Simons Tutorial: Online Learning and Bandits Part I

Wouter Koolen and Alan Malek
August 31st, 2020
Positioning this Tutorial

- Building up tools in support of RL
- Exploring surrounding viewpoints, problems and methods
- Soaking up “Culture”
Context: interactive decision making in unknown environment

Aim: Design systems to amass reward in many environments.
Context: interactive decision making in unknown environment

Aim: Design systems to amass reward in many environments.

Main distinction: model of environment

- **Reinforcement Learning** action affects future state
- **Bandits** action affects observation
- **Full Inf. Online Learning** action affects reward
On the Menu

Two parts:

(1) Full Information Online Learning
(2) Bandits (w. Alan Malek)
1. Two Basic Problems
 - Online Convex Optimisation; Online Gradient Descent
 - The Experts Problem; Exponential Weights

2. Two Peeks Beyond the Basics
 - Follow the Regularised Leader and Mirror Descent
 - Online Quadratic Optimisation; Online Newton Step

3. Applications
 - Classical Optimisation
 - Stochastic Optimisation
 - Saddle Points in Two-player Zero-Sum Games

4. Conclusion and Extensions
Two Basic Problems
Setup

- Focus on losses (negative rewards)
- Model Environment as Adversary
- Online Convex Optimisation (OCO) abstraction.
Protocol: Online Convex Optimisation

Given: game length T, convex action space $\mathcal{U} \subseteq \mathbb{R}^d$

For $t = 1, 2, \ldots, T$,
- The learner picks action $w_t \in \mathcal{U}$
- The adversary picks convex loss $f_t : \mathcal{U} \to \mathbb{R}$
- The learner observes $f_t \triangleright$ full information
- The learner incurs loss $f_t(w_t)$

The goal: control the regret (w.r.t. the best point after T rounds)

$$R_T = \sum_{t=1}^{T} f_t(w_t) - \min_{u \in \mathcal{U}} \sum_{t=1}^{T} f_t(u)$$

using a computationally efficient algorithm for learner.
Protocol: Online Convex Optimisation

Given: game length T, convex action space $\mathcal{U} \subseteq \mathbb{R}^d$

For $t = 1, 2, \ldots, T$,

- The learner picks action $w_t \in \mathcal{U}$
- The adversary picks convex loss $f_t : \mathcal{U} \to \mathbb{R}$
- The learner observes f_t (full information)
- The learner incurs loss $f_t(w_t)$

The goal: control the regret (w.r.t. the best point after T rounds)

$$ R_T = \sum_{t=1}^{T} f_t(w_t) - \min_{u \in \mathcal{U}} \sum_{t=1}^{T} f_t(u) $$

using a computationally efficient algorithm for learner.
Learner needs to “chase” the best point \(\arg \min_{u \in U} \sum_{t=1}^{T} f_t(w_t) \).
But doing so naively overfits.

Idea: add regularisation. Two manifestations:

• Penalise excentricity “FTRL style”
• Update iterates, but only slowly “MD style”

Will see examples of both. For our purposes, these are roughly equivalent
Let \mathcal{U} be a convex set containing 0. Fix a learning rate $\eta > 0$.

Algorithm: Online Gradient Descent (OGD)

OGD with learning rate $\eta > 0$ plays

$$w_1 = 0 \quad \text{and} \quad w_{t+1} = \Pi_{\mathcal{U}}(w_t - \eta \nabla f_t(w_t))$$

where $\Pi_{\mathcal{U}}(w) = \arg \min_{u \in \mathcal{U}} \|u - w\|$ is the projection onto \mathcal{U}.

Figure 1: OGD update
Algorithm: OGD

\[w_1 = 0 \quad \text{and} \quad w_{t+1} = \Pi_U (w_t - \eta \nabla f_t(w_t)) \]

Assumption: Boundedness

Bounded domain \(\max_{u \in U} \| u \| \leq D \) and gradients \(\| \nabla f_t(w_t) \| \leq G \).
Online Gradient Descent Result

Algorithm: OGD

\[w_1 = 0 \quad \text{and} \quad w_{t+1} = \Pi_U (w_t - \eta \nabla f_t(w_t)) \]

Assumption: Boundedness

Bounded domain \(\max_{u \in U} \|u\| \leq D \) and gradients \(\|\nabla f_t(w_t)\| \leq G \).

Theorem (OGD regret bd, Zinkevich 2003)

\[R_T = \sum_{t=1}^{T} f_t(w_t) - \min_{u \in U} \sum_{t=1}^{T} f_t(u) \leq \frac{1}{2\eta} D^2 + \frac{\eta}{2} TG^2 \]
Algorithm: OGD

\[w_1 = 0 \quad \text{and} \quad w_{t+1} = \Pi_U (w_t - \eta \nabla f_t(w_t)) \]

Assumption: Boundedness

Bounded domain \(\max_{u \in U} \|u\| \leq D \) and gradients \(\|\nabla f_t(w_t)\| \leq G \).

Theorem (OGD regret bd, Zinkevich 2003)

\[
R_T = \sum_{t=1}^{T} f_t(w_t) - \min_{u \in U} \sum_{t=1}^{T} f_t(u) \leq \frac{1}{2\eta} D^2 + \frac{\eta}{2} T G^2
\]

Corollary

Tuning \(\eta = \frac{D}{G\sqrt{T}} \) results in \(R_T \leq DG\sqrt{T} \).
Online Gradient Descent Result

Algorithm: OGD

\[w_1 = 0 \quad \text{and} \quad w_{t+1} = \Pi_{\mathcal{U}} (w_t - \eta \nabla f_t(w_t)) \]

Assumption: Boundedness

Bounded domain \(\max_{u \in \mathcal{U}} \|u\| \leq D \) and gradients \(\|\nabla f_t(w_t)\| \leq G \).

Theorem (OGD regret bd, Zinkevich 2003)

\[R_T = \sum_{t=1}^{T} f_t(w_t) - \min_{u \in \mathcal{U}} \sum_{t=1}^{T} f_t(u) \leq \frac{1}{2\eta} D^2 + \frac{\eta}{2} TG^2 \]

Corollary

Tuning \(\eta = \frac{D}{G\sqrt{T}} \) results in \(R_T \leq DG\sqrt{T} \).

Sublinear regret: learning overhead per round \(\rightarrow 0 \).
Proof of OGD regret bound

Using convexity, we may analyse the tangent upper bound

$$f_t(w_t) - f_t(u) \leq \langle w_t - u, \nabla f_t(w_t) \rangle$$

Moreover,

$$\|w_{t+1} - u\|^2 = \|\Pi_U (w_t - \eta \nabla f_t(w_t)) - u\|^2$$
$$\leq \|w_t - \eta \nabla f_t(w_t) - u\|^2$$
$$= \|w_t - u\|^2 - 2\eta \langle w_t - u, \nabla f_t(w_t) \rangle + \eta^2 \|\nabla f_t(w_t)\|^2$$

Hence

$$\langle w_t - u, \nabla f_t(w_t) \rangle \leq \frac{\|w_t - u\|^2 - \|w_{t+1} - u\|^2}{2\eta} + \frac{\eta}{2} \|\nabla f_t(w_t)\|^2$$
Proof of OGD regret bound (ctd)

Summing over T rounds, we find

$$R^u_T \leq \sum_{t=1}^{T} \langle w_t - u, \nabla f_t(w_t) \rangle$$

$$\leq \sum_{t=1}^{T} \left(\frac{\|w_t - u\|^2 - \|w_{t+1} - u\|^2}{2\eta} \right) + \frac{\eta}{2} \sum_{t=1}^{T} \|\nabla f_t(w_t)\|^2$$

Telescopes

$$\leq \frac{\|u\|^2 - \|w_{T+1} - u\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|\nabla f_t(w_t)\|^2$$

$$\leq \frac{D^2}{2\eta} + \frac{\eta}{2} TG^2$$
Is OGD regret bound of $R_T \leq GD\sqrt{T}$ any good?
Is OGD regret bound of $R_T \leq GD\sqrt{T}$ any good?

Scaling with G and D is natural. What about \sqrt{T}?
Is OGD regret bound of $\mathcal{R}_T \leq GD\sqrt{T}$ any good?

Scaling with G and D is natural. What about \sqrt{T}?

Theorem

*Any OCO algorithm can be made to incur $\mathcal{R}_T = \Omega(\sqrt{T})$.***
Is OGD regret bound of $R_T \leq GD\sqrt{T}$ any good?

Scaling with G and D is natural. What about \sqrt{T}?

Theorem

Any OCO algorithm can be made to incur $R_T = \Omega(\sqrt{T})$.

Proof (by probabilistic argument).

Consider interval $\mathcal{U} = [-1, 1]$ and linear losses $f_t(u) = x_t \cdot u$ with i.i.d. Rademacher coefficients $x_t \in \{\pm 1\}$. Any algorithm has expected loss zero. The expected loss of the best action (± 1) is $-E[|\sum_{t=1}^{T} x_t|] = -\Omega(\sqrt{T})$. Then as the expected regret is $E[R_T] = \Omega(\sqrt{T})$, there is a deterministic witness.

Here, the regret arises from overfitting of the best point.
OGD Discussion

- Adversarial result, super strong!
- Proof reveals it is really about linear losses.
- Matching lower bounds

Successful in practise:

- Practically all deep learning uses versions of online gradient descent (e.g. TensorFlow has AdaGrad [Duchi et al., 2011]) even though objective not convex.
We now turn to the second elementary online learning task.

- Decision Theoretic Online Learning
- Experts setting (also: Hedge setting)
- Prediction with Expert Advice
We now turn to the second elementary online learning task.

- Decision Theoretic Online Learning
- Experts setting (also: Hedge setting)
- Prediction with Expert Advice

Protocol: Prediction With Expert Advice

Given: game length T, number K of experts

For $t = 1, 2, \ldots, T$,
- Learner chooses a distribution $w_t \in \triangle_K$ on K “experts”.
- Adversary reveals loss vector $\ell_t \in [0, 1]^K$.
- Learner’s loss is the dot loss $w_t^T \ell_t = \sum_{k=1}^{K} w_k^T \ell_k^t$
We now turn to the second elementary online learning task.

- Decision Theoretic Online Learning
- Experts setting (also: Hedge setting)
- Prediction with Expert Advice

Protocol: Prediction With Expert Advice

Given: game length T, number K of experts

For $t = 1, 2, \ldots, T$,

- Learner chooses a distribution $w_t \in \mathcal{D}_K$ on K “experts”.
- Adversary reveals loss vector $\ell_t \in [0, 1]^K$.
- Learner’s loss is the **dot loss** $w^T_t \ell_t = \sum_{k=1}^K w^k_t \ell^k_t$

The goal: control the **regret** (w.r.t. the best expert after T rounds)

$$R_T = \sum_{t=1}^T w^T_t \ell_t - \min_{k \in [K]} \sum_{t=1}^T \ell^k_t$$

using a computationally efficient algorithm for learner.
Let’s apply what we know

Observations:

• Dot loss \(u \mapsto u^\top \ell_t \) is linear (hence convex).
• Gradient \(\ell_t \in [0, 1]^K \) bounded by \(\| \ell_t \| \leq \sqrt{K} \).
• Probability simplex \(\triangle_K \) is contained in unit ball.

So: Instance of Online Convex Optimisation.

OGD with \(D = 1 \) and \(G = \sqrt{K} \) gives \(R_T \leq \sqrt{KT} \).
Let’s apply what we know

Observations:

• Dot loss $u \mapsto u^\top \ell_t$ is linear (hence convex).
• Gradient $\ell_t \in [0, 1]^K$ bounded by $\|\ell_t\| \leq \sqrt{K}$.
• Probability simplex \triangle_K is contained in unit ball.

So: Instance of Online Convex Optimisation.

OGD with $D = 1$ and $G = \sqrt{K}$ gives $R_T \leq \sqrt{KT}$.

Q: Optimal?
Let’s apply what we know

Observations:

• Dot loss $u \mapsto u^T \ell_t$ is linear (hence convex).
• Gradient $\ell_t \in [0, 1]^K$ bounded by $\|\ell_t\| \leq \sqrt{K}$.
• Probability simplex \triangle_K is contained in unit ball.

So: Instance of Online Convex Optimisation.
OGD with $D = 1$ and $G = \sqrt{K}$ gives $R_T \leq \sqrt{KT}$.

Q: Optimal?

Maybe not. There are no points with loss difference \sqrt{K} in the simplex ...
Algorithm: Exponential Weights (EW)

EW with *learning rate* $\eta > 0$ plays weights in round t:

$$w_t^k = \frac{e^{-\eta \sum_{s=1}^{t-1} \ell_s^k}}{\sum_{j=1}^{K} e^{-\eta \sum_{s=1}^{t-1} \ell_s^j}}.$$ (EW)
Algorithm: Exponential Weights (EW)

EW with learning rate \(\eta > 0 \) plays weights in round \(t \):

\[
 w^k_t = \frac{e^{-\eta \sum_{s=1}^{t-1} \ell^k_s}}{\sum_{j=1}^{K} e^{-\eta \sum_{s=1}^{t-1} \ell^j_s}}.
\]

or, equivalently, \(w^k_1 = \frac{1}{K} \) and

\[
 w^k_{t+1} = \frac{w^k_t e^{-\eta \ell^k_t}}{\sum_{j=1}^{K} w^j_t e^{-\eta \ell^j_t}}.
\]
Algorithm: Exponential Weights (EW)

EW with \textit{learning rate} \(\eta > 0 \) plays weights in round \(t \):

\[
w^*_t = \frac{e^{-\eta \sum_{s=1}^{t-1} \ell^i_s}}{\sum_{j=1}^K e^{-\eta \sum_{s=1}^{t-1} \ell^j_s}}.
\]

or, equivalently, \(w^*_1 = \frac{1}{K} \) and

\[
w^*_{t+1} = \frac{w^*_t e^{-\eta \ell^i_t}}{\sum_{j=1}^K w^j_t e^{-\eta \ell^j_t}}.
\]

Theorem (EW regret bd, Freund and Schapire 1997)

The regret of EW is bounded by \(R_T \leq \frac{\ln K}{\eta} + T \frac{\eta}{8} \).

Corollary

Tuning \(\eta = \sqrt{\frac{8 \ln K}{T}} \) yields \(R_T \leq \sqrt{T/2 \ln K} \).
Applying Hoeffding’s Lemma to the loss of each round gives

$$ \sum_{t=1}^{T} w_t^T \ell_t \leq \sum_{t=1}^{T} \left(\frac{-1}{\eta} \ln \left(\sum_{k=1}^{K} w_t^k e^{-\eta \ell_t^k} \right) + \frac{\eta}{8} \right) $$

“mix loss”

Crucial observation is that cumulative mix loss telescopes

$$ \sum_{t=1}^{T} \frac{-1}{\eta} \ln \left(\sum_{k=1}^{K} w_t^k e^{-\eta \ell_t^k} \right) = \sum_{t=1}^{T} \frac{-1}{\eta} \ln \left(\frac{e^{-\eta \sum_{s=1}^{t-1} \ell_s^k}}{\sum_{k=1}^{K} \sum_{j=1}^{K} e^{-\eta \sum_{s=1}^{t-1} \ell_s^j}} e^{-\eta \ell_t^k} \right) $$

$$ = \sum_{t=1}^{T} \frac{-1}{\eta} \ln \left(\frac{\sum_{k=1}^{K} e^{-\eta \sum_{s=1}^{t-1} \ell_s^k}}{\sum_{k=1}^{K} \sum_{j=1}^{K} e^{-\eta \sum_{s=1}^{t-1} \ell_s^j}} \right) $$

$$ \leq \min_{k \in [K]} \sum_{t=1}^{T} \ell_t^k + \frac{\ln K}{\eta} $$
Summary so far

Balancing act: “model complexity” vs “overfitting”

<table>
<thead>
<tr>
<th>Theorem (OGD)</th>
<th>Theorem (EW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{R}_T \leq \frac{D^2}{2\eta} + \frac{\eta}{2}G^2T)</td>
<td>(\mathcal{R}_T \leq \frac{\ln K}{\eta} + \frac{\eta}{8}T)</td>
</tr>
</tbody>
</table>

Generates many follow-up questions:
- What if horizon \(T \) is not fixed? Anytime guarantees?
- What if gradient bound \(G \) is not known a priori?
- Can we have the actual gradient norms?
- What if model complexity \(D \) is not known? Not uniformly bounded? See Orabona and Cutkosky ICML’20 tutorial.

Need refined analyses ⇒ Restarts (doubling trick), decreasing \(\eta_t \) (AdaGrad/AdaHedge), learning the learning rate \(\eta \) (MetaGrad), ...

Active research area!
Summary so far

Balancing act: “model complexity” vs “overfitting”

<table>
<thead>
<tr>
<th>Theorem (OGD)</th>
<th>Theorem (EW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_T \leq \frac{D^2}{2\eta} + \frac{\eta}{2}G^2T$</td>
<td>$R_T \leq \frac{\ln K}{\eta} + \frac{\eta}{8}T$</td>
</tr>
</tbody>
</table>

Generates many follow-up questions:

- What if horizon T is not fixed? Anytime guarantees?
- What if gradient bound G is not known a priori?
- Can we have the actual gradient norms?
- What if model complexity (D) is not known? Not uniformly bounded? See Orabona and Cutkosky ICML’20 tutorial.
Summary so far

Balancing act: “model complexity” vs “overfitting”

<table>
<thead>
<tr>
<th>Theorem (OGD)</th>
<th>Theorem (EW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{R}_T \leq \frac{D^2}{2\eta} + \frac{\eta}{2}G^2T$</td>
<td>$\mathcal{R}_T \leq \frac{\ln K}{\eta} + \frac{\eta}{8}T$</td>
</tr>
</tbody>
</table>

Generates many follow-up questions:

- What if horizon T is not fixed? Anytime guarantees?
- What if gradient bound G is not known a priori?
- Can we have the actual gradient norms?
- What if model complexity (D) is not known? Not uniformly bounded? See Orabona and Cutkosky ICML’20 tutorial.

Need refined analyses ⇒ Restarts (doubling trick), decreasing η_t (AdaGrad/AdaHedge), learning the learning rate η (MetaGrad), …
Summary so far

Balancing act: “model complexity” vs “overfitting”

<table>
<thead>
<tr>
<th>Theorem (OGD)</th>
<th>Theorem (EW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{R}_T \leq \frac{D^2}{2\eta} + \frac{\eta}{2}G^2T$</td>
<td>$\mathcal{R}_T \leq \frac{\ln K}{\eta} + \frac{\eta}{8}T$</td>
</tr>
</tbody>
</table>

Generates many follow-up questions:

- What if horizon T is not fixed? Anytime guarantees?
- What if gradient bound G is not known a priori?
- Can we have the actual gradient norms?
- What if model complexity (D) is not known? Not uniformly bounded? See Orabona and Cutkosky ICML’20 tutorial.

Need refined analyses \Rightarrow Restarts (doubling trick), decreasing η_t (AdaGrad/AdaHedge), learning the learning rate η (MetaGrad), …

Active research area!
Two Peeks Beyond the Basics
Q: What if my domain does not look like either ball or simplex?
Q: What if my **domain** does not look like either ball or simplex?

Algorithm: Follow the Regularised Leader (FTRL)

\[
\mathbf{w}_{t+1} = \arg\min_{\mathbf{u} \in \mathcal{U}} \sum_{s=1}^{t} \langle \mathbf{u}, \nabla f_s(w_s) \rangle + \frac{1}{\eta} R(u)
\]

Algorithm: Mirror Descent (MD)

\[
\mathbf{w}_{t+1} = \arg\min_{\mathbf{u} \in \mathcal{U}} \langle \mathbf{u}, \nabla f_t(w_t) \rangle + \frac{1}{\eta} B(u \parallel w_t)
\]
Q: What if my **domain** does not look like either ball or simplex?

Algorithm: Follow the Regularised Leader (FTRL)

\[
\omega_{t+1} = \arg\min_{u \in U} \sum_{s=1}^{t} \langle u, \nabla f_s(w_s) \rangle + \frac{1}{\eta} R(u)
\]

Algorithm: Mirror Descent (MD)

\[
\omega_{t+1} = \arg\min_{u \in U} \langle u, \nabla f_t(w_t) \rangle + \frac{1}{\eta} B(u \parallel w_t)
\]

Examples:

<table>
<thead>
<tr>
<th>Regularizer R</th>
<th>Bregman Divergence B</th>
</tr>
</thead>
<tbody>
<tr>
<td>OGD sq. Euclidean norm</td>
<td>sq. Euclidean distance</td>
</tr>
<tr>
<td>EW Shannon entropy</td>
<td>Kullback-Leibler divergence</td>
</tr>
</tbody>
</table>
Q: What if my domain does not look like either ball or simplex?

Algorithm: Follow the Regularised Leader (FTRL)

\[
\omega_{t+1} = \arg \min_{u \in U} \sum_{s=1}^{t} \langle u, \nabla f_s(w_s) \rangle + \frac{1}{\eta} R(u)
\]

Algorithm: Mirror Descent (MD)

\[
\omega_{t+1} = \arg \min_{u \in U} \langle u, \nabla f_t(w_t) \rangle + \frac{1}{\eta} B(u \| w_t)
\]

Examples:
- **Regularizer** \(R \)
 - OGD: sq. Euclidean norm
 - EW: Shannon entropy
- **Bregman Divergence** \(B \)
 - sq. Euclidean distance
 - Kullback-Leibler divergence

Other entropies: Burg, Tsallis, Von Neumann, … Connections to continuous exponential weights [van der Hoeven et al., 2018].
Algorithm: Follow the Regularised Leader (FTRL)

$$w_{t+1} = \arg \min_{u \in \mathcal{U}} \sum_{s=1}^{t} \langle u, \nabla f_s(w_s) \rangle + \frac{1}{\eta} R(u)$$

Algorithm: Mirror Descent

$$w_{t+1} = \arg \min_{u \in \mathcal{U}} \langle u, \nabla f_t(w_t) \rangle + \frac{1}{\eta} B(u \| w_t)$$
Algorithm: Follow the Regularised Leader (FTRL)

\[\mathbf{w}_{t+1} = \arg \min_{\mathbf{u} \in \mathcal{U}} \sum_{s=1}^{t} \langle \mathbf{u}, \nabla f_s(\mathbf{w}_s) \rangle + \frac{1}{\eta} R(\mathbf{u}) \]

Algorithm: Mirror Descent

\[\mathbf{w}_{t+1} = \arg \min_{\mathbf{u} \in \mathcal{U}} \langle \mathbf{u}, \nabla f_t(\mathbf{w}_t) \rangle + \frac{1}{\eta} B(\mathbf{u} \| \mathbf{w}_t) \]

Theorem (AdaFTRL, Orabona and Pál 2015)

Fix a norm \(\| \cdot \| \) with associated dual norm \(\| \cdot \|_ \). Let \(R : \mathcal{U} \to [0, D^2] \) be strongly convex w.r.t. \(\| \cdot \| \). AdaFTRL ensures*

\[\mathcal{R}_T \leq 2D \sqrt{\sum_{t=1}^{T} \| \nabla f_t(\mathbf{w}_t) \|_*^2 + 2 \cdot \text{loss range}}. \]
Quadratic Losses

So far we used convexity to “linearise”

\[f_t(u) \geq f_t(w_t) + \langle u - w_t, \nabla f_t(w_t) \rangle, \]

and our methods essentially operated on linear losses. But what if we know there is curvature?

- How to represent/quantify curvature?
- How to efficiently manipulate curvature?
- How much can we reduce the regret?
Curvature assumptions

Assumption: Quadratic loss lower bound

There is a matrix $M_t \succeq 0$ such that

$$f_t(u) \geq f_t(w_t) + \langle u - w_t, \nabla f_t(w_t) \rangle + \frac{1}{2} (u - w_t)^T M_t (u - w_t)$$

for each $u \in U$.
Curvature assumptions

Assumption: Quadratic loss lower bound

There is a matrix $M_t \succeq 0$ such that

$$
\begin{align*}
 f_t(u) & \geq f_t(w_t) + \left\langle u - w_t, \nabla f_t(w_t) \right\rangle + \frac{1}{2} (u - w_t)^\top M_t (u - w_t) \\
 &=: q_t(u)
\end{align*}
$$

for each $u \in \mathcal{U}$.

Two main classes of instances

- squared Euclidean distance: $f_t(u) = \frac{1}{2} \|u - x_t\|^2$ satisfies the assumption with $M_t = I$. More generally, strongly convex functions have $M_t \propto I$.

- linear regression: $f_t(u) = (y_t - \left\langle u, x_t \right\rangle)^2$ satisfies the assumption with $M_t = x_t x_t^\top$. More generally, exp-concave functions have $M_t \propto \nabla_t f_t(w_t) \nabla_t f_t(w_t)^\top$.
ONS Algorithm

Algorithm: Online Newton Step (FTRL variant)

\[w_{t+1} = \arg \min_{u \in U} \sum_{s=1}^{t} q_s(u) + \frac{1}{2} \|u\|^2 \]

Computing the iterate \(w_{t+1} \) amounts to minimising a convex quadratic. Often (depending on \(U \)) closed-form solution or 1d line search.

- For \(M_t \propto I \), takes \(O(d) \) per round.
- For rank-one \(M_t \), can do update in \(O(d^2) \) per round.
- In both cases, need to take care of projection onto \(U \).
Algorithm: Online Newton Step (FTRL version)

\[w_{t+1} = \arg \min_{u \in \mathcal{U}} \sum_{s=1}^{t} q_s(u) + \frac{1}{2} \|u\|^2 \]

Theorem (ONS strcvx bd, Hazan et al. 2006)
For the strongly convex case \(M_t \propto I \), ONS guarantees

\[R_T = O(\ln T) \]

Algorithm reduces to OGD with specific decreasing step-size \(\eta_t \)

Theorem (ONS expccv bd, Hazan et al. 2006)
For the exp-concave case \(M_t \propto g_t g_t^T \), ONS guarantees

\[R_T = O(d \ln T) \]
• Convex quadratics closed under taking sums. Run-time independent of T.
• Curvature gives huge reduction in regret: \sqrt{T} to $\ln T$.
• Matrix sketching techniques allow trading off run-time $O(d^2)$ vs $O(d)$ with regret $O(\ln T)$ vs $O(\sqrt{T})$ [Luo et al., 2016].
Applications
Problem

Given gradient access to a convex f, find a near-optimal point.
Application 1: Offline Optimisation

Problem

Given gradient access to a convex f, find a near-optimal point.

Idea: run OGD on $f_t = f$ for T rounds. Regret bound gives

$$\sum_{t=1}^{T} f(w_t) - T \min_{u \in U} f(u) \leq GD \sqrt{T}$$

We may divide by T and apply convexity to find

$$f \left(\frac{1}{T} \sum_{t=1}^{T} w_t \right) - \min_{u \in U} f(u) \leq \frac{GD}{\sqrt{T}}$$

Find ϵ-suboptimal point (iterate average) after $T = \frac{G^2D^2}{\epsilon^2}$ rounds.
Problem

Given gradient access to a convex f, find a near-optimal point.

Idea: run OGD on $f_t = f$ for T rounds. Regret bound gives

$$\sum_{t=1}^{T} f(w_t) - T \min_{u \in U} f(u) \leq GD\sqrt{T}$$

We may divide by T and apply convexity to find

$$f \left(\frac{1}{T} \sum_{t=1}^{T} w_t \right) - \min_{u \in U} f(u) \leq \frac{GD}{\sqrt{T}}$$

Find ϵ-suboptimal point (iterate average) after $T = \frac{G^2D^2}{\epsilon^2}$ rounds.

Why would we optimise this way? For example, what if $f_t \rightarrow f$.

Application 2: Online to Batch

Assumption: stochastic setting
Suppose training set f_1, \ldots, f_T and test point f drawn i.i.d. from unknown \mathbb{P}.

Problem
Learn a point \hat{w}_T from the training set that generalises to \mathbb{P}, i.e. behaves like $u^* = \arg\min_{u \in \mathcal{U}} \mathbb{E}_f[f(u)]$.
Application 2: Online to Batch

Assumption: stochastic setting
Suppose training set f_1, \ldots, f_T and test point f drawn i.i.d. from unknown \mathbb{P}.

Problem
Learn a point \hat{w}_T from the training set that generalises to \mathbb{P}, i.e. behaves like $u^* = \arg\min_{u \in U} \mathbb{E}_f[f(u)]$

Idea: use online learning algorithm on training set f_1, \ldots, f_T, to get iterates w_1, \ldots, w_T. Output the average iterate estimator

$$\hat{w}_T = \frac{1}{T} \sum_{t=1}^{T} w_t.$$

Theorem
An online regret bound $R_T \leq B(T)$ implies

$$\mathbb{E}_{iid f_1, \ldots, f_T, f} [f(\hat{w}_T) - f(u^*)] \leq \frac{B(T)}{T}.$$
Assumption: convex-concave

Fix an objective function

\[g(x, y) \]

convex in \(x \), concave in \(y \).
Assumption: convex-concave

Fix an objective function

\[g(x, y) \]

convex in \(x \), concave in \(y \).

The game value is

\[V^* = \min_x \max_y g(x, y) = \max_y \min_x g(x, y). \]

An \(\epsilon \)-saddle point \((\bar{x}, \bar{y})\) satisfies

\[V^* - \epsilon \leq \min_x g(x, \bar{y}) \leq V^* \leq \max_y g(\bar{x}, y) \leq V^* + \epsilon. \]
Application 3: Computing Saddle Points

Assumption: convex-concave

Fix an objective function $g(x, y)$ convex in x, concave in y.

The game value is

$$V^* = \min_x \max_y g(x, y) = \max_y \min_x g(x, y).$$

An ϵ-saddle point (\bar{x}, \bar{y}) satisfies

$$V^* - \epsilon \leq \min_x g(x, \bar{y}) \leq V^* \leq \max_y g(\bar{x}, y) \leq V^* + \epsilon.$$

Problem

Find an ϵ-saddle point
Application 3: Computing Saddle Points

Assumption: convex-concave

Fix an objective function

\[g(x, y) \]

convex in \(x \), concave in \(y \).

The game *value* is

\[V^* = \min_x \max_y g(x, y) = \max_y \min_x g(x, y). \]

An \(\epsilon \)-saddle point \((\bar{x}, \bar{y})\) satisfies

\[V^* - \epsilon \leq \min_x g(x, \bar{y}) \leq V^* \leq \max_y g(\bar{x}, y) \leq V^* + \epsilon. \]

Problem

Find an \(\epsilon \)-saddle point

Idea: play regret minimisation algorithms for \(x \) and \(y \).
Algorithm: approximate saddle point solver

For \(t = 1, 2, \ldots, T \)
- Players play \(x_t \) and \(y_t \).
- Players see loss functions \(x \mapsto +g(x, y_t) \) and \(y \mapsto -g(x_t, y) \).

Output average iterate pair \(\bar{x}_T = \frac{1}{T} \sum_{t=1}^{T} x_t \) and \(\bar{y}_T = \frac{1}{T} \sum_{t=1}^{T} y_t \)

Assume the players have regret (bounds) \(R^x_T \) and \(R^y_T \), i.e.

\[
\begin{align*}
\sum_{t=1}^{T} +g(x_t, y_t) - \min_x \sum_{t=1}^{T} +g(x, y_t) & \leq R^x_T \\
\sum_{t=1}^{T} -g(x_t, y_t) - \min_y \sum_{t=1}^{T} -g(x_t, y) & \leq R^y_T
\end{align*}
\]

Theorem (self-play, Freund and Schapire 1999)

\(\bar{x}_T \) and \(\bar{y}_T \) form an \(\frac{R^x_T + R^y_T}{T} \)-saddle point.
Application 3: Saddle Point Analysis

\[V^* = \min_x \max_y g(x, y) \]
\[\leq \max_y g(\bar{x}_T, y) \]
\[\leq \max_y \frac{1}{T} \sum_{t=1}^{T} g(x_t, y) \]
\[\leq \frac{1}{T} \sum_{t=1}^{T} g(x_t, y_t) + \frac{\mathcal{R}_T^y}{T} \]
\[\leq \min_x \frac{1}{T} \sum_{t=1}^{T} g(x, y_t) + \frac{\mathcal{R}_T^x + \mathcal{R}_T^y}{T} \]
\[\leq \min_x g(x, \bar{y}_T) + \frac{\mathcal{R}_T^x + \mathcal{R}_T^y}{T} \]
\[\leq \min_x \max_y g(x, y) + \frac{\mathcal{R}_T^x + \mathcal{R}_T^y}{T} \]
\[= V^* + \frac{\mathcal{R}_T^x + \mathcal{R}_T^y}{T} \]
Conclusion and Extensions
Conclusion

- Online Learning a powerful and versatile tool
- Foundation for optimisation, statistical learning, games, ...
• Online Learning a powerful and versatile tool
• Environment-as-black-box. Adversarial.
• Foundation for optimisation, statistical learning, games, ...

Some (of many) cool things we left out:

• First-order (small loss) and second-order (small variance) bounds
• Adaptivity to friendly stochastic environments (best of both worlds, interpolation)
• Optimism (predicting the upcoming gradient)
• Non-stationarity (tracking, adaptive/dynamic regret, path length)
• Beyond convexity (star-convex, geometrically convex, ...)
• Supervised Learning and (stochastic) complexities (VC, Littlestone, Rademacher, ...)

Conclusion
Thanks!
References

What is a Bandit?
Protocol: Finite-Arm Bandits

Given: game length T, number of arms K

For $t = 1, 2, \ldots, T$,

- The learner picks action $l_t \in \{1, \ldots, K\}$
- The adversary simultaneously picks rewards $r_t \in \{1, \ldots, K\} \rightarrow [0, 1]$
- The learner observes and receives $r_t(l_t)$
- The learner does not observe $r_t(i)$ for $i \neq l_t$

The goal: control the regret (a random variable)

$$\mathcal{R}_T = \max_i \sum_{t=1}^{T} r_t(i) - \sum_{t=1}^{T} r_t(l_t)$$

Best action in hindsight
Bandits are Super Simple MDP

- $S = \{\text{the_state}\}, \ P(\text{the_state}|\text{the_state}, a) = 1$
- Why should we care about this in RL?
 - Creates a tension between
 - Exploration (learning about the loss of actions)
 - Exploitation (playing actions that will have low regret)
 - Exploration/Exploitation is absent in full-information but very present in reinforcement learning
 - Model is simple enough to allow for comprehensive theory
 - Easily incorporates adversarial data
 - Useful algorithm design principles
The Regret

\[R_T = \max_i \sum_{t=1}^T r_t(i) - \sum_{t=1}^T r_t(l_t) \]

Best action in hindsight

- \(R_T \) is a random variable we do not observe
- Different objectives, from easiest to hardest
 - Pseudo-regret \(\overline{R}_T = \max_i \mathbb{E} \left[\sum_{t=1}^T r_t(i) \right] - \mathbb{E} \left[\sum_{t=1}^T r_t(l_t) \right] \)
 - Expected regret \(\mathbb{E}[R_T] = \mathbb{E} \left[\max_i \sum_{t=1}^T r_t(i) - \sum_{t=1}^T r_t(l_t) \right] \)
 - can depend on \(l_t \)
 - High probability bounds on the realized regret
The Regret

\[R_T = \max_i \left\{ \sum_{t=1}^{T} r_t(i) - \sum_{t=1}^{T} r_t(l_t) \right\} \]

Best action in hindsight

- \(R_T \) is a random variable we do not observe
- Different objectives, from easiest to hardest
 - Pseudo-regret \(\overline{R_T} = \max_i \mathbb{E} \left[\sum_{t=1}^{T} r_t(i) \right] - \mathbb{E} \left[\sum_{t=1}^{T} r_t(l_t) \right] \)
 - Expected regret \(\mathbb{E}[R_T] = \mathbb{E} \left[\max_i \sum_{t=1}^{T} r_t(i) - \sum_{t=1}^{T} r_t(l_t) \right] \)
 - High probability bounds on the realized regret
- We always have \(\overline{R_T} \leq \mathbb{E}[R_T] \)
- If the adversary is reactive, then the distribution of \(r_t \) can be a function of \(l_1, \ldots, l_{t-1} \)
- Otherwise, the adversary is oblivious and \(\overline{R_T} = \mathbb{E}[R_T] \)
Our Focus

- Introduce most popular bandit problems
 - Adversarial Bandits
 - Stochastic Bandits
 - Pure Exploration Bandits
 - Contextual Bandits (time permitting)
- Concentrate on useful algorithm design principles
 - Exponential weights (still useful)
 - Optimism in the face of Uncertainty
 - Probability matching (i.e. Thompson sampling)
 - Action-Elimination
Other Settings that Have Been Considered

- Data models for r_t
 - chosen by an adversary
 - sampled i.i.d.
 - stochastic with adversarial perturbations...

- Action spaces
 - Finite number of arms
 - A vector space (r_t are functions)
 - Combinatorial (e.g. subsets, paths on a graph)

- Objectives
 - Pseudo-regret (the expectation over the learner’s randomness)
 - Realized regret (with high probability)
 - Best-arm identification a.k.a. pure exploration

- Side information
 - Linear rewards
 - Competing with a policy class

- ...
Adversarial Bandits
Protocol: Finite-Arm Adversarial Bandits

Given: game length T, number of arms K

For $t = 1, 2, \ldots, T$,

- The learner picks action $l_t \in \{1, \ldots, K\}$
- The adversary simultaneously picks losses $\ell_t \in [0, 1]^K$
- The learner observes and receives $\ell_t(l_t)$

- The results are easier to state using losses instead of rewards
- Randomization of l_t is essential
- We are familiar with adversarial data from the first half
- The simple idea of estimating ℓ_t from $\ell_t(l_t)$ and then applying a full-information algorithm works very well
Algorithm: Exp3 [Auer et al., 2002b]

Given: number of arms K, learning rate $\eta > 0$, length T

Initialize $p_1(i) = 1/K$, $\hat{L}_0(i) = 0$ for all $i \in [K]$

For $t = 1, 2, \ldots, T$:

- Sample $I_t \sim p_t$ and observe $\ell_t(I_t)$
- Estimate $\hat{\ell}_t(i) = \frac{\ell_t(I_t)}{p_t(I_t)} 1\{I_t=i\}$ and $\hat{L}_t = \hat{\ell}_t + \hat{L}_{t-1}$
- Calculate $W_t = \sum_j e^{-\eta \hat{L}_t(j)}$ and $p_{t+1}(i) = \frac{1}{W_t} e^{-\eta \hat{L}_t(i)}$
Algorithm Design Principle: Exponential Weights

Algorithm: Exp3 [Auer et al., 2002b]

Given: number of arms K, learning rate $\eta > 0$, length T
Initialize $p_1(i) = 1/K$, $\hat{L}_0(i) = 0$ for all $i \in [K]$

For $t = 1, 2, \ldots, T$:

• Sample $I_t \sim p_t$ and observe $\ell_t(I_t)$
• Estimate $\hat{\ell}_t(i) = \frac{\ell_t(I_t)}{p_t(I_t)} \mathbb{1}_{\{I_t=i\}}$ and $\hat{L}_t = \hat{\ell}_t + \hat{L}_{t-1}$
• Calculate $W_t = \sum_j e^{-\eta \hat{L}_t(j)}$ and $p_{t+1}(i) = \frac{1}{W_t} e^{-\eta \hat{L}_t(i)}$

• Exp3 = Exponential Weights for Exploration and Exploitation
• $\hat{\ell}_t$ is the importance-weighted estimator of ℓ_t
• $\hat{\ell}_t$ is unbiased:

$$\mathbb{E}_{l_t \sim p_t}[\hat{\ell}_t(i)] = \mathbb{E} \left[\frac{\ell_t(l_t)}{p_t(l_t)} \mathbb{1}_{\{l_t=i\}} \right] = \sum_j p_t(j) \frac{\ell_t(j)}{p_t(j)} \mathbb{1}_{\{j=i\}} = \ell_t(i).$$

• Exp3 runs exponential weights on $\hat{\ell}_t$
Exp3: Abridged Analysis

- Using the same $\frac{W_t}{W_{t-1}}$ telescoping procedure as in the full information case with i^* arbitrary but fixed,

\[
\sum_{t=1}^{T} \sum_{j} p_t(j) \mathbb{E}[\hat{\ell}_t(j) - \hat{L}_T(i^*)] \leq \frac{\log(K)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \mathbb{E} \left[\sum_{j} p_t(j) \hat{\ell}_t(j)^2 \right].
\]
• Using the same \(\frac{W_t}{W_{t-1}} \) telescoping procedure as in the full information case with \(i^* \) arbitrary but fixed,

\[
\sum_{t=1}^{T} \sum_{j} \rho_t(j) \mathbb{E}[\hat{\ell}(j) - \hat{L}_{T}(i^*)] \leq \frac{\log(K)}{\eta} + \eta \frac{T}{2} \sum_{t=1}^{T} \mathbb{E} \left[\sum_j \rho_t(j) \hat{\ell}(j)^2 \right].
\]

• Because \(\hat{\ell}_t \) is unbiased,

\[
\sum_{t=1}^{T} \sum_{j} \rho_t(j) \mathbb{E}[\hat{\ell}(j) - \hat{L}_{T}(i^*)] = \sum_{t=1}^{T} \sum_{j} \rho_t(j) \ell_t(j) - L_{T}(i^*) \geq \mathcal{R}_T.
\]
Exp3: Abridged Analysis

• Using the same \(\frac{W_t}{W_{t-1}} \) telescoping procedure as in the full information case with \(i^* \) arbitrary but fixed,

\[
\sum_{t=1}^{T} \sum_{j} p_t(j) \mathbb{E}[\hat{\ell}_t(j) - \hat{L}_T(i^*)] \leq \frac{\log(K)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \mathbb{E} \left[\sum_j p_t(j) \hat{\ell}_t(j)^2 \right].
\]

• Because \(\hat{\ell}_t \) is unbiased,

\[
\sum_{t=1}^{T} \sum_{j} p_t(j) \mathbb{E}[\hat{\ell}_t(j) - \hat{L}_T(i^*)] = \sum_{t=1}^{T} \sum_{j} p_t(j) \ell_t(j) - L_T(i^*) \geq R_T.
\]

• Bounding the variance term turns out to be easy:

\[
\mathbb{E} \left[\sum_j p_t(j) \frac{\ell_t(l_t)^2}{p_t(l_t)^2} \mathbb{1}_{\{l_t=i\}} \right] \leq \mathbb{E} \left[\sum_j p_t(j) \frac{1}{p_t(l_t)^2} \right] = \mathbb{E} \left[\frac{1}{p_t(l_t)} \right] = K.
\]
So, plugging this in, we find

$$
\sum_{t=1}^{T} \mathbb{E}[\ell(I_t)] - L_T(i^*) \leq \frac{\log(K)}{\eta} + \frac{\eta}{2} TK.
$$

Theorem (Exp3 upper bound [Auer et al., 2002b])

With $\eta = \sqrt{\frac{2 \log(T)}{TK}}$, Exp3 has $\overline{R}_T \leq \sqrt{2TK \log(K)}$.

Only get pseudo-Regret bounds because the i^* in the proof was fixed, not a function of I_1, \ldots, I_T.
Theorem (Adversarial Bandits lower bound [Auer et al., 2002b])

Any adversarial bandit algorithm must have

$$\bar{R}_T = \Omega(\sqrt{TK})$$

- Exp3 upper bound: $$\bar{R}_T \leq \sqrt{2TK \log(K)}$$
- First matching upper bound achieved by INF [Audibert and Bubeck, 2009] (which is Mirror Descent)
Upgrades

- High Probability bounds: requires a lower-variance estimate of $\hat{\ell}_t$ or an algorithm that keeps $p_t(i)$ away from zero
 - Exp3.P [Auer et al., 2002b] uses $\hat{\ell}_t(i) = \frac{1_{\{l_t = i\}} \ell_t(l_t) - \beta}{p_t(l_t)}$
 - Exp3-IX [Neu, 2015] uses $\hat{\ell}_t(i) = \frac{1_{\{l_t = i\}} \ell_t(l_t)}{p_t(l_t) + \gamma}$
- Experts with bandits; each arm is an expert that recommends actions: you compete with the best expert (Exp4 algorithm) [Auer et al., 2002b]
- Competing with strategies that can switch [Auer, 2002]
- Feedback determined by a graph [Mannor and Shamir, 2011]
- Partial Monitoring [Bartók et al., 2014]
- Combinatorial action spaces...
Stochastic Bandits
Protocol: Stochastic Bandits

Given: game length T, number of arms K, reward distributions ν_1, \ldots, ν_K

For $t = 1, 2, \ldots, T$,

- The learner picks action $l_t \in \{1, \ldots, K\}$
- The learner observes and receives reward $X_t \sim \nu_{l_t}$
Protocol: Stochastic Bandits

Given: game length T, number of arms K, reward distributions ν_1, \ldots, ν_K

For $t = 1, 2, \ldots, T$,
- The learner picks action $I_t \in \{1, \ldots, K\}$
- The learner observes and receives reward $X_t \sim \nu_{I_t}$

- Stochastic bandits is an old problem [Thompson, 1933]
- We will use the following notation
 - Reward of arm i is sampled from ν_i with $\mu_i := \mathbb{E}_{X \sim \nu_i}[X]$
 - $i^* = \arg \max_i \mu_i$ is the best arm
 - Gaps $\Delta_i := \mu_{i^*} - \mu_i \geq 0$
 - Number of pulls $N_{i,t} := \sum_{s=1}^{t} \mathbb{1}_{\{I_s = i\}}$
 - Empirical mean $\hat{\mu}_{i,t} := \frac{\sum_{s=1}^{t} X_s \mathbb{1}_{\{I_s = i\}}}{N_{i,t}}$
Protocol: Stochastic Bandits

Given: game length T, number of arms K, reward distributions ν_1, \ldots, ν_K

For $t = 1, 2, \ldots, T$,
- The learner picks action $l_t \in \{1, \ldots, K\}$
- The learner observes and receives reward $X_t \sim \nu_{l_t}$

- We still want to minimize the expected regret, which has the useful decomposition

$$\mathbb{E}[R_T] = T \mu_{i^*} - \sum_{t=1}^{T} \mathbb{E}[X_t] = \sum_i \Delta_i \mathbb{E}[N_{i,T}]$$
Protocol

Protocol: Stochastic Bandits

Given: game length T, number of arms K, reward distributions ν_1, \ldots, ν_K

For $t = 1, 2, \ldots, T$,

- The learner picks action $I_t \in \{1, \ldots, K\}$
- The learner observes and receives reward $X_t \sim \nu_{I_t}$

We still want to minimize the expected regret, which has the useful decomposition

$$\mathbb{E}[\mathcal{R}_T] = T\mu_{i^*} - \sum_{t=1}^{T} \mathbb{E}[X_t] = \sum_i \Delta_i \mathbb{E}[N_{i,T}]$$

Assumption: 1-sub-Gaussian reward distributions

For all stochastic bandit problems, we will assume that all arms are 1-sub-Gaussian, i.e.

$$\mathbb{E}_{X \sim \mu} \left[e^{\lambda(X-\mu)^2 - \lambda^2/2} \right] \leq 1.$$ For X_1, \ldots, X_t,

This implies the Hoeffding bound

$$P \left(\frac{1}{t} \sum_{s=1}^{t} X_s - \mu_i \geq \epsilon \right) \leq e^{-\frac{\epsilon^2 t}{2}}.$$
Algorithm: Explore-Then-Commit

Given: Game length T, exploration parameter M

For $t = 1, 2, \ldots, MK$:
- Choose $i_t = (t \mod K)$, see $X_t \sim \nu_{i_t}$

Compute empirical means $\hat{\mu}_{i, MK}$

For $t = MK + 1, MK + 2, \ldots, T$:
- Pull arm $i = \arg\max_j \hat{\mu}_{j, MK}$

The first strategy you might try

A proof idea that we will return to: bound regret by first bounding $\mathbb{E}[N_{i,T}]$.

In this simple algorithm,

$$\mathbb{E}[N_{i,T}] = M + (T - MK)P \left(i = \arg\max_j \hat{\mu}_{j, MK} \right)$$
Using the sub-Gaussian concentration bound,

\[P \left(i = \arg \max_j \hat{\mu}_{j, MK} \right) \leq P \left(\hat{\mu}_{i, MK} \geq \hat{\mu}_{i^*, MK} \right) \]

\[= P \left((\hat{\mu}_{i, MK} - \mu_i) \geq (\hat{\mu}_{i^*, MK} - \mu_{i^*}) + \Delta_i \right) \]

\[\leq e^{-\frac{M\Delta_i^2}{4}} \text{ (the difference is } \sqrt{2/M}-\text{sub-Gaussian)} \]
Using the sub-Gaussian concentration bound,

\[
P \left(i = \arg \max_j \hat{\mu}_{j, MK} \right) \leq P \left(\hat{\mu}_{i, MK} \geq \hat{\mu}_{i^*, MK} \right)
\]

\[
= P \left((\hat{\mu}_{i, MK} - \mu_i) \geq (\hat{\mu}_{i^*, MK} - \mu_{i^*}) + \Delta_i \right)
\]

\[
\leq e^{-\frac{M\Delta_i^2}{4}} \text{ (the difference is } \sqrt{2/\text{M}}\text{-sub-Gaussian)}
\]

Theorem (Explore-Then-Commit upper bound)

\[
\mathbb{E}[\mathcal{R}_T] = \sum_i \Delta_i \mathbb{E}[N_{i,T}] \leq \sum_{i=1}^{K} \Delta_i \left(M + (T - MK)e^{-\frac{M\Delta_i^2}{4}} \right)
\]

- For the two arm case, if we know \(\Delta \), then \(m = \frac{4}{\Delta_1^2} \log \frac{T \Delta_1^2}{4} \), results in \(\mathbb{E}[\mathcal{R}_T] \leq \sum_{i=1}^{K} \frac{4}{\Delta_1} \log \frac{T \Delta_1^2}{4} + T \frac{4}{T \Delta_1^2} = O \left(\frac{K \log(T)}{\Delta_1} \right) \)
- But we don’t know \(\Delta \)...can we be adaptive?
Algorithm Design Principle: OFU

- OFU: Optimism in the Face of Uncertainty
- We establish some confidence set for the problem instance (e.g. means) to within some confidence set
- We then assume the most favorable instance in the confidence set and act greedily

Algorithm: UCB1 [Auer et al., 2002a]

Given: Game length T
Initialize: play every arm once
For $t = K + 1, 2, ..., T$:
- Compute upper confidence bounds $B_i, t - 1 = \sqrt{\frac{6 \log(t)}{N_i, t - 1}}$
- Choose $I_t = \arg \max_i \hat{\mu}_i, t - 1 + B_i, t - 1$
- Observe $X_t \sim \nu_{I_t}$
- Update $N_i, t = N_i, t - 1 + 1\{I_t = i\}$ and $\hat{\mu}_i, t = \frac{\sum_{s=1}^t 1\{I_s = i\} X_s}{N_i, t}$
Algorithm Design Principle: OFU

• OFU: Optimism in the Face of Uncertainty
• We establish some confidence set for the problem instance (e.g. means) to within some confidence set
• We then assume the most favorable instance in the confidence set and act greedily

Algorithm: UCB1 [Auer et al., 2002a]

Given: Game length T
Initialize: play every arm once
For $t = K + 1, 2, \ldots, T$:
• Compute upper confidence bounds $B_{i,t-1} = \sqrt{\frac{6 \log(t)}{N_{i,t-1}}}$
• Choose $I_t = \arg \max_i \hat{\mu}_{i,t-1} + B_{i,t-1}$, observe $X_t \sim \nu_{I_t}$
• Update $N_{i,t} = N_{i,t-1} + 1_{\{I_t=i\}}$ and $\hat{\mu}_{i,t} = \frac{\sum_{s=1}^{t} 1_{\{I_s=i\}} X_s}{N_{i,t}}$
Round 1

Arm 1

\(\hat{\mu}_{1,1} + B_{1,t} \)
\(\hat{\mu}_{1,1} - B_{1,t} \)

Arm 2

\(\hat{\mu}_{2,1} + B_{2,t} \)
\(\hat{\mu}_{2,1} - B_{2,t} \)

Arm 3

\(\hat{\mu}_{3,1} + B_{3,t} \)
\(\hat{\mu}_{3,1} - B_{3,t} \)

Reward
Round 2

UCB Illustration
Round 3

Reward

Arm 1

Arm 2

Arm 3
UCB: Intuition

• Naturally balances exploration and exploitation: an arm has a high UCB if
 • It has a high $\hat{\mu}_{i,t}$, or
 • $B_{i,t}$ is large because $N_{i,t-1}$ is small
• Optimistic because we pretend the rewards are the plausibly best and then do the greedy thing
• Define $M_i = \left\lceil \frac{12 \log(T)}{\Delta_i^2} \right\rceil$, the number of pulls of arm i such that

$$B_{i,t} = \sqrt{\frac{6 \log(t)}{N_{i,t}}} \leq \sqrt{\frac{6 \log(T)}{N_{i,t}}} \leq \frac{\Delta_i}{2}$$

• The intuition of the proof is

1. Since $\bar{R}_T = \sum_i \Delta_i \mathbb{E}[N_{i,T}]$, we bound $\mathbb{E}[N_{i,t}]$ first.
2. With high probability, we will never pull arm i more than M_i times, so

$$\mathbb{E}[N_{i,T}] = \mathbb{E} \sum_{t=1}^{T} 1_{\{l_t=i\}} \leq M_i + \sum_{t=M_i}^{T} \mathbb{E} 1_{\{l_t=i, N_{i,t}>M_i\}}$$

we will bound this

3. If $\{l_t = i, N_{i,t} > M_i\}$ occurs, then the UCB for i^* or for i must be wrong (next slide)
Claim: if \(\{ l_t = i, N_{i,t} > M_i \} \) occurs, then either \(\hat{\mu}_{i,t} \) must be too high or \(\hat{\mu}_{i^*,t} \) must be too low. In a picture:

\[
\Delta_i \geq 2B_{i,t} \quad \text{since} \quad N_{i,t} > M_i
\]

In an equation: suppose that \(N_{i,t} > M_i, \hat{\mu}_{i,t} - B_{i,t} \geq \mu_i \), and \(\hat{\mu}_{i^*,t} + B_{i^*,t} \geq \mu_{i^*} \). Then

\[
\hat{\mu}_{i^*,t} + B_{i^*,t} \geq \mu_{i^*} = \mu_i + \Delta_i \geq \mu_i + 2B_{i,t} \geq \hat{\mu}_{i,t} + B_{i,t},
\]

so the algorithm will not choose \(l_t = i \).

If \(l_t = i \), at least one of the bounds must be wrong, implying

\[
P(l_t = i, N_{i,t} > M_i) \leq P(\hat{\mu}_{i,t} \leq \mu_i + B_{i,t}) + P(\hat{\mu}_{i^*,t} + B_{i^*,t} \leq \mu_{i^*}).
\]
Using the Hoeffding bound,

\[
P(\hat{\mu}_{i,t} - \mu_i \leq B_{i,t}) \leq P\left(\exists s \leq t : \hat{\mu}_{i,s} - \mu_i \leq \sqrt{\frac{6 \log(t)}{s}} \right)
\]

we don’t know \(N_{i,t-1} \)

\[
\leq \sum_{s=1}^{t} P\left(\hat{\mu}_{i,s} - \mu_i \leq \sqrt{\frac{6 \log(t)}{s}} \right)
\]

\[
\leq \sum_{s=1}^{t} \exp\left\{ -\frac{3 \log(t)}{s} \right\} \leq \sum_{s=1}^{t} t^{-3} = t^{-2}.
\]
Using the Hoeffding bound,

\[
P(\hat{\mu}_{i,t} - \mu_i \leq B_{i,t}) \leq P\left(\exists s \leq t : \hat{\mu}_{i,s} - \mu_i \leq \sqrt{\frac{6 \log(t)}{s}} \right)
\]

we don’t know \(N_{i,t-1}\)

\[
\leq \sum_{s=1}^{t} P\left(\hat{\mu}_{i,s} - \mu_i \leq \sqrt{\frac{6 \log(t)}{s}} \right)
\]

\[
\leq \sum_{s=1}^{t} \exp\left\{ -\frac{3 \log(t)}{s} \right\} \leq \sum_{s=1}^{t} t^{-3} = t^{-2}.
\]

The same inequality holds for \(i^*\), so

\[
\overline{R}_T = \sum_i \Delta_i \mathbb{E}[N_{i,T}] \leq \sum_i \Delta_i \left(\frac{12 \log(T)}{\Delta_i^2} + 2 \sum_{t=M_i+1}^{T} t^{-2} \right).
\]
Theorem (UCB upper bound [Auer, 2002])

The UCB1 algorithm on 1-sub-Gaussian data has

\[\overline{R}_T \leq \sum_i \frac{12 \log(T)}{\Delta_i} + o(1). \]
Theorem (UCB upper bound [Auer, 2002])

The UCB1 algorithm on 1-sub-Gaussian data has

$$\bar{R}_T \leq \sum_i \frac{12 \log(T)}{\Delta_j} + o(1).$$

Theorem (Lower Bound [Lai and Robbins, 1985])

Suppose we have a parametric family P_{θ} and $\theta_1, \ldots, \theta_k$. For any “admissible” algorithm,

$$\liminf_{T \to \infty} \frac{\bar{R}_T}{\log(T)} \geq \sum_{i \neq i^*} \frac{\Delta_i}{KL(P_{\theta_i}, P_{\theta_i^*})} \approx O \left(\sum_{i \neq i^*} \frac{1}{\Delta_i} \right)$$

E.g. if P_{θ} is Bernoulli, then $\frac{(\theta_i - \theta_i^*)^2}{\theta_i^* (1-\theta_i^*)} \geq KL(P_{\theta_i}, P_{\theta_i^*}) \geq 2(\theta_i - \theta_i^*)^2.$
Algorithm Design Principle: Probability Matching

- We put a prior π over means μ_i and a likelihood $\nu_i = P(\cdot | \mu_i)$ over rewards
- Choose $P(I_t = i) = P(\mu_i = \mu_i^* | history)$ (the matching)
- We usually pick conjugate models (e.g. $\mu_i \sim N(0, 1)$, $X_t \sim N(\mu_i, 1)$)
Algorithm Design Principle: Probability Matching

- We put a prior π over means μ_i and a likelihood $\nu_i = P(\cdot | \mu_i)$ over rewards
- Choose $P(I_t = i) = P(\mu_i = \mu_i^* | \text{history})$ (the matching)
- We usually pick conjugate models (e.g. $\mu_i \sim N(0, 1)$, $X_t \sim N(\mu_i, 1)$)

Algorithm: Thompson Sampling

Given: game length T, prior $\pi(\mu)$, likelihoods $p(\cdot | \mu)$

Initialize posteriors $p_{i,0}(\mu) = \pi(\mu)$

For $t = 1, 2, \ldots, T$:
- Draw $\theta_{i,t} \sim p_{i,t-1}$ for all i
- Choose $I_t = \arg \max_i \theta_{i,t}$ (implements the matching)
- Receive and observe $X_t \sim \nu_{I_t}$
- Update the posterior $p_{I_t,t}(\mu) = p(X_t | \mu)p_{I_t,t-1}(\mu)$
Thompson Sampling: Overview

- Not Bayesian: a Bayesian method would maximize the Bayes regret (the expectation under the probability model)
- The regret bound is frequentist
- Arms with small $N_{i,t}$ implies a wide posterior, hence a good probability of being selected
- Generally performs empirically better than UCB (it is much more aggressive)
- Analysis is difficult
Thompson Sampling: Upper Bound

Theorem (Agrawal and Goyal [2013])

For binary rewards, Gamma-Beta Thompson sampling has

$$\mathbb{E}[R_T] \leq (1 + \epsilon) \sum_{i \neq i^*} \Delta_i \frac{\log(T)}{\text{KL}(\mu_i, \mu_{i^*})} + O\left(\frac{N}{\epsilon^2}\right).$$

- The proof is much more technical than UCB’s.
- We cannot rely on the upper bounds being correct w.h.p.
For some to-be-tuned \(\mu_i \leq x_i \leq y_i \leq \mu_i^* \), we have

\[
\mathbb{E}[N_{i,T}] \leq \sum_{t=1}^{T} P(l_t = i) \\
\leq \sum_{t=1}^{T} P(l_t = i, \hat{\mu}_{i,t-1} \leq x_i, \theta_{i,t} \geq y_i) \left(O \left(\frac{\log(T)}{kl(x_j, y_j)} \right) \right) \\
+ \sum_{t=1}^{T} P(l_t = i, \hat{\mu}_{i,t-1} \leq x_i, \theta_{i,t} \leq y_i) \quad \text{(the tricky case)} \\
+ \sum_{t=1}^{T} P(l_t = i, \hat{\mu}_{i,t-1} \geq x_i) \quad \text{(Small by concentration)}
\]
Thompson Sampling: Proof Outline

• The tricky case is $\sum_{t=1}^{T} P(l_t = i, \hat{\mu}_{i,t-1} \leq x_i, \theta_{i,t} \leq y_i)$
• This happens when we have enough samples of i but not many of i^*
• A key lemma argues that, on $\hat{\mu}_{i,t-1} \leq x_i, \theta_{i,t} \leq y_i$, the probability of picking i is a constant less than of picking i^*:

$$
\sum_{t=1}^{T} P(l_t = i, \hat{\mu}_{i,t-1} \leq x_i, \theta_{i,t} \leq y_i) \\
\leq \sum_{t=1}^{T} \left(\frac{P(\theta_{i^*,t} \leq y_i)}{P(\theta_{i^*,t} > y_j)} \right) P(l_t = i^*, \hat{\mu}_{i,t-1} \leq x_i, \theta_{i,t} \leq y_i) = O(1)
$$

(exponentially small)

• Hence, we will quickly get enough samples of i^*
Best of Both Worlds

- The stochastic and adversarial algorithms are quite different
- A natural question: is there an algorithm that
 - gets $R_T = O(\sqrt{TK})$ regret for adversarial
 - gets $R_t = O(\sum_i \log(T)/\Delta_i)$ regret for stochastic
 - without knowing the setting?

Bubeck and Slivkins [2012] proposed an algorithm that assumes stochastic but falls back to UCB once adversarial data is detected.

Zimmert and Seldin [2019] showed that (for pseudo-regret), it is possible.

Their algorithm: online mirror descent with $1/2$-Tsallis entropy.
The stochastic and adversarial algorithms are quite different.

A natural question: is there an algorithm that

- gets $R_T = O(\sqrt{TK})$ regret for adversarial
- gets $R_t = O(\sum_i \log(T)/\Delta_i)$ regret for stochastic
- without knowing the setting?

Bubeck and Slivkins [2012] proposed an algorithm that assumes stochastic but falls back to UCB once adversarial data is detected.

Zimmert and Seldin [2019] showed that (for pseudo-regret), it is possible:

- Their algorithm: online mirror descent with $\frac{1}{2}$-Tsallis entropy
- $\Psi(w) = -\sum_i 4(\sqrt{w_i} - \frac{1}{2}w_i)$
Pure Exploration
• What if we only wanted to identify the best arm i^* without caring about loss along the way?
• Intuitively, we would explore more; we are happy to accrue less reward if we get more useful samples.
• More similar to hypothesis testing; useful for selecting treatments
• Known as “Best Arm Identification” or “Pure Exploration”
Two Settings

Protocol: Best-arm Identification

Given: number of arms K, arm distributions ν_1, \ldots, ν_K

For $t = 1, 2, \ldots$,
- The learner picks arm $l_t \in \{1, \ldots, K\}$
- The learner observes $X_t \sim \nu_{l_t}$
- The learner decides whether to stop

The learner returns arm A

Two settings:

<table>
<thead>
<tr>
<th>Input</th>
<th>fixed-confidence</th>
<th>fixed-budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td>$\delta > 0$, $P(A = i^*) \geq 1 - \delta$</td>
<td>T maximize $P(A = i^*)$ after T rounds</td>
</tr>
</tbody>
</table>
• Standard stochastic bandit algorithms under explore (they fail to meet lower bounds on this problem)
• Many can be adapted
 • LUCB [Kalyanakrishnan et al., 2012]
 • Top-Two Thompson Sampling [Russo, 2016]
• Instead, we will describe a new algorithm design principle
Algorithm Design Principle: Action Elimination

<table>
<thead>
<tr>
<th>Algorithm: Successive Elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given: confidence $\delta > 0$</td>
</tr>
<tr>
<td>Initialize plausibly-best set $S = {1, \ldots, K}$</td>
</tr>
<tr>
<td>For $t = 1, 2, \ldots$:</td>
</tr>
<tr>
<td>- Pull all arms in S and update $\hat{\mu}_{i,t}$</td>
</tr>
<tr>
<td>- Calculate $B_t = \sqrt{2t^{-1}\log(4Kt^2/\delta)}$</td>
</tr>
<tr>
<td>- Remove i from S if $\max_{j \in S} \hat{\mu}{j,t} - B_t \geq \hat{\mu}{i,t} + B_t$</td>
</tr>
<tr>
<td>- If $</td>
</tr>
</tbody>
</table>

- S is a list of plausibly-best arms
- Each epoch, all arms that cannot be the best (if the bounds hold) are removed
• Define the “bad event” $\mathcal{E} = \bigcup_{i,t} \{|\hat{\mu}_{i,t} - \mu_i| \geq B_t(\delta)\}$: we have

$$P(\mathcal{E}) \leq \sum_{i,t} P \left(|\hat{\mu}_{i,t} - \mu_i| \geq \sqrt{2t^{-1} \log(4Kt^2/\delta)} \right) \leq \sum_{i,t} 2e^{-\log\left(\frac{4Kt^2}{\delta}\right)}$$

$$\leq \sum_{i,t} \frac{2\delta}{4Kt^2} = \frac{2\pi^2}{24} \delta \leq \delta$$
Successive Elimination Analysis

• Define the “bad event” \(\mathcal{E} = \bigcup_{i,t} \{|\hat{\mu}_{i,t} - \mu_i| \geq B_t(\delta)\} \): we have

\[
P(\mathcal{E}) \leq \sum_{i,t} P \left(|\hat{\mu}_{i,t} - \mu_i| \geq \sqrt{2t^{-1} \log(4Kt^2/\delta)} \right) \leq \sum_{i,t} 2e^{-\log\left(\frac{4Kt^2}{\delta}\right)}
\]

\[
\leq \sum_{i,t} \frac{2\delta}{4Kt^2} = \frac{2\pi^2}{24} \delta \leq \delta
\]

• (Correctness) If \(\mathcal{E} \) does not happen,

 • \(|\hat{\mu}_{i*} - \mu_{i*}| \leq B_t \) and \(|\mu_j - \hat{\mu}_j| \leq B_t \) for all \(j \). Thus, for all \(j \)
 \[
 \hat{\mu}_j - \hat{\mu}_{i*} \leq (\mu_{i*} - \hat{\mu}_{i*}) + (\mu_j - \mu_{i*}) + (\hat{\mu}_j - \mu_j) \leq 2B_t
 \]

 • \(i \) is removed if \(\max_{j \in S} \hat{\mu}_{j,t} - \hat{\mu}_{i,t} \geq 2B_t \) \(\Rightarrow i^* \) is never removed

 • \(\lim_{t \to \infty} B_t(\delta) \to 0 \): every arm will eventually be removed

 • Successive Elimination is correct with probability 1 − \(\delta \)
Successive Elimination Analysis

• Define the “bad event” $\mathcal{E} = \bigcup_{i,t} \{|\hat{\mu}_{i,t} - \mu_i| \geq B_t(\delta)\}$: we have

$$P(\mathcal{E}) \leq \sum_{i,t} P \left(|\hat{\mu}_{i,t} - \mu_i| \geq \sqrt{2t^{-1} \log(4Kt^2/\delta)} \right) \leq \sum_{i,t} 2e^{-\log\left(\frac{4Kt^2}{\delta}\right)}$$

$$\leq \sum_{i,t} \frac{2\delta}{4Kt^2} = \frac{2\pi^2}{24} \delta \leq \delta$$

• (Correctness) If \mathcal{E} does not happen,
 • $|\hat{\mu}_{i*} - \mu_{i*}| \leq B_t$ and $|\mu_j - \hat{\mu}_j| \leq B_t$ for all j. Thus, for all j
 $$\hat{\mu}_j - \hat{\mu}_{i*} \leq (\mu_{i*} - \hat{\mu}_{i*}) + (\mu_j - \mu_{i*}) + (\hat{\mu}_j - \mu_j) \leq 2B_t$$
 • i is removed if $\max_{j \in S} \hat{\mu}_{j,t} - \hat{\mu}_{i,t} \geq 2B_t \Rightarrow i^*$ is never removed
 • $\lim_{t \to \infty} B_t(\delta) \to 0$: every arm will eventually be removed
 • Successive Elimination is correct with probability $1 - \delta$

• (Sample Complexity): arm i will be eliminated once $\Delta_i \leq 2B_t$
 • We can verify that $N_i = O\left(\Delta_i^{-2} \log(K/\delta \Delta_i)\right)$ is sufficient
 • Total sample complexity of $\sum_i \Delta_i^{-2} \log(K/\delta \Delta_i)$
Theorem

Successive Elimination is $(0, \delta)$-PAC with sample complexity

$$O \left(\sum_i \Delta_i^{-2} \log(K/\delta \Delta_i) \right)$$

Theorem

For any best-arm identification algorithm, there is a problem instance that requires

$$\Omega \left(\sum_i \Delta_i^{-2} \log \log \left(\frac{1}{\delta \Delta_i^2} \right) \right)$$
samples.
Linear Stochastic Bandits
Protocol: Contextual Linear Bandit

Given: game length T, number of arms K

For $t = 1, 2, \ldots, T$,
- The learner sees one context per arm $c_{1,t}, \ldots, c_{K,t}$
- The learner picks action $l_t \in \{1, \ldots, K\}$
- The learner observes and receives reward $X_t = \langle c_{l_t,t}, \theta^* \rangle + \xi_t$

Regret is defined w.r.t. an agent that knows the true θ:

$$\bar{R}_T = \sum_{t=1}^{T} \max_{i} x_{i,t}^T \theta^* - \sum_{t=1}^{T} x_{l_t,t}^T \theta^*$$
Algorithm Design Principle: Optimism

Algorithm: OFUL [Abbasi-Yadkori et al., 2011]

Initialize $\hat{\theta}_0 = 0, B_0 = \mathbb{R}^d$

For $t = 1, 2, \ldots, T$:

- Receive contexts $c_{1,t}, \ldots, c_{K,t}$
- Choose $(I_t, \tilde{\theta}_t) = \arg \max_{i \in \{1, \ldots, K\}, \theta \in B_{t-1}} \theta^T c_{i,t}$ (optimism)
- Observe $X_t = c_{I_t,t}^T \theta^* + \xi_t$
- Calculate $V_t = \sum_{s=1}^{t} c_s c_s^T + \lambda I$ and $r_t = \sqrt{\log \frac{\det(V_t)}{\delta^2 \lambda^d}} + \sqrt{\lambda \|\theta^*\|}$
- Calculate $\hat{\theta}_t = V_t^{-1} \left(\sum_{s=1}^{t} c_s X_s \right)$ (ridge)
- Update $B_t = \{ \theta : (\theta - \hat{\theta}_t)^T V_t (\theta - \hat{\theta}_t) \leq r_t \}$

- If ξ_t is 1-sub-Gaussian, B_t is a confidence sequence with $P(\forall t > 0 : \theta^* \in B_t) \geq 1 - \delta$ (more examples in [de la Peña et al., 2009, Howard et al., 2020])]
• Regret decomposes over rounds:

\[R_t - R_{t-1} = c_{I_t}^T \theta^* - c_{I_t}^T \theta^* \]

\[\leq c_{I_t}^T (\tilde{\theta}_t - \hat{\theta}_{t-1}) + c_{I_t}^T (\hat{\theta}_{t-1} - \theta^*) \]

\[\leq \|c_{I_t}\|_{V_t} \|\tilde{\theta}_t - \hat{\theta}_{t-1}\|_{V_t} + \|c_{I_t}\|_{V_t} \|\hat{\theta}_{t-1} - \theta^*\|_{V_t} \]

\[\leq \|c_{I_t}\|_{V_t} \|\tilde{\theta}_t - \hat{\theta}_{t-1}\|_{V_t} + \|c_{I_t}\|_{V_t} \|\hat{\theta}_{t-1} - \theta^*\|_{V_t} \leq r_t \]

• After some algebra, we can show, with probability \(\geq 1 - \delta \), that

\[R_T = O \left(\frac{d \log(1/\delta)}{\Delta} \right) \]

• The shared structure lets us learn a lot!
Review

• Setting: adversarial bandits
 • Exp3 (exponential weights)
• Setting: stochastic bandits
 • UCB (optimism)
 • Thompson Sampling (probablity matching)
• Setting: pure exploration
 • Successive Elimination (action-elimination)
• Setting: linear contextual bandits
 • OFUL (optimism)
Thanks!

Extras
Aside: Lower Bound Reasoning

- Fix a strategy and consider two problem instances:
 1. \(\nu_1, \nu_2, \ldots, \nu_K \); with \(P \) as the joint distribution over \((l_t, r_{i,t})\)
 2. \(\nu_1, \nu'_2, \ldots, \nu_K \); with \(P' \) as the joint distribution over \((l_t, r_{i,t})\)
 3. The optimal arm is different: \(\mu'_2 \geq \mu_1 \geq \mu_2 \geq \mu_3 \geq \ldots \)
 4. The data from \(P \) and \(P' \) will look very similar

- An algorithm that does well on \(P \) must not pull arm 2 too many times; hence, it will not do well on \(P' \)

- “Similar” is quantified by a change-of-measure identity; e.g.
 \[
P'(A) = e^{-\hat{k}_{l_t} N_{2,t}} P(A), \text{ where } \hat{k}_{l_t} = \sum_{s=1}^{t} \log \frac{d\nu'_2}{d\nu_2}(X_{2,s})
\]

- Hence, an algorithm cannot tell if it is \(P \) or \(P' \) and must get high regret under \(P' \), mistakenly believing it is playing in \(P \)
Exp3: Analysis Full Detail
Exp3: Analysis

- Following the EW analysis, W_t is a potential function.
- For any i^*, $e^{-\eta \hat{L}_T(i^*)} \leq \sum_j e^{-\eta \hat{L}_T(j)} = W_T = W_0 \prod_{t=1}^{T} \frac{W_t}{W_{t-1}}$.

\[
\frac{W_t}{W_{t-1}} = \frac{\sum_j e^{-\eta \hat{L}_{t-1}(j)} e^{-\eta \hat{L}_t(j)}}{\sum_j e^{-\eta \hat{L}_{t-1}(j)}} = \sum_j p_{t-1}(j) e^{-\eta \hat{L}_t(j)}
\]

\[
\leq \sum_j p_{t-1}(j) \left(1 - \eta \hat{L}_t(j) + \frac{\eta^2}{2} \hat{L}_t(j)^2 \right)
\]

since $e^x \leq 1 + x + \frac{1}{2} x^2$ for $x \leq 0$

\[
= 1 - \eta \sum_j p_t(j) \hat{L}_t(j) + \frac{\eta^2}{2} \sum_j p_t(j) \hat{L}_t(j)^2
\]

\[
\leq e^{-\eta \sum_j p_t(j) \hat{L}_t(j) + \frac{\eta^2}{2} \sum_j p_t(j) \hat{L}_t(j)^2}
\]

since $1 + x \leq e^x$
Exp3: Analysis

\[e^{-\eta \hat{L}_T(i^*)} \leq W_0 \prod_{t=1}^{T} \frac{W_t}{W_{t-1}} \leq K \prod_{t=1}^{T} e^{-\eta \sum_j p_t(j) \hat{\ell}_t(j) + \frac{\eta^2}{2} \sum_j p_t(j) \hat{\ell}_t(j)^2} \]

\[\Leftrightarrow -\eta \hat{L}_T(i^*) \leq \log(K) - \eta \sum_j p_t(j) \hat{\ell}_t(j) + \frac{\eta^2}{2} \sum_j p_t(j) \hat{\ell}_t(j)^2 \]

\[\Leftrightarrow \sum_{t=1}^{T} \sum_j p_t(j) \hat{\ell}_t(j) - \hat{L}_T(i^*) \leq \frac{\log(K)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \mathbb{E}[\sum_j p_t(j) \hat{\ell}_t(j)^2] \]

\[\Rightarrow \sum_{t=1}^{T} \sum_j p_t(j) \mathbb{E}[\hat{\ell}_t(j) - \hat{L}_T(i^*)] \leq \frac{\log(K)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \mathbb{E} \left[\sum_j p_t(j) \hat{\ell}_t(j)^2 \right] \]

\[\Leftrightarrow \sum_{t=1}^{T} \mathbb{E}[\ell(I_t)] - L_T(i^*) \leq \frac{\log(K)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \mathbb{E} \left[\sum_j p_t(j) \frac{\ell_t(I_t)^2}{p_t(I_t)^2} 1_{\{I_t=i\}} \right] \]

variance term
Exp3: Analysis

Bounding the variance term turns out to be easy:

\[
\mathbb{E} \left[\sum_j p_t(j) \frac{\ell_t(l_t)^2}{p_t(l_t)^2} \mathbbm{1}_{\{l_t=i\}} \right] \leq \mathbb{E} \left[\sum_j p_t(j) \frac{1}{p_t(l_t)^2} \right] = \mathbb{E} \left[\frac{1}{p_t(l_t)} \right] = K
\]

So, plugging this in, \(\sum_{t=1}^T \mathbb{E}[\ell(l_t)] - L_T(i^*) \leq \frac{\log(K)}{\eta} + \frac{\eta}{2} TK \)

Theorem (Exp3 upper bound [Auer et al., 2002b])

With \(\eta = \sqrt{\frac{2 \log(T)}{TK}} \), UCB has \(\overline{R}_T \leq \sqrt{2TK \log(K)} \).

Only get pseudo-Regret bounds because the \(i^* \) in the proof was fixed, not a function of \(l_1, \ldots, l_T \).