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Introduction



A ritual

* There is perhaps a widespread belief that a quantum talk should
start with a picture of Feynman

Figure: A superposition of Feynmans



Quantum linear algebra

e Solving linear systems, eigenvalue problems, matrix
exponentials, least square problems, singular value
decompositions etc on a quantum computer.

e Many interesting, exciting progresses in the past few years.

”

* Reasonable way towards “quantum advantage”. “Quantum
machine learning”.

e Solving linear equations (MATH 54 at Berkeley, first class)
Ax=b>b
e Quantum linear system problem (QLSP)
Alx) = |b)

Voilal



Quantum linear system problem (QLSP)

e All vectors must be normalized. A€ CV*N |p) € CN, N =27,
I1b)||3 := (b|b) = 1. WLOG [|A]l, = 1.

e Solution vector
1) < A7 |b).

¢ How to put the information in A, |b) into a quantum computer?
read-in problem. Oracular assumption.

e Query complexity: the number of oracles used.
Gate complexity. Rely on implementation of query models.



Quantum speedup for QLSP

e x: condition number of A.  e: target accuracy. Proper
assumptions on A (e.g. d-sparse) so that oracles cost poly(n).

e (Harrow-Hassadim-Lloyd, 2009): O(x2/e).

e Exponential speedup with respect to n? Answer could depend
on read-in / read-out models (Tang, 2019)

* (Childs-Kothari-Somma, 2017): Linear combination of unitary
(LCU). O(x2 poly log(1/¢)))

* (Low-Chuang, 2017) (Gilyén-Su-Low-Wiebe, 2019): Quantum
signal processing (QSP). O(x? log(1/e)))



Comparison with classical iterative solvers

Positive definite matrix. Error in A-norm

Steepest descent: O(Nk log(1/¢)); Conjugate gradient:
O(NV/klog(1/€))

Quantum algorithms can scale better in N but worse in k.

Lower bound: Quantum solver cannot generally achieve O(x'~?)
complexity for any § > 0 (Harrow-Hassadim-Lloyd, 2009)

Goal of near-optimal quantum linear solver: O(x poly log(1/¢))
complexity.
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LCU for QLSP: Basic idea

e Ac CN*N Hermitian. ||A|, = 1. Condition number &.
e spec(A) € D, = [-1,—x"JU[x"T1].

e A~ is non-unitary. Matrix function expansion
Yy
M—1
A1~ Z Cr o 1Al
k=0

e Hamiltonian simulation problem. Linear combination of unitaries
(LCU). Efficient: M terms with log M ancilla qubits.
(Berry-Childs-Cleve-Kothari-Somma, 2014)
(Childs-Kothari-Somma, 2017)



LCU for QLSP: cost

e Cost of et |3)) (for longest t)

Ot log(t/€)) ~ O(x poly log(1/e))

e QOverall cost (suitable implementation of the select oracle)

(’N)(m poly log(1/¢€)) x (5(#;2 poly log(1/¢€)) = (5(#;3 poly log(1/¢)))

Cost of each simulation # Repetition
(due to success prob.)

e Using amplitude amplification, can be improved to

O(# poly log(1/€)) x O(k poly log(1/¢)) = O(x2 poly log(1/e)))

Cost of each simulation # Repetition
(due to success prob.)




Compare the complexities of QLSP solvers

Algorithm

Query complexity

Remark

HHL (Harrow et al 2009)

O(K?/¢)

w.  VTAA, complexity becomes
O(x/€%) (Ambainis 2010)

Linear combination of uni-
taries (LCU) (Childs et al
2017)

O(x? poly log(1/e))

w.  VTAA, complexity becomes

O(r poly log(1/¢))

Quantum signal processing
(QSP) (Gilyén et al 2019)

O(x2log(1/¢))

Queries the RHS only O(x) times

Randomization method (RM)
(Subasi et al 2019)

O(k/€)

Prepares a mixed state; w. re-
peated phase estimation, complex-
ity becomes O(«x poly log(1/¢))

Time-optimal adiabatic quan-
tum computing (AQC(exp))
(An-Lin, 2019)

O(# poly log(1/¢))

No need for any amplitude ampilifi-
cation. Use time-dependent Hamil-
tonian simulation.

Eigenstate filtering (Lin-Tong,
2019)

O(klog(1/€))

No need for any amplitude amplifi-
cation. Does not rely on any com-
plex subroutines.
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Near-optimal quantum linear solver: adiabatic quantum computing



Reformulating QLSP into an eigenvalue problem

Weave together linear system, eigenvalue problem, differential
equation (Subasi-Somma-Orsucci, 2019)

Qo= Iy—|b)(b]. FAIX)=|b) = QpA|x)=Qp|b)=0

= (g “60): W =100~ ()

Null(Hh) = span{[%) . |B)}, [B) = 1) |b) = (0)

e Then

b

QLSP = Find an eigenvector of H; with eigenvalue 0.



Adiabatic computation

Known eigenstate Hy |tg) = Ag |1g) for some Hy.

Interested in some eigenstate Hy 1) = A1 [11)

e H(s) = (1—s)Hy + sHs,

Lids wr(s)) = H(S)[r(s)) . [07(0)) = o)

lv7(1)) =~ (1) (up to a phase factor), T sufficiently large?

Gate-based implementation: time-dependent Trotter, for
near-optimal complexity (Low-Wiebe, 2019)



Adiabatic computation

e (Born-Fock, 1928)

A physical system remains in its instantaneous eigenstate if a given perturbation is
acting on it slowly enough and if there is a gap between the eigenvalue and the rest of
the Hamiltonian’s spectrum.

e Albash, Avron, Babcock, Cirac, Cerf, Elgart, Hagedorn, Jansen,
Lidar, Nenciu, Roland, Ruskai, Seiler, Wiebe...

a(H(s))
} Q(s)

e )




Adiabatic quantum computation (AQC) for QLSP

® |ntroduce

Ho = (gb %") . Null(Ho) = span{|B) , B)}

B -6 = (o). B=mb-(7)

¢ Adiabatically connecting \B> (zero eigenvector of Hy) to |x) (zero
eigenvector of H;) (Subasi-Somma-Orsucci, 2019)

* Only one eigenvector in the null space is of interest: transition to
|b) is prohibited during dynamics



Eigenvalue gap and fidelity

1 0.5
j%: 05 IJ§Jo.4
% . éo.a
% goz
870 201
0 02 04 06 08 1 % 0z o4 o6 o8 1
Time s Time s
1 —T=10
g
2° Fidelity:
go07 s
2
2
° F(le), [¥)) = {el)|” = Tr[PyPy].
05—~
0.4

0.2 0.4 0.6 0.8 1
Time s



Adiabatic quantum computation

Theorem (Jansen-Ruskai-Seiler, 2007)

Hamiltonian H(s), P(s) projector to eigenspace of H(s) separated by
a gap A(s) from the rest of the spectrum of H(s)

11— (Wr(8)|P(S)l¥r(s) | < n?(s), 0<s<i
where

~ CrHDO)l2 | IHD(s)ll2
() =+ AZ0) T AZ(s)

*(IHAS)] , IHOE)B o
* /0( R(s) A 2) o'}

T: time complexity; 1/ T convergence.
A(S) > A, T ~ O((A,)3/€) (worst case)




Implication in QLSP

e Lower bound of gap (Assume A > 0 for now, can be relaxed)
A(S) > Au(s)=1—5+8/k> k"
» Worst-case time complexity T ~ O(x3/¢)

¢ AQC inspired algorithm: randomization method
(Subasi-Somma-Orsucci, 2019),

T ~ O(klog(rk)/e)
e : 2-norm error of the density matrix.

* Rescheduled dynamics.
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Accelerate AQC for QLSP: Scheduling

Goal: improve the scaling AQC w.r.t. k.

Adiabatic evolution with H(f(s)) = (1 — f(s))Ho + f(s)H;

lTias [47(s)) = H(f(8)) [¢7(s)) . [47(0)) = [b)

f(s): scheduling function. 0 < f(s) <1,f(0) =0,f(1) = 1.

allow H(f(s)) to slow down when the gap is close to 0, to cancel
with the vanishing gap.

(Roland-Cerf, 2002) for time-optimal AQC of Grover search.



Choice of scheduling function:

e Schedule (Jansen-Ruskai-Seiler, 2007; Albash-Lidar, 2018)

AQC(p)

f(s) = coAL(f(s)), £(0) =0,

1
08
@
206
=
50.4
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Time s
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AQC for QLSP

Theorem (An-L., 1909.05500)

A = 0, condition number . Forany 1 < p < 2, the error of the
AQC(p) scheme is

IPr(1) = %) (X[ ll2 < Cr/T.

Therefore in order to prepare an e—approximation of the solution of
QLSP it suffices to choose the runtime T = O(k/e).

Furthermore, when p = 1,2, the bound for the runtime becomes

T = O(klog(k)/e€).

Similar results for Hermitian indefinite and non-Hermitian matrices.



Improve the dependence on ¢

e AQC(exp): modified schedule (slow at beginning and end)

i

o
©

o
=)

o
~

== V/anilla AQC|
——AQC(p=1)
AQC(p=1.5)
—AQC(p=2)
== AQC(exp)
0 0.2 0.4 0.6 0.8 1
Time s

Scheduling f(s)

I
)

f(s) = c5' /Os exp (_s’(11—s’)> ds’

o

e Intuition: error bound of (Jansen-Ruskai-Seiler, 2007) and
integration by parts (Wiebe-Babcock, 2012)

¢ Rigorous proof of exponential convergence: follow the idea of
(Nenciu, 1993), asymptotic expansion of P(s)
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Improve the dependence on ¢

Theorem (An-L., 1909.05500)

A = 0, condition number «. Then for large enough T > 0, the error of
the AQC(exp) scheme is

2\
IP7(1) — [X) (x| ]2 < Clog(r) exp (C (Hlog n) ) |

T

€

Therefore the runtime T = O </<; log?(x) log* ('Og“>>.

Near-optimal complexity (up to poly log factors).
Similar results for Hermitian indefinite and non-Hermitian matrices.
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Implications on QAOA

e Quantum approximate op timization algorithm (QAOA)
(Farhi-Goldstone-Gutmann, 2014)

) = e Pt g=iBpHo . @=iniHi g—iB1Ho i)

Trotterize AQC =-: one implementation of QAOCA

Hybrid quantum-classical optimization.

The optimal protocol of QAOA yields near-optimal complexity

QAOA is expected to follow a non-adiabatic shortcut (Brady et al,
2020)



Numerical results: positive definite matrix

4000 ~AQC) 1000 ~AQC)

“S-vanilla AQC ~+AQC(1.25
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Figure: Top: the runtime to reach desired fidelity (left: 0.99, right: 0.999) as
a function of the condition number. Bottom: a log-log plot of the runtime as a
function of the accuracy with x = 10.



Numerical results: positive definite matrix

methods | scaling w.r.t. & scaling w.r.t. 1/e
vanilla AQC 2.2022 /
RM 1.4912 /
AQC(1) 1.4619 1.1205
AQC(1.25) 1.3289 1.0530
AQC(1.5) 1.2262 1.0010
AQC(1.75) 1.1197 0.9724
AQC(2) 1.1319 0.9821
AQC(exp) 1.3718 0.5377
AQC(exp) / 1.7326 (w.r.t. log(1/¢))
QAOA 1.0635 O 6555
QACA / 1.5889 (w.r.t. log(1/¢))

Table: Numerical scaling of the runtime as a function of the condition
number and the accuracy, respectively, for the Hermitian positive definite
example.
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Numerical results: non-Hermitian matrix
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Figure: Left: the runtime to reach 0.999 fidelity as a function of the condition

number. Right: a log-log plot of the runtime as a function of the accuracy
with x = 10.
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Numerical results: non-Hermitian matrix

methods | scaling w.r.t. & scaling w.r.t. 1/e
vanilla AQC 2.1980 /
RM / /
AQC(1) 1.4937 0.9611
AQC(1.25) 1.3485 0.9249
AQC(1.5) 1.2135 0.8971
AQC(1.75) 1.0790 0.8849
AQC(2) 1.0541 0.8966
AQC(exp) 1.3438 0.4415
AQC(exp) 0.9316 (w.r.t. log(1/¢))
QAOA 0.8907 0.5626
QACA / 0.8843 (w.r.t. log(1/¢))

Table: Numerical scaling of the runtime as a function of the condition
number and the accuracy, respectively, for the non-Hermitian example.
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Near-optimal quantum linear solver: eigenstate filtering
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Block-encoding

A “grey box” for the read-in problem.

Example: A € CV*N_ Unitary matrix U € C2Nx2N,

u=("7)

Upx block-encodes A, which can be non-unitary.

Given A € CN*N | can we find U4? Block-encoding problem.

Clearly not possible if ||Al|, > 1.



Block-encoding

Definition
Given an n-qubit matrix A, if we can find a,e € Ry, and an
(m + n)-qubit matrix U, so that that

IA = (07| & In) Ua(10™) @ ) || < e,

then Uy, is called an («, m, €)-block-encoding of A.

e Example: m=1,
= (") [a-ad]<e

e Many examples of block-encoding: density operators, POVM
operators, d-sparse matrices, addition and multiplication of
block-encoded matrices (Gilyén-Su-Low-Wiebe, 2019)



Quantum signal processing

e Ais Hermitian with eigenvalue decomposition A = VDV'.
Compute matrix function f(A) = Vf(D) V1.

e Quantum signal processing: powerful, general, low-cost tool for
block-encoding f(A), where f € C[x] is a polynomial satisfying
certain parity constraints. (Low-Yoder-Chuang,2016)
(Low-Chuang, 2017) (Gilyén-Su-Low-Wiebe, 2019)

¢ Generalizable to quantum singular value transformation.




Eigenstate filtering problem

® His Hermitian. X is an eigenvalue of H, separated from the rest
of the spectrum by a gap A.

e P,: projection operator into the A-eigenspace of H. How to find a
polynomial P to approximate P,?

e Requirement: P(A\) =1 and |P()\)| is small for X' € o(H)\{\}.

P(x)




Eigenstate filtering

Theorem (L.-Tong, 1910.14596)

H is Hermitian, Uy is an (a, m,0)-block-encoding of H. X\ is an
eigenvalue of H separated from the rest of the spectrum by a gap A.
Then we can construct a (1, m+ 2, €)-block-encoding of Py, by
O((a/A) log(1/€)) applications of (controlled-) Uy and U}, and
O((ma/A)log(1/€)) other primitive quantum gates.

Best polynomial approximation.



Eigenstate filtering

® Minimax polynomial

Ru(x: A) = T( 1+2x2 Az). :

T(-1+2758%) .

00

¢ Quantum algorithm based on quantum signal processing
(Low-Chuang, 2017) (Gilyén-Su-Low-Wiebe, 2019)



Application of eigenstate filtering:
Accelerating AQC(p) for QLSP

Theorem (L.-Tong, 1910.14596)

A is a d-sparse Hermitian matrix with condition number , ||Al|, < 1.
The solution |x) oc A~" |b) can be obtained with fidelity 1 — ¢ using

1.0 (dn( log(ar) | Iog(%))) oracle queries to A, |b),

log log(dk)

2.0 (d/-c (n log(1) + (n + log(d)) |o'g°i(§?él)>) other primitive gates,
3. O(n+ log(dk)) qubits.

e Complexity of AQC(p) is T = O(k log(x)/¢€). Obtain solution |xp)
with e ~ O(1) accuracy using time O(x log(x)).

¢ Perform eigenstate filtering |x) ~ Pyx—o(H1) |Xo)-

¢ Near-optimal complexity!



Numerical results
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Figure: Left: fidelity n? converges to 1 exponentially as ¢ in the eigenvalues
filtering algorithm increases, for different . Right: the smallest ¢ needed to
achieve fixed fidelity 72 grows linearly with respect to condition number .
The initial state in eigenstate filtering is prepared by running AQC(p) for

T = 0.2k, with p = 1.5, which achieves an initial fidelity of about 0.6.



Application of eigenstate filtering:
Quantum Zeno effect for QLSP

e Start with |x(0)) = |0) |b) and end

with |x(1)) = [1) |x).

|£(f) ¢ At each step measure the state
|X(fi—1)) in the eigenbasis of H(f;).

- e Fidelity approaches 1 as step size
1x(fa)) decreases.

* Quantum Zeno effect (QZE): (Childs et al, 2002) (Aharonov,
Ta-Shma, 2003) (Boixo-Knill-Somma, 2009)



Application of eigenstate filtering:
Quantum Zeno effect for QLSP

e Start with |x(0)) = |0) |b) and end

e with [%(1)) = [1) |x).

1£(F) e At each step measure the state
|X(fi—1)) in the eigenbasis of H(f;).

ﬁ - e Fidelity approaches 1 as step size
= [x(fu)) decreases.

=

¢ Replace measurement with
eigenstate filtering (projection).

* Quantum Zeno effect (QZE): (Childs et al, 2002) (Aharonov,
Ta-Shma, 2003) (Boixo-Knill-Somma, 2009)



Application of eigenstate filtering:
Solving QLSP via quantum Zeno effect (QZE)

Theorem (L.-Tong, 1910.14596)
A is a d-sparse Hermitian matrix with condition number k, || A, < 1.
Then 1x) oc A=1|b) can be obtained with fidelity 1 — ¢ using
O (dx (log(k) log log(x) + Iog(%))) queries to A, |b),
O (ndk (log() log log(x) + log(1))) other primitive gates,
3 O(n) qubits.

¢ Fully-gate based implementation (does not rely on adiabatic
computing for the initial guess.

e Successive projection along the carefully scheduled adiabatic
path.

¢ Near-optimal complexity!
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Near-optimal algorithm for ground energy



Finding ground energy
e Hamiltonian H and its («, m, 0)-block-encoding Uy.
e |nitial state |¢g) prepared by unitary U,.
¢ Find A\ and the corresponding eigenstate |¢y).

e Assumptions

(P1) Lower bound for the overlap: | (¢o|o) | > 7,
(P2) Bounds for the ground energy and spectral gap:
Ao Spu—A2<p+ A2 < ).

Poy(x)

AO u Al X



Binary search for ground energy

Polynomial p(x) satisfies (deg p(x) = O(3 log(1)))
1—e<p(x)<1,xels1],

0<p(x)<e xe[-1,-4].

p(x) can be constructed by approximating erf (Low-Chuang, 2017).

® Hisgiveninits
(«, m, 0)-block-encoding.

* Apply p(55=*) to an initial state with
large overlap with the ground state.

¢ Can tell from the amplitude whether
Eo < x — hor Eg > x + h with high

confidence, provided Egy ¢ (x — h, x + h).

E, in this E, in this

region: region:

small large

amplitude amplitude
x-h x x+h Spectrum

What if E; i; here?

E, in this
region:
small
amplitude

i\ § i Ejinthis
i region:

i large

i i amplitude



.
Binary search for ground energy

e Solution: apply two shifted
polynomials.

e We can now return one of the
two (not mutually exclusive)
results with high confidence:
Eo>x—horEy<x+h.

X-.h X x+h Spectrum )
e Perform binary search for Ej.



Near-optimal algorithm for finding the ground energy

e Well-known result: phase estimation (Kitaev, 1995)

® Previous best results: (Ge-Tura-Cirac, 2019)

e Qur work: (L.-Tong, 2002.12508)

Preparation Ground energy Preparation
(bound known) (bound unknown)
u, | This work O(;—‘Alog(%)) 6(%Iog(%)> 6(ﬁlog(&))
~( o ~ [ o32 ~( o372
aTe19 | 0 (55) 0 (32) 0 (3a2)
U This work O(}/) (5(}(|og(%)|og(%)) (5(}(log(%)log(%)>
GTC19 o(}/) @(%\/% o(%\/g)
Extra | This work | O(1) O(log(1)) O(log(1))
qubits | GTC19 [ O(log( log(1))) | O(log(})) O(log( log(1)))

h: precision of the ground energy estimate; 1 — ¢: success probability




Optimality of the algorithm (lower bound)

Theorem (L.-Tong, 2002.12508)

Given a generic Hamiltonian H and its («, m, 0)-block-encoding Uy,
and o = ©(1). Initial state |¢o) is prepared by U, with known lower

bound of the initial overlap v and the energy gap A. Then to prepare
the ground state

1. When A = Q(1), and v — 0%, the number of queries to Uy is
Q(1/7),
2. When~ =Q(1), and A — 0", the number of queries to Uy is
Q(1/4),
3. When A =Q(1), and v — 0", the number of queries to U,
cannot be O(1/~'~?%) while the number of queries to Uy is
O(poly(1/~)) for any 6 > 0.
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Future works



Challenges

e Large-scale fully error-corrected quantum computer remains at
least really, really, really hard in the near future. Think about both
near-term and long-term for quantum linear algebra.

¢ Efficient gate-based implementation of adiabatic quantum
computing (AQC).
1. Time-dependent Hamiltonian simulation problem.
2. Commutator-based error bounds (Childs et al, 2019)

¢ Quantum signal processing: approximation theory in SU(2).
1. How to obtain the phase factors: optimization based approach
(Dong-Meng-Whaley-L., 2002.11649)
2. Polynomial approximation with nontrivial constraints.
3. Decay of phase factors and regularity of the function.
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Challenges

¢ Fast-forwarding of certain Hamiltonians, and preconditioning.
Simulation in the interaction picture.

e Quantum speedup in terms of solving ODEs / PDEs / open
quantum systems.

¢ Explore the power of the block-encoding model:
1. Block-encoding based Hamiltonian simulation can be much tricker
than Trotter based approaches in practice.
2. Connection with supremacy type circuits.

¢ Beyond the oracular assumption and demonstrate the advantage
of QLSP solvers for real applications.

e What is the proper counterpart of dense matrices in the quantum
setting? What should be the proper “quantum LINPACK
benchmarks” in the post-supremacy era?
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