (iterate average) after T = G2D2

ε2 rounds.

Why would we optimise this way? For example, what if ft → f .

Application 1: Offline Optimisation

Problem
Given gradient access to a convex f , find a near-optimal point.

Idea: run OGD on ft = f for T rounds. Regret bound gives

T∑
t=1

f (wt)− T min
u∈U

f (u) ≤ GD
√
T

We may divide by T and apply convexity to find

f

(
1
T

T∑
t=1

wt

)
− min

u∈U
f (u) ≤ GD√

T

Find ε-suboptimal point (iterate average) after T = G2D2

ε2 rounds.

Why would we optimise this way? For example, what if ft → f .

Application 1: Offline Optimisation

Problem
Given gradient access to a convex f , find a near-optimal point.

Idea: run OGD on ft = f for T rounds. Regret bound gives

T∑
t=1

f (wt)− T min
u∈U

f (u) ≤ GD
√
T

We may divide by T and apply convexity to find

f

(
1
T

T∑
t=1

wt

)
− min

u∈U
f (u) ≤ GD√

T

Find ε-suboptimal point (iterate average) after T = G2D2

ε2 rounds.

Why would we optimise this way? For example, what if ft → f .

Application 2: Online to Batch

Assumption: stochastic setting
Suppose training set f1, . . . , fT and test point f drawn i.i.d. from
unknown P.

Problem
Learn a point ŵT from the training set that generalises to P,
i.e. behaves like u∗ = arg minu∈U Ef [f (u)]

Idea: use online learning algorithm on training set f1, . . . , fT , to
get iterates w1, . . . ,wT . Output the average iterate estimator

ŵT =
1
T

T∑
t=1

wt.

Theorem
An online regret bound RT ≤ B(T) implies

Eiid f1, . . . , fT , f [f (ŵT)− f (u∗)] ≤ B(T)

T

Application 2: Online to Batch

Assumption: stochastic setting
Suppose training set f1, . . . , fT and test point f drawn i.i.d. from
unknown P.

Problem
Learn a point ŵT from the training set that generalises to P,
i.e. behaves like u∗ = arg minu∈U Ef [f (u)]

Idea: use online learning algorithm on training set f1, . . . , fT , to
get iterates w1, . . . ,wT . Output the average iterate estimator

ŵT =
1
T

T∑
t=1

wt.

Theorem
An online regret bound RT ≤ B(T) implies

Eiid f1, . . . , fT , f [f (ŵT)− f (u∗)] ≤ B(T)

T

Application 3: Computing Saddle Points

Assumption: convex-concave
Fix an objective function

g(x,y)

convex in x, concave in y.

The game value is

V∗ = min
x

max
y

g(x,y) = max
y

min
x
g(x,y).

An ε-saddle point (x̄, ȳ) satisfies

V∗ − ε ≤ min
x
g(x, ȳ) ≤ V∗ ≤ max

y
g(x̄,y) ≤ V∗ + ε.

Problem
Find an ε-saddle point

Idea: play regret minimisation algorithms for x and y.

Application 3: Computing Saddle Points

Assumption: convex-concave
Fix an objective function

g(x,y)

convex in x, concave in y.

The game value is

V∗ = min
x

max
y

g(x,y) = max
y

min
x
g(x,y).

An ε-saddle point (x̄, ȳ) satisfies

V∗ − ε ≤ min
x
g(x, ȳ) ≤ V∗ ≤ max

y
g(x̄,y) ≤ V∗ + ε.

Problem
Find an ε-saddle point

Idea: play regret minimisation algorithms for x and y.

Application 3: Computing Saddle Points

Assumption: convex-concave
Fix an objective function

g(x,y)

convex in x, concave in y.

The game value is

V∗ = min
x

max
y

g(x,y) = max
y

min
x
g(x,y).

An ε-saddle point (x̄, ȳ) satisfies

V∗ − ε ≤ min
x
g(x, ȳ) ≤ V∗ ≤ max

y
g(x̄,y) ≤ V∗ + ε.

Problem
Find an ε-saddle point

Idea: play regret minimisation algorithms for x and y.

Application 3: Computing Saddle Points

Assumption: convex-concave
Fix an objective function

g(x,y)

convex in x, concave in y.

The game value is

V∗ = min
x

max
y

g(x,y) = max
y

min
x
g(x,y).

An ε-saddle point (x̄, ȳ) satisfies

V∗ − ε ≤ min
x
g(x, ȳ) ≤ V∗ ≤ max

y
g(x̄,y) ≤ V∗ + ε.

Problem
Find an ε-saddle point

Idea: play regret minimisation algorithms for x and y.

Application 3: Saddle Point Algorithm

Algorithm: approximate saddle point solver
For t = 1,2, . . . ,T
• Players play xt and yt.
• Players see loss functions x 7→ +g(x,yt) and y 7→ −g(xt,y).
Output average iterate pair x̄T = 1

T
∑T

t=1 xt and ȳT = 1
T
∑T

t=1 yt

Assume the players have regret (bounds) Rx
T and R

y
T , i.e.

T∑
t=1

+g(xt,yt)−min
x

T∑
t=1

+g(x,yt) ≤ Rx
T

T∑
t=1
−g(xt,yt)−min

y

T∑
t=1
−g(xt,y) ≤ Ry

T

Theorem (self-play, Freund and Schapire 1999)

x̄T and ȳT form an R
x
T+Ry

T
T -saddle point.

Application 3: Saddle Point Analysis

V∗ = min
x

max
y

g(x, y)

≤ max
y

g(x̄T , y)

≤ max
y

1
T

T∑
t=1

g(xt, y)

≤
1
T

T∑
t=1

g(xt, yt) +
Ry

T
T

≤ min
x

1
T

T∑
t=1

g(x, yt) +
Rx

T +Ry
T

T

≤ min
x

g(x, ȳT) +
Rx

T +Ry
T

T

≤ min
x

max
y

g(x, y) +
Rx

T +Ry
T

T

= V∗ +
Rx

T +Ry
T

T

Conclusion and Extensions

Conclusion

• Online Learning a powerful and versatile tool
• Environment-as-black-box. Adversarial.
• Foundation for optimisation, statistical learning, games, . . .

Some (of many) cool things we left out:

• First-order (small loss) and second-order (small variance)
bounds

• Adaptivity to friendly stochastic environments (best of both
worlds, interpolation)

• Optimism (predicting the upcoming gradient)
• Non-stationarity (tracking, adaptive/dynamic regret, path
length)

• Beyond convexity (star-convex, geometrically convex, . . .)
• Supervised Learning and (stochastic) complexities (VC,
Littlestone, Rademacher, . . .)

Conclusion

• Online Learning a powerful and versatile tool
• Environment-as-black-box. Adversarial.
• Foundation for optimisation, statistical learning, games, . . .

Some (of many) cool things we left out:

• First-order (small loss) and second-order (small variance)
bounds

• Adaptivity to friendly stochastic environments (best of both
worlds, interpolation)

• Optimism (predicting the upcoming gradient)
• Non-stationarity (tracking, adaptive/dynamic regret, path
length)

• Beyond convexity (star-convex, geometrically convex, . . .)
• Supervised Learning and (stochastic) complexities (VC,
Littlestone, Rademacher, . . .)

Thanks!

References

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12:2121–2159, 2011.

Yoav Freund and Robert E Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. J. Comput. Syst. Sci., 55(1):119–139, August 1997.

Yoav Freund and Robert E Schapire. Adaptive game playing
using multiplicative weights. Games and Economic Behavior,
29(1-2):79–103, 1999.

Elad Hazan, Adam Kalai, Satyen Kale, and Amit Agarwal.
Logarithmic regret algorithms for online convex optimization.
In Learning Theory, pages 499–513, 2006.

Haipeng Luo, Alekh Agarwal, Nicolò Cesa-Bianchi, and John
Langford. Efficient second order online learning by sketching.
In Advances in Neural Information Processing Systems 29,
pages 902–910. 2016.

Francesco Orabona and Dávid Pál. Scale-free algorithms for
online linear optimization. In Algorithmic Learning Theory,
pages 287–301, 2015.

Dirk van der Hoeven, Tim van Erven, and Wojciech Kotłowski.
The many faces of exponential weights in online learning.
volume 75 of Proceedings of Machine Learning Research,
pages 2067–2092, 06–09 Jul 2018.

Martin Zinkevich. Online convex programming and generalized
infinitesimal gradient ascent. In Proceedings of the Twentieth
International Conference on International Conference on
Machine Learning, ICML’03, page 928–935, 2003.

Simons Tutorial: Online Learning and
Bandits Part II

Wouter Koolen and Alan Malek
August 31st, 2020

What is a Bandit?

The Basic Bandit Game

Protocol: Finite-Arm Bandits
Given: game length T, number of arms K
For t = 1,2, . . . ,T,
• The learner picks action It ∈ {1, . . . ,K}
• The adversary simultaneously picks rewards

rt ∈ {1, . . . ,K} → [0,1]

• The learner observes and receives rt(It)
• The learner does not observe rt(i) for i 6= It

The goal: control the regret (a random variable)

RT = max
i

T∑
t=1

rt(i)︸ ︷︷ ︸
Best action in hindsight

−
T∑
t=1

rt(It)

Bandits are Super Simple MDP

• S = {the_state}, P(the_state|the_state,a) = 1
• Why should we care about this in RL?

• Creates a tension between
• Exploration (learning about the loss of actions)
• Exploitation (playing actions that will have low regret)

• Exploration/Exploitation is absent in full-information but very
present in reinforcement learning

• Model is simple enough to allow for comprehensive theory
• Easily incorporates adversarial data
• Useful algorithm design principles

The Regret

RT = max
i

T∑
t=1

rt(i)︸ ︷︷ ︸
Best action in hindsight

−
T∑
t=1

rt(It)

• RT is a random variable we do not observe
• Different objectives, from easiest to hardest

• Pseudo-regret RT = maxi E
[∑T

t=1 rt(i)
]
− E

[∑T
t=1 rt(It)

]
• Expected regret E[RT] = E

[
max
i

T∑
t=1

rt(i)︸ ︷︷ ︸
can depend on It

−
∑T

t=1 rt(It)

]

• High probability bounds on the realized regret

• We always have RT ≤ E[RT]

• If the adversary is reactive, then the distribution of rt can be
a function of I1, . . . , It−1

• Otherwise, the adversary is oblivious and RT = E[RT]

The Regret

RT = max
i

T∑
t=1

rt(i)︸ ︷︷ ︸
Best action in hindsight

−
T∑
t=1

rt(It)

• RT is a random variable we do not observe
• Different objectives, from easiest to hardest

• Pseudo-regret RT = maxi E
[∑T

t=1 rt(i)
]
− E

[∑T
t=1 rt(It)

]
• Expected regret E[RT] = E

[
max
i

T∑
t=1

rt(i)︸ ︷︷ ︸
can depend on It

−
∑T

t=1 rt(It)

]

• High probability bounds on the realized regret
• We always have RT ≤ E[RT]

• If the adversary is reactive, then the distribution of rt can be
a function of I1, . . . , It−1

• Otherwise, the adversary is oblivious and RT = E[RT]

Our Focus

• Introduce most popular bandit problems
• Adversarial Bandits
• Stochastic Bandits
• Pure Exploration Bandits
• Contextual Bandits (time permitting)

• Concentrate on useful algorithm design principles
• Exponential weights (still useful)
• Optimism in the face of Uncertainty
• Probability matching (i.e. Thompson sampling)
• Action-Elimination

Other Settings that Have Been Considered

• Data models for rt
• chosen by an adversary
• sampled i.i.d.
• stochastic with adversarial perturbations...

• Action spaces
• Finite number of arms
• A vector space (rt are functions)
• Combinatorial (e.g. subsets, paths on a graph)

• Objectives
• Pseudo-regret (the expectation over the learner’s
randomness)

• Realized regret (with high probability)
• Best-arm identification a.k.a. pure exploration

• Side information
• Linear rewards
• Competing with a policy class

• ...

Adversarial Bandits

Adversarial Protocol

Protocol: Finite-Arm Adversarial Bandits
Given: game length T, number of arms K
For t = 1,2, . . . ,T,
• The learner picks action It ∈ {1, . . . ,K}
• The adversary simultaneously picks losses `t ∈ [0,1]K

• The learner observes and receives `t(It)

• The results are easier to state using losses instead of
rewards

• Randomization of It is essential
• We are familiar with adversarial data from the first half
• The simple idea of estimating `t from `t(It) and then
applying a full-information algorithm works very well

Algorithm Design Principle: Exponential Weights

Algorithm: Exp3 [Auer et al., 2002b]
Given: number of arms K, learning rate η > 0, length T
Initialize p1(i) = 1/K, L̂0(i) = 0 for all i ∈ [K]

For t = 1,2, . . . ,T:
• Sample It ∼ pt and observe `t(It)
• Estimate ˆ̀t(i) = `t(It)

pt(It)1{It=i} and L̂t = ˆ̀t + L̂t−1
• Calculate Wt =

∑
j e−ηL̂t(j) and pt+1(i) = 1

Wt
e−ηL̂t(i)

• Exp3 = Exponential Weights for Exploration and Exploitation
• ˆ̀t is the importance-weighted estimator of `t
• ˆ̀t is unbiased:

EIt∼pt [ˆ̀t(i)] = E
[
`t(It)
pt(It)

1{It=i}

]
=
∑
j

pt(j)
`t(j)
pt(j)

1{j=i} = `t(i).

• Exp3 runs exponential weights on ˆ̀t

Algorithm Design Principle: Exponential Weights

Algorithm: Exp3 [Auer et al., 2002b]
Given: number of arms K, learning rate η > 0, length T
Initialize p1(i) = 1/K, L̂0(i) = 0 for all i ∈ [K]

For t = 1,2, . . . ,T:
• Sample It ∼ pt and observe `t(It)
• Estimate ˆ̀t(i) = `t(It)

pt(It)1{It=i} and L̂t = ˆ̀t + L̂t−1
• Calculate Wt =

∑
j e−ηL̂t(j) and pt+1(i) = 1

Wt
e−ηL̂t(i)

• Exp3 = Exponential Weights for Exploration and Exploitation
• ˆ̀t is the importance-weighted estimator of `t
• ˆ̀t is unbiased:

EIt∼pt [ˆ̀t(i)] = E
[
`t(It)
pt(It)

1{It=i}

]
=
∑
j

pt(j)
`t(j)
pt(j)

1{j=i} = `t(i).

• Exp3 runs exponential weights on ˆ̀t

Exp3: Abridged Analysis

• Using the same Wt
Wt−1

telescoping procedure as in the full
information case with i∗ arbitrary but fixed,

T∑
t=1

∑
j

pt(j)E[ˆ̀t(j)− L̂T(i∗)] ≤ log(K)

η
+
η

2

T∑
t=1

E

∑
j

pt(j)ˆ̀t(j)2
 .

• Because ˆ̀t is unbiased,
T∑
t=1

∑
j

pt(j)E[ˆ̀t(j)− L̂T(i∗)] =
T∑
t=1

∑
j

pt(j)`t(j)− LT(i∗) ≥ RT .

• Bounding the variance term turns out to be easy:

E

∑
j

pt(j)
`t(It)2

pt(It)2
1{It=i}

 ≤ E

∑
j

pt(j)
1{It=i}

pt(It)2

 = E
[1
pt(It)

]
= K.

Exp3: Abridged Analysis

• Using the same Wt
Wt−1

telescoping procedure as in the full
information case with i∗ arbitrary but fixed,

T∑
t=1

∑
j

pt(j)E[ˆ̀t(j)− L̂T(i∗)] ≤ log(K)

η
+
η

2

T∑
t=1

E

∑
j

pt(j)ˆ̀t(j)2
 .

• Because ˆ̀t is unbiased,
T∑
t=1

∑
j

pt(j)E[ˆ̀t(j)− L̂T(i∗)] =
T∑
t=1

∑
j

pt(j)`t(j)− LT(i∗) ≥ RT .

• Bounding the variance term turns out to be easy:

E

∑
j

pt(j)
`t(It)2

pt(It)2
1{It=i}

 ≤ E

∑
j

pt(j)
1{It=i}

pt(It)2

 = E
[1
pt(It)

]
= K.

Exp3: Abridged Analysis

• Using the same Wt
Wt−1

telescoping procedure as in the full
information case with i∗ arbitrary but fixed,

T∑
t=1

∑
j

pt(j)E[ˆ̀t(j)− L̂T(i∗)] ≤ log(K)

η
+
η

2

T∑
t=1

E

∑
j

pt(j)ˆ̀t(j)2
 .

• Because ˆ̀t is unbiased,
T∑
t=1

∑
j

pt(j)E[ˆ̀t(j)− L̂T(i∗)] =
T∑
t=1

∑
j

pt(j)`t(j)− LT(i∗) ≥ RT .

• Bounding the variance term turns out to be easy:

E

∑
j

pt(j)
`t(It)2

pt(It)2
1{It=i}

 ≤ E

∑
j

pt(j)
1{It=i}

pt(It)2

 = E
[1
pt(It)

]
= K.

Exp3: Analysis

So, plugging this in, we find

T∑
t=1

E[`(It)]− LT(i∗) ≤ log(K)

η
+
η

2TK.

Theorem (Exp3 upper bound [Auer et al., 2002b])

With η =
√

2 log(T)
TK , Exp3 has RT ≤

√
2TK log(K).

Only get pseudo-Regret bounds because the i∗ in the proof was
fixed, not a function of I1, . . . , IT

Lower Bounds

Theorem (Adversarial Bandits lower bound [Auer et al.,
2002b])
Any adversarial bandit algorithm must have

RT = Ω(
√
TK)

• Exp3 upper bound: RT ≤
√
2TK log(K)

• First matching upper bound achieved by INF [Audibert and
Bubeck, 2009] (which is Mirror Descent)

Upgrades

• High Probability bounds: requires a lower-variance estimate
of ˆ̀t or an algorithm that keeps pt(i) away from zero
• Exp3.P [Auer et al., 2002b] uses ˆ̀t(i) =

1{It=i}`t(It)−β
pt(It)

• Exp3-IX [Neu, 2015] uses ˆ̀t(i) =
1{It=i}`t(It)
pt(It)+γ

• Experts with bandits; each arm is an expert that
recommends actions: you compete with the best expert
(Exp4 algorithm) [Auer et al., 2002b]

• Competing with strategies that can switch [Auer, 2002]
• Feedback determined by a graph [Mannor and Shamir,
2011]

• Partial Monitoring [Bartók et al., 2014]
• Combinatorial action spaces...

Stochastic Bandits

Protocol

Protocol: Stochastic Bandits
Given: game length T, number of arms K, reward distributions
ν1, . . . , νK

For t = 1,2, . . . ,T,
• The learner picks action It ∈ {1, . . . ,K}
• The learner observes and receives reward Xt ∼ νIt

• Stochastic bandits is an old problem [Thompson, 1933]
• We will use the following notation

• Reward of arm i is sampled from νi with µi := EX∼νi [X]

• i∗ = arg maxi µi is the best arm
• Gaps ∆i := µi∗ − µi ≥ 0,
• Number of pulls Ni,t :=

∑t
s=1 1{Is=i}

• Empirical mean µ̂i,t :=
∑t

s=1 Xs1{Is=i}
Ni,t

Protocol

Protocol: Stochastic Bandits
Given: game length T, number of arms K, reward distributions
ν1, . . . , νK

For t = 1,2, . . . ,T,
• The learner picks action It ∈ {1, . . . ,K}
• The learner observes and receives reward Xt ∼ νIt

• Stochastic bandits is an old problem [Thompson, 1933]
• We will use the following notation

• Reward of arm i is sampled from νi with µi := EX∼νi [X]

• i∗ = arg maxi µi is the best arm
• Gaps ∆i := µi∗ − µi ≥ 0,
• Number of pulls Ni,t :=

∑t
s=1 1{Is=i}

• Empirical mean µ̂i,t :=
∑t

s=1 Xs1{Is=i}
Ni,t

Protocol

Protocol: Stochastic Bandits
Given: game length T, number of arms K, reward distributions
ν1, . . . , νK

For t = 1,2, . . . ,T,
• The learner picks action It ∈ {1, . . . ,K}
• The learner observes and receives reward Xt ∼ νIt
• We still want to minimize the expected regret, which has
the useful decomposition

E[RT] = Tµi∗ −
∑T

t=1 E[Xt] =
∑

i ∆iE[Ni,T]

Assumption: 1-sub-Gaussian reward distributions
For all stochastic bandit problems, we will assume that all arms
are 1-sub-Gaussian, i.e. EX∼µ[eλ(X−µ)2−λ2/2] ≤ 1. For X1, . . . ,Xt,
This implies the Hoeffding bound

P

(
1
t

t∑
s=1

Xs − µi ≥ ε

)
≤ e−

ε2t
2 .

Protocol

Protocol: Stochastic Bandits
Given: game length T, number of arms K, reward distributions
ν1, . . . , νK

For t = 1,2, . . . ,T,
• The learner picks action It ∈ {1, . . . ,K}
• The learner observes and receives reward Xt ∼ νIt
• We still want to minimize the expected regret, which has
the useful decomposition

E[RT] = Tµi∗ −
∑T

t=1 E[Xt] =
∑

i ∆iE[Ni,T]

Assumption: 1-sub-Gaussian reward distributions
For all stochastic bandit problems, we will assume that all arms
are 1-sub-Gaussian, i.e. EX∼µ[eλ(X−µ)2−λ2/2] ≤ 1. For X1, . . . ,Xt,
This implies the Hoeffding bound

P

(
1
t

t∑
s=1

Xs − µi ≥ ε

)
≤ e−

ε2t
2 .

Warm-up: Explore-Then-Commit

Algorithm: Explore-Then-Commit
Given: Game length T, exploration parameter M
For t = 1,2, . . . ,MK:
• Choose it = (t mod K), see Xt ∼ νit
Compute empirical means µ̂i,mK

For t = MK + 1,MK + 2, . . . ,T:
• Pull arm i = arg maxi µ̂i,mK

• The first strategy you might try
• A proof idea that we will return to: bound regret by first
bounding E[Ni,T].

• In this simple algorithm,

E[Ni,T] = M + (T −MK)P

(
i = arg max

j
µ̂j,MK

)

Explore-Then-Commit Upper Bound

Using the sub-Gaussian concentration bound,

P

(
i = arg max

j
µ̂j,MK

)
≤ P (µ̂i,MK ≥ µ̂i∗,MK)

= P ((µ̂i,MK − µi) ≥ (µ̂i∗,MK − µi∗) + ∆i)

≤ e−
M∆2

i
4 (the difference is

√
2/M-sub-Gaussian)

Theorem (Explore-Then-Commit upper bound)

E[RT] =
∑
i

∆iE[Ni,T] ≤
K∑
i=1

∆i

(
M + (T −MK)e−

M∆2
i

4

)

• For the two arm case, if we know ∆, then m = 4
∆2

1
log

T∆2
1

4 ,

results in E[RT] ≤
∑K

i=1
4

∆1
log

T∆2
1

4 + T 4
T∆2

1
= O

(
K log(T)

∆1

)
• But we don’t know ∆...can we be adaptive?

Explore-Then-Commit Upper Bound

Using the sub-Gaussian concentration bound,

P

(
i = arg max

j
µ̂j,MK

)
≤ P (µ̂i,MK ≥ µ̂i∗,MK)

= P ((µ̂i,MK − µi) ≥ (µ̂i∗,MK − µi∗) + ∆i)

≤ e−
M∆2

i
4 (the difference is

√
2/M-sub-Gaussian)

Theorem (Explore-Then-Commit upper bound)

E[RT] =
∑
i

∆iE[Ni,T] ≤
K∑
i=1

∆i

(
M + (T −MK)e−

M∆2
i

4

)

• For the two arm case, if we know ∆, then m = 4
∆2

1
log

T∆2
1

4 ,

results in E[RT] ≤
∑K

i=1
4

∆1
log

T∆2
1

4 + T 4
T∆2

1
= O

(
K log(T)

∆1

)
• But we don’t know ∆...can we be adaptive?

Algorithm Design Principle: OFU

• OFU: Optimism in the Face of Uncertainty
• We establish some confidence set for the problem instance
(e.g. means) to within some confidence set

• We then assume the most favorable instance in the
confidence set and act greedily

Algorithm: UCB1 [Auer et al., 2002a]
Given: Game length T
Initialize: play every arm once
For t = K + 1,2, . . . ,T:
• Compute upper confidence bounds Bi,t−1 =

√
6 log(t)
Ni,t−1

• Choose It = arg maxi µ̂i,t−1 + Bi,t−1, observe Xt ∼ νIt
• Update Ni,t = Ni,t−1 + 1{It=i} and µ̂i,t =

∑t
s=1 1{Is=i}Xs

Ni,t

Algorithm Design Principle: OFU

• OFU: Optimism in the Face of Uncertainty
• We establish some confidence set for the problem instance
(e.g. means) to within some confidence set

• We then assume the most favorable instance in the
confidence set and act greedily

Algorithm: UCB1 [Auer et al., 2002a]
Given: Game length T
Initialize: play every arm once
For t = K + 1,2, . . . ,T:
• Compute upper confidence bounds Bi,t−1 =

√
6 log(t)
Ni,t−1

• Choose It = arg maxi µ̂i,t−1 + Bi,t−1, observe Xt ∼ νIt
• Update Ni,t = Ni,t−1 + 1{It=i} and µ̂i,t =

∑t
s=1 1{Is=i}Xs

Ni,t

UCB Illustration

Ar
m
1

Ar
m
2

Ar
m
3

0

0.5

1

µ̂1,1 − B1,t

µ̂1,1

µ̂1,1 + B1,t

µ̂2,1 − B2,t

µ̂2,1

µ̂2,1 + B2,t

µ̂3,1 − B3,t

µ̂3,1

µ̂3,1 + B3,t

Re
w
ar
d
Round 1

UCB Illustration

Ar
m
1

Ar
m
2

Ar
m
3

0

0.5

1

µ̂1,2 − B1,t

µ̂1,2

µ̂1,2 + B1,t

µ̂2,2 − B2,t

µ̂2,2

µ̂2,2 + B2,t

µ̂3,2 − B3,t

µ̂3,2

µ̂3,2 + B3,t

Re
w
ar
d
Round 2

UCB Illustration

Ar
m
1

Ar
m
2

Ar
m
3

0

0.5

1

µ̂1,3 − B1,t

µ̂1,3

µ̂1,3 + B1,t

µ̂2,3 − B2,t

µ̂2,3

µ̂2,3 + B2,t

µ̂3,3 − B3,t

µ̂3,3

µ̂3,3 + B3,t

Re
w
ar
d
Round 3

UCB: Intuition

• Naturally balances exploration and exploitation: an arm has
a high UCB if
• It has a high µ̂i,t, or
• Bi,t is large because Ni,t−1 is small

• Optimistic because we pretend the rewards are the
plausibly best and then do the greedy thing

UCB: Analysis

• Define Mi =
⌈
12 log(T)

∆2
i

⌉
, the number of pulls of arm i such that

Bi,t =
√

6 log(t)
Ni,t

≤
√

6 log(T)
Ni,t

≤ ∆i
2

• The intuition of the proof is
1. Since RT =

∑
i ∆iE[Ni,T], we bound E[Ni,t] first.

2. With high probability, we will never pull arm i more than Mi

times, so

E[Ni,T] = E
T∑
t=1

1{It=i} ≤ Mi +
T∑

t=Mi

E1{It=i,Ni,t>Mi}︸ ︷︷ ︸
we will bound this

3. If {It = i,Ni,t > Mi} occurs, then the UCB for i∗ or for i must be
wrong (next slide)

UCB: Analysis

Claim: if {It = i,Ni,t > Mi} occurs, then either µ̂i,t must be too
high or µ̂i∗,t must be too low. In a picture:

Reward
µ̂i∗ + Bi∗,tµi∗µi µ̂i,t µ̂i,t + Bi,t

∆i ≥ 2Bi,t since Ni,t > Mi

≤ Bi,t ≤ Bi,t

In an equation: suppose that Ni,t > Mi, µ̂i,t − Bi,t ≥ µi, and
µ̂i∗,t + Bi∗,t ≥ µi∗ . Then

µ̂i∗,t + Bi∗,t ≥ µi∗ = µi + ∆i ≥ µi + 2Bi,t︸︷︷︸
by choice of Bi,t

≥ µ̂i,t + Bi,t,

so the algorithm will not choose It = i.

If It = i, at least one of the bounds must be wrong, implying

P(It = i,Ni,t > Mi) ≤ P (µ̂i,t ≤ µi + Bi,t) + P (µ̂i∗,t + Bi∗,t ≤ µi∗) .

UCB: Analysis

Using the Hoeffding bound,

P (µ̂i,t − µi ≤ Bi,t) ≤ P
(
∃s ≤ t︸ ︷︷ ︸

we don’t know Ni,t−1

: µ̂i,s − µi ≤
√
6 log(t)

s

)

≤
t∑

s=1
P

(
µ̂i,s − µi ≤

√
6 log(t)

s

)

≤
t∑

s=1
exp

{
−3 log(t)

s

}
≤

t∑
s=1

t−3 = t−2.

The same inequality holds for i∗, so

RT =
∑
i

∆iE[Ni,T] ≤
∑
i

∆i

12 log(T)

∆2
i

+ 2
T∑

t=Mi+1
t−2
 .

UCB: Analysis

Using the Hoeffding bound,

P (µ̂i,t − µi ≤ Bi,t) ≤ P
(
∃s ≤ t︸ ︷︷ ︸

we don’t know Ni,t−1

: µ̂i,s − µi ≤
√
6 log(t)

s

)

≤
t∑

s=1
P

(
µ̂i,s − µi ≤

√
6 log(t)

s

)

≤
t∑

s=1
exp

{
−3 log(t)

s

}
≤

t∑
s=1

t−3 = t−2.

The same inequality holds for i∗, so

RT =
∑
i

∆iE[Ni,T] ≤
∑
i

∆i

12 log(T)

∆2
i

+ 2
T∑

t=Mi+1
t−2
 .

UCB: Analysis

Theorem (UCB upper bound [Auer, 2002])
The UCB1 algorithm on 1-sub-Gaussian data has

RT ≤
∑
i

12 log(T)

∆j
+ o(1).

Theorem (Lower Bound [Lai and Robbins, 1985])
Suppose we have a parametric family Pθ and θ1, . . . , θk. For any
“admissible” algorithm,

lim inf
T→∞

RT
log(T)

≥
∑
i6=i∗

∆i

KL(Pθi ,Pθi∗)
≈ O

∑
i6=i∗

1
∆i

E.g. if Pθ is Bernoulli, then (θi−θi∗)2

θi∗ (1−θi∗) ≥ KL(Pθi ,Pθi∗) ≥ 2(θi − θi∗)2.

UCB: Analysis

Theorem (UCB upper bound [Auer, 2002])
The UCB1 algorithm on 1-sub-Gaussian data has

RT ≤
∑
i

12 log(T)

∆j
+ o(1).

Theorem (Lower Bound [Lai and Robbins, 1985])
Suppose we have a parametric family Pθ and θ1, . . . , θk. For any
“admissible” algorithm,

lim inf
T→∞

RT
log(T)

≥
∑
i6=i∗

∆i

KL(Pθi ,Pθi∗)
≈ O

∑
i6=i∗

1
∆i

E.g. if Pθ is Bernoulli, then (θi−θi∗)2

θi∗ (1−θi∗) ≥ KL(Pθi ,Pθi∗) ≥ 2(θi − θi∗)2.

Algorithm Design Principle: Probability Matching

• We put a prior π over means µi and a likelihood νi = P(·|µi)
over rewards

• Choose P(It = i) = P(µi = µi∗ |history) (the matching)
• We usually pick conjugate models (e.g. µi ∼ N(0,1),
Xt ∼ N(µi,1))

Algorithm: Thompson Sampling
Given: game length T, prior π(µ), likelihoods p(·|µ)

Initialize posteriors pi,0(µ) = π(µ)

For t = 1,2, . . . ,T:
• Draw θi,t ∼ pi,t−1 for all i
• Choose It = arg maxi θi,t (implements the matching)
• Receive and observe Xt ∼ νIt
• Update the posterior pIT ,t(µ) = p(Xt|µ)pIt,t−1(µ)

Algorithm Design Principle: Probability Matching

• We put a prior π over means µi and a likelihood νi = P(·|µi)
over rewards

• Choose P(It = i) = P(µi = µi∗ |history) (the matching)
• We usually pick conjugate models (e.g. µi ∼ N(0,1),
Xt ∼ N(µi,1))

Algorithm: Thompson Sampling
Given: game length T, prior π(µ), likelihoods p(·|µ)

Initialize posteriors pi,0(µ) = π(µ)

For t = 1,2, . . . ,T:
• Draw θi,t ∼ pi,t−1 for all i
• Choose It = arg maxi θi,t (implements the matching)
• Receive and observe Xt ∼ νIt
• Update the posterior pIT ,t(µ) = p(Xt|µ)pIt,t−1(µ)

Thompson Sampling: Overview

P(µ2|history)

P(µ1|history)

µ̂2 µ̂1

reward

• Not Bayesian: a Bayesian method would maximize the
Bayes regret (the expectation under the probability model)

• The regret bound is frequentist
• Arms with small Ni,t implies a wide posterior, hence a good
probability of being selected

• Generally performs empirically better that UCB (it is much
more aggressive)

• Analysis is difficult

Thompson Sampling: Upper Bound

Theorem (Agrawal and Goyal [2013])
For binary rewards, Gamma-Beta Thompson sampling has
E[RT] ≤ (1 + ε)

∑
i 6=i∗ ∆i

log(T)
KL(µi,µi∗) + O

(N
ε2

)
.

• The proof is much more technical that UCB’s
• We cannot rely on the upper bounds being correct w.h.p.

µ2 xi yi µ1

reward

For some to-be-tuned µi ≤ xi ≤ yi ≤ µi∗ , we have

E[Ni,T] ≤
T∑
t=1

P(It = i)

≤
T∑
t=1

P(It = i, µ̂i,t−1 ≤ xi, θi,t ≥ yi) (O
(

log(T)

kl(xj,yj)

)
)

+
T∑
t=1

P(It = i, µ̂i,t−1 ≤ xi, θi,t ≤ yi) (the tricky case)

+
T∑
t=1

P(It = i, µ̂i,t−1 ≥ xi) (Small by concentration)

Thompson Sampling: Proof Outline

• The tricky case is∑T
t=1 P(It = i, µ̂i,t−1 ≤ xi, θi,t ≤ yi)

• This happens when we have enough samples of i but not
many of i∗

• A key lemma argues that, on µ̂i,t−1 ≤ xi, θi,t ≤ yi, the
probability of picking i is a constant less than of picking i∗:

T∑
t=1

P(It = i, µ̂i,t−1 ≤ xi, θi,t ≤ yi)

≤
T∑
t=1

P(θi∗,t ≤ yi)
P(θi∗,t > yj)︸ ︷︷ ︸

exponentially small

P(It = i∗, µ̂i,t−1 ≤ xi, θi,t ≤ yi) = O(1)

• Hence, we will quickly get enough samples of i∗

Best of Both Worlds

• The stochastic and adversarial algorithms are quite different
• A natural question: is there an algorithm that

• gets RT = O(
√
TK) regret for adversarial

• gets Rt = O(
∑

i log(T)/∆i) regret for stochastic
• without knowing the setting?

• Bubeck and Slivkins [2012] proposed an algorithm that
assumes stochastic but falls back to UCB once adversarial
data is detected

• Zimmert and Seldin [2019] showed that (for pseudo-regret),
it is possible
• Their algorithm: online mirror descent with 1

2 -Tsallis entropy
• Ψ(w) = −

∑
i 4(
√
wi − 1

2wi)

Best of Both Worlds

• The stochastic and adversarial algorithms are quite different
• A natural question: is there an algorithm that

• gets RT = O(
√
TK) regret for adversarial

• gets Rt = O(
∑

i log(T)/∆i) regret for stochastic
• without knowing the setting?

• Bubeck and Slivkins [2012] proposed an algorithm that
assumes stochastic but falls back to UCB once adversarial
data is detected

• Zimmert and Seldin [2019] showed that (for pseudo-regret),
it is possible
• Their algorithm: online mirror descent with 1

2 -Tsallis entropy
• Ψ(w) = −

∑
i 4(
√
wi − 1

2wi)

Pure Exploration

A New Problem

• What if we only wanted to identify the best arm i∗ without
caring about loss along the way?

• Intuitively, we would explore more; we are happy to accrue
less reward if we get more useful samples.

• More similar to hypothesis testing; useful for selecting
treatments

• Known as “Best Arm Identification” or “Pure Exploration”

Two Settings

Protocol: Best-arm Identification
Given:number of arms K, arm distributions ν1, . . . , νK
For t = 1,2, . . . ,
• The learner picks arm It ∈ {1, . . . ,K}
• The learner observes Xt ∼ νIt
• The learner decides whether to stop
The learner returns arm A

Two settings:

fixed-confidence fixed-budget
Input δ > 0, T
Goal P(A = i∗) ≥ 1− δ maximize P(A = i∗)
Stopping once learner is confident after T rounds

• Standard stochastic bandit algorithms under explore (they
fail to meet lower bounds on this problem)

• Many can be adapted
• LUCB [Kalyanakrishnan et al., 2012]
• Top-Two Thompson Samping [Russo, 2016]

• Instead, we will describe a new algorithm design principle

Algorithm Design Principle: Action Elimination

Algorithm: Successive Elimination
Given: confidence δ > 0
Initialize plausibly-best set S = {1, . . . ,K}
For t = 1,2, . . .:
• Pull all arms in S and update µ̂i,t
• Calculate Bt =

√
2t−1 log(4Kt2/δ)

• Remove i from S if max
j∈S

µ̂j,t − Bt︸ ︷︷ ︸
Lowest µ∗i could be

≥ µ̂i,t + Bt︸ ︷︷ ︸
highest µi could be

• If |S| = 1, stop and return A = S.

• S is a list of plausibly-best arms
• Each epoch, all arms that cannot be the best (if the bounds
hold) are removed

Successive Elimination Analysis

• Define the “bad event” E =
⋃
i,t{|µ̂i,t − µi| ≥ Bt(δ)}: we have

P(E) ≤
∑
i,t

P
(
|µ̂i,t − µi| ≥

√
2t−1 log(4Kt2/δ)

)
≤
∑
i,t

2e− log
(

4Kt2
δ

)

≤
∑
i,t

2δ
4Kt2 =

2π2
24 δ ≤ δ

• (Correctness) If E does not happen,
• |µ̂i∗ − µi∗ | ≤ Bt and |µj − µ̂j| ≤ Bt for all j. Thus, for all j
µ̂j − µ̂i∗ ≤ (µi∗ − µ̂i∗) + (µj − µi∗) + (µ̂j − µj) ≤ 2Bt

• i is removed if maxj∈S µ̂j,t − µ̂i,t ≥ 2Bt ⇒ i∗ is never removed
• limt→∞ Bt(δ)→ 0: every arm will eventually be removed
• Successive Elimination is correct with probability 1− δ

• (Sample Complexity): arm i will be eliminated once ∆i ≤ 2Bt
• We can verify that Ni = O

(
∆−2i log(K/δ∆i)

)
is sufficient

• Total sample complexity of∑i ∆
−2
i log(K/δ∆i)

Successive Elimination Analysis

• Define the “bad event” E =
⋃
i,t{|µ̂i,t − µi| ≥ Bt(δ)}: we have

P(E) ≤
∑
i,t

P
(
|µ̂i,t − µi| ≥

√
2t−1 log(4Kt2/δ)

)
≤
∑
i,t

2e− log
(

4Kt2
δ

)

≤
∑
i,t

2δ
4Kt2 =

2π2
24 δ ≤ δ

• (Correctness) If E does not happen,
• |µ̂i∗ − µi∗ | ≤ Bt and |µj − µ̂j| ≤ Bt for all j. Thus, for all j
µ̂j − µ̂i∗ ≤ (µi∗ − µ̂i∗) + (µj − µi∗) + (µ̂j − µj) ≤ 2Bt

• i is removed if maxj∈S µ̂j,t − µ̂i,t ≥ 2Bt ⇒ i∗ is never removed
• limt→∞ Bt(δ)→ 0: every arm will eventually be removed
• Successive Elimination is correct with probability 1− δ

• (Sample Complexity): arm i will be eliminated once ∆i ≤ 2Bt
• We can verify that Ni = O

(
∆−2i log(K/δ∆i)

)
is sufficient

• Total sample complexity of∑i ∆
−2
i log(K/δ∆i)

Successive Elimination Analysis

• Define the “bad event” E =
⋃
i,t{|µ̂i,t − µi| ≥ Bt(δ)}: we have

P(E) ≤
∑
i,t

P
(
|µ̂i,t − µi| ≥

√
2t−1 log(4Kt2/δ)

)
≤
∑
i,t

2e− log
(

4Kt2
δ

)

≤
∑
i,t

2δ
4Kt2 =

2π2
24 δ ≤ δ

• (Correctness) If E does not happen,
• |µ̂i∗ − µi∗ | ≤ Bt and |µj − µ̂j| ≤ Bt for all j. Thus, for all j
µ̂j − µ̂i∗ ≤ (µi∗ − µ̂i∗) + (µj − µi∗) + (µ̂j − µj) ≤ 2Bt

• i is removed if maxj∈S µ̂j,t − µ̂i,t ≥ 2Bt ⇒ i∗ is never removed
• limt→∞ Bt(δ)→ 0: every arm will eventually be removed
• Successive Elimination is correct with probability 1− δ

• (Sample Complexity): arm i will be eliminated once ∆i ≤ 2Bt
• We can verify that Ni = O

(
∆−2i log(K/δ∆i)

)
is sufficient

• Total sample complexity of∑i ∆
−2
i log(K/δ∆i)

Theorem
Successive Elimination is (0, δ)-PAC with sample complexity

O

(∑
i

∆−2i log(K/δ∆i)

)

Theorem
For any best-arm identification algorithm, there is a problem
instance that requires

Ω

(∑
i

∆−2i log log

(1
δ∆2

i

))

samples.

Linear Stochastic Bandits

Bonus: Linear Contextual Bandits

Protocol: Contextual Linear Bandit
Given: game length T, number of arms K
For t = 1,2, . . . ,T,
• The learner sees one context per arm c1,t, . . . , cK,t
• The learner picks action It ∈ {1, . . . ,K}
• The learner observes and receives reward Xt = 〈cIt,t, θ∗〉+ ξt

Regret is defined w.r.t. an agent that knows the true θ:

RT =
T∑
t=1

max
i
xᵀi,tθ

∗ −
T∑
t=1

xᵀIt,tθ
∗

Algorithm Design Principle: Optimism

Algorithm: OFUL [Abbasi-Yadkori et al., 2011]
Initialize θ̂0 = 0, B0 = Rd

For t = 1,2, . . . ,T:
• Receive contexts c1,t, . . . , cK,t
• Choose (It, θ̃t) = arg maxi∈{1,...,K},θ∈Bt−1 θ

ᵀci,t (optimism)
• Observe Xt = cᵀIt,tθ

∗ + ξt

• Calculate Vt =
∑t

s=1 csc
ᵀ
s + λI and rt =

√
log det(Vt)

δ2λd +
√
λ‖θ∗‖

• Calculate θ̂t = V−1t

(∑t
s=1 csXs

)
(ridge)

• Update Bt = {θ : (θ − θ̂t)ᵀVt(θ − θ̂t) ≤ rt)

• If ξt is 1-sub-Gaussian, Bt is a confidence sequence with
P(∀t > 0 : θ∗ ∈ Bt) ≥ 1− δ (more examples in [de la Peña
et al., 2009, Howard et al., 2020])

Analysis

• Regret decomposes over rounds:
• Recall that (It, θ̃t) = arg maxi∈{1,...,K},θ∈Bt−1 θ

ᵀci,t

Rt −Rt−1 = cᵀi∗t θ
∗ − cᵀItθ

∗

≤ cᵀIt θ̃t − c
ᵀ
Itθ
∗ (by optimism)

≤ cᵀIt
(
θ̃t − θ̂t−1

)
+ cᵀIt

(
θ̂t−1 − θ∗

)
≤ ‖cIt‖Vt

∥∥∥θ̃t − θ̂t−1∥∥∥
Vt︸ ︷︷ ︸

≤rt

+‖cIt‖Vt
∥∥∥θ̂t−1 − θ∗∥∥∥

Vt︸ ︷︷ ︸
≤rt

• After some algebra, we can show, with probability ≥ 1− δ,
that

RT = O
(
d log(1/δ)

∆

)
• The shared structure lets us learn a lot!

Review

• Setting: adversarial bandits
• Exp3 (exponential weights)

• Setting: stochastic bandits
• UCB (optimism)
• Thompson Sampling (probablity matching)

• Setting: pure exploration
• Successive Elimination (action-elimination)

• Setting: linear contextual bandits
• OFUL (optimism)

Thanks!

References

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved
algorithms for linear stochastic bandits. In Advances in Neural
Information Processing Systems, pages 2312–2320, 2011.

Shipra Agrawal and Navin Goyal. Further optimal regret bounds
for thompson sampling. In Artificial intelligence and statistics,
pages 99–107, 2013.

Jean-Yves Audibert and Sébastien Bubeck. Minimax policies for
adversarial and stochastic bandits. 2009.

Peter Auer. Using confidence bounds for exploitation-exploration
trade-offs. Journal of Machine Learning Research, 3(Nov):
397–422, 2002.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time
analysis of the multiarmed bandit problem. Machine learning,
47(2-3):235–256, 2002a.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E
Schapire. The nonstochastic multiarmed bandit problem.
SIAM journal on computing, (1):48–77, 2002b.

Gábor Bartók, Dean P Foster, Dávid Pál, Alexander Rakhlin, and
Csaba Szepesvári. Partial monitoring – classification, regret
bounds, and algorithms. Mathematics of Operations
Research, (4):967–997, 2014.

Sébastien Bubeck and Aleksandrs Slivkins. The best of both
worlds: Stochastic and adversarial bandits. In Conference on
Learning Theory, pages 42–1, 2012.

Victor H. de la Peña, Michael J. Klass, and Tze Leung Lai. Theory
and applications of multivariate self-normalized processes.
Stochastic Processes and their Applications, 119(12):
4210–4227, December 2009. ISSN 0304-4149.

Steven R. Howard, Aaditya Ramdas, Jon McAuliffe, and Jasjeet
Sekhon. Time-uniform chernoff bounds via nonnegative
supermartingales. Probab. Surveys, 17:257–317, 2020. doi:
10.1214/18-PS321. URL
https://doi.org/10.1214/18-PS321.

Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer, and Peter
Stone. Pac subset selection in stochastic multi-armed bandits.
In ICML, volume 12, pages 655–662, 2012.

Tze Leung Lai and Herbert Robbins. Asymptotically efficient
adaptive allocation rules. Advances in Applied Mathematics,
(1):4–22, 1985.

Shie Mannor and Ohad Shamir. From bandits to experts: On the
value of side-observations. In Advances in Neural Information
Processing Systems, pages 684–692, 2011.

Gergely Neu. Explore no more: Improved high-probability regret
bounds for non-stochastic bandits. In Advances in Neural
Information Processing Systems (NIPS), pages 3168–3176,
2015.

https://doi.org/10.1214/18-PS321

Daniel Russo. Simple bayesian algorithms for best arm
identification. In Conference on Learning Theory, pages
1417–1418, 2016.

William R Thompson. On the likelihood that one unknown
probability exceeds another in view of the evidence of two
samples. Biometrika, 25(3/4):285–294, 1933.

Julian Zimmert and Yevgeny Seldin. An optimal algorithm for
stochastic and adversarial bandits. In The 22nd International
Conference on Artificial Intelligence and Statistics, pages
467–475, 2019.

Extras

Aside: Lower Bound Reasoning

• Fix a strategy and consider two problem instances:
1. ν1, ν2, . . . , νK ; with P as the joint distribution over (It, ri,t)
2. ν1, ν′2, . . . , νK ; with P′ as the joint distribution over (It, ri,t)
3. The optimal arm is different: µ′2 ≥ µ1 ≥ µ2 ≥ µ3 ≥ . . .
4. The data from P and P′ will look very similar

• An algorithm that does well on P must not pull arm 2 too
many times; hence, it will not do well on P′

• “Similar” is quantified by a change-of-measure identity; e.g.
P′(A) = e−k̂lN2,T P(A), where k̂lt =

∑t
s=1 log dν2

dν′2
(X2,s)

• Hence, an algorithm cannot tell if it is P or P′ and must get
high regret under P′, mistakenly believing it is playing in P

Exp3: Analysis Full Detail

Exp3: Analysis

• Following the EW analysis, Wt is a potential function
• For any i∗, e−ηL̂T(i∗) ≤

∑
j e−ηL̂T(j) = WT = W0

∏T
t=1

Wt
Wt−1

.

Wt

Wt−1
=

∑
j e−ηL̂t−1(j)e−η ˆ̀t(j)∑

j e−ηL̂t−1(j)
=
∑
j

pt−1(j)e−η ˆ̀t(j)

≤
∑
j

pt−1(j)
(
1− η ˆ̀t(j) +

η2

2
ˆ̀t(j)2

)
︸ ︷︷ ︸

since ex≤1+x+ 1
2 x2 for x≤0

= 1− η
∑
j

pt(j)ˆ̀t(j) +
η2

2
∑
j

pt(j)ˆ̀t(I)2

≤ e−η
∑

j pt(j)ˆ̀t(j)+ η2
2
∑

j pt(j)ˆ̀t(j)2︸ ︷︷ ︸
since 1+x≤ex

Exp3: Analysis

e−ηL̂T(i∗) ≤W0

T∏
t=1

Wt

Wt−1
≤ K

T∏
t=1

e−η
∑

j pt(j)ˆ̀t(j)+ η2
2
∑

j pt(j)ˆ̀t(j)2

⇔ −ηL̂T(i∗) ≤ log(K)− η
∑
j

pt(j)ˆ̀t(j) +
η2

2
∑
j

pt(j)ˆ̀t(j)2

⇔
T∑
t=1

∑
j

pt(j)ˆ̀t(j)− L̂T(i∗) ≤ log(K)

η
+
η

2

T∑
t=1

E[
∑
j

pt(j)ˆ̀t(j)2

⇒
T∑
t=1

∑
j

pt(j)E[ˆ̀t(j)− L̂T(i∗)] ≤ log(K)

η
+
η

2

T∑
t=1

E

∑
j

pt(j)ˆ̀t(j)2

⇔
T∑
t=1

E[`(It)]− LT(i∗) ≤ log(K)

η
+
η

2

T∑
t=1

E

∑
j

pt(j)
`t(It)2

pt(It)2
1{It=i}

︸ ︷︷ ︸

variance term

Exp3: Analysis

Bounding the variance term turns out to be easy:

E

∑
j

pt(j)
`t(It)2

pt(It)2
1{It=i}

 ≤ E

∑
j

pt(j)
1{It=i}

pt(It)2

= E

[1
pt(It)

]
= K

So, plugging this in,∑T
t=1 E[`(It)]− LT(i∗) ≤ log(K)

η + η
2TK

Theorem (Exp3 upper bound [Auer et al., 2002b])

With η =
√

2 log(T)
TK , UCB has RT ≤

√
2TK log(K).

Only get pseudo-Regret bounds because the i∗ in the proof was
fixed, not a function of I1, . . . , IT

	Two Basic Problems
	Online Convex Optimisation; Online Gradient Descent
	The Experts Problem; Exponential Weights

	Two Peeks Beyond the Basics
	Follow the Regularised Leader and Mirror Descent
	Online Quadratic Optimisation; Online Newton Step

	Applications
	Classical Optimisation
	Stochastic Optimisation
	Saddle Points in Two-player Zero-Sum Games

	Conclusion and Extensions
	References
	What is a Bandit?
	Adversarial Bandits
	Stochastic Bandits
	Pure Exploration
	Linear Stochastic Bandits
	References
	Extras
	Exp3: Analysis Full Detail

