Genetic Diversity in the Interference Selection Limit
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How does pervasive natural selection alter patterns of genetic diversity?

Michael Desai, Harvard University



Standard methods describe neutral evolution
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Neutral Coalescent Theory:
|. Compute the probability of a genealogy

2. Compute the probability of observed diversity
given the genealogy

Key Predictions:

I. Diversity ﬂDC/V
2. Frequency spectrumf(l)(x]
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Selection and the Shape of Genealogies
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Trace individual lineages through the fitness distribution:
-Present individuals are descended from the fittest
ancestors.



How does purifying selection shape diversity?

A simple model:
Population size:
Mutation rate:

Fitness effects:
Recombination rate: R

An even simpler model:

Population size:
Neutral mutation rate:

Deleterious mutation rate:

Fitness effect:

o

Fraction of population
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Structured Coalescent:

Steady state distribution of fitness within the population.
“Migrate” between fitness classes by mutations.
Exchangeability within each fitness class.




Strong purifying selection: “Background Selection”

Poisson(U/s)

Fraction of individuals
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Deleterious load

Strong purifying selection reduces effective population size.
Exact in the limit Ns - o while holding NU/Ns constant.

Corrections for large but finite Ns from the Structured Coalescent



What about weak or pervasive selection?

Fraction of individuals

—0 0 o X,
Relative fitness

When NVseT—U, / S ~1 orless, the distribution fluctuates too

much underneath, so the structured coalescent does not make
sense.

[Good, Walczak, Neher, Desai PLoS Genetics 2014]
[Good and Desai TPB 2013]



BGS/Structured Coalescent Break Down for Weak Selection
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Collapse with U/s (BGS) or with No (IS)
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Interference Selection collapse holds generally
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Two limits: background selection and interference selection

Interference Background
selection W selection
regime regime
10 10° 10 10° 10°
Ns

Background selection: Ns = o while holding NU/Ns constant
Inteference selection: Ns - 0 while holding No constant



Intuition: “coarse-graining” the fithess distribution

Fraction of individuals

Relative fitness

Number of individuals
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This allows us to predict diversity
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There is a fundamental problem of identifiability:
Many different parameter values lead to identical patterns of diversity.



Scaled diversity, n/x,

Scaled diversity, «/m,

Coarse-Grained Predictions
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Relative SFS, @, (7)
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Derived allele frequency, i/n
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Coarse-Grained Predictions
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A Linkage-Block Approximation for Recombining Genomes

(Effectively asexual)
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DFE, Up(s)

Distributions of Fithess Effects

1/N,
Deleterious fithess effect, s



Relative SFS, @, (7)

Interference Selection Still Applies
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Derived allele frequency, i/n

Sexual (NR =10), Ns=30, NU =354
TruncatedExp(s,,../s=3), Ns=10, NU =2230
Uniform(0,s,,..), Ns,,..=28.5, NU=1000
Finite sites (L =10 ), Ns=21.4, NU =600
Single-s, Ns =30, NU =300
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