Homomorphic Encryption in the SPDZ Protocol for MPC

Peter Scholl

Lattices: From Theory to Practice, Simons Institute I May 2020

Thanks to: Carsten Baum and Marcel Keller

Secure Multi-Party Computation

The SPDZ setting

- Dishonest majority
 - \succ Up to t = n 1 parties may be corrupt
 - Requires computational assumptions
- Active security:
 - Security with abort
 - ➢ No fairness
- Arithmetic circuits
 - > Typically in F_p , large prime p
 - > Can also handle Boolean circuits, rings, ...
- Originally: [Damgård Pastro Smart Zakarias `12]
 > Building on ideas from [BDOZ 11]
 > Many subsequent improvements and variants [DKLPSS13], [KOS16], [KPR18], [CDESX18], [BCS19], ...

MPC in the preprocessing model

- Preprocessing protocol can be done in advance
- Online phase:
 - > After inputs are known
 - \blacktriangleright Lightweight: only $\approx 2x$ computational overhead on plaintext circuit evaluation

Additive secret sharing with MACs

[DPSZI2, DKLPSSI3]

• Fixed MAC key $\alpha \leftarrow Z_p$

• Linear MAC scheme

 $MAC(x) = x \cdot \alpha \mod p$

Secret share the MAC key, and x, MAC(x):

 $\langle x \rangle, \langle \alpha \cdot x \rangle, \langle \alpha \rangle$

Where $\langle x \rangle$ denotes $(x_1, ..., x_n)$, such that $x = \sum_i x_i$, and party P_i holds x_i

Reconstructed shared values

[DPSZI2,DKLPSSI3]

If $\Delta \neq 0$, have to

$$\langle x \rangle$$
, $\langle \alpha \cdot x \rangle$, $\langle \alpha \rangle$

where $x = \sum x_i$, $\alpha x = \sum m_i$, $\alpha = \sum \alpha_i$

Challenge: how to check the MAC without revealing α ?

- Parties open $x' = x + \Delta$
- P_i commits to $d_i = \alpha_i \cdot x' m_i$ > Note: $d_1 + \dots + d_n = \alpha \cdot x' - MAC(x) = \alpha \cdot \Delta$ guess α to pass
- Open d_i and check they sum to 0

SPDZ online phase : securely computing arithmetic circuits

Main invariant:

• For every wire x, parties have $\langle x \rangle$, $\langle \alpha x \rangle$

Linear gates: local operations on shares

Multiplication of secret-shared values

- Have $\langle x \rangle$, $\langle y \rangle$, want $\langle x \cdot y \rangle$.
- Use random triple $\langle a \rangle, \langle b \rangle, \langle a \cdot b \rangle$
- Compute and open $\langle x + a \rangle$, $\langle y + b \rangle$
- Observe:

- SPDZ Basics: secret-sharing with MACs, online phase
- Passively secure preprocessing
- Active security
 Zero knowledge proofs
 Triple verification
- Open questions

How do we get $\langle a \rangle$, $\langle b \rangle$, $\langle a \cdot b \rangle$?

Triple generation: two main approaches **SPDZ-style** [BDOZII]-style • Depth-1 HE Linearly HE Communication via broadcast Pairwise communication channels • Scales better with n parties • Can be faster for 2 parties

Threshold homomorphic encryption

• Scheme (*KeyGen*, *Enc*, *DistDec*), plaintext space Z_p .

Write $[a] \coloneqq Enc_{pk}(a)$

• Homomorphism: O(n) additions, I multiplication

• KeyGen setup:

Not today \checkmark Common pk, additive shares $\langle sk \rangle$

- Distributed decryption protocol:
 - \succ DistDec([m]) \rightarrow m

Instantiating threshold homomorphic encryption

Parameters: $R = Z[X]/(X^N + 1)$, *N* is a power of two. Modulus q > p. "Small" distributions χ_{sk}, χ_{err} . Plaintext space: $R_p \cong Z_p^N$ (via CRT)

KeyGen:

•
$$a \leftarrow R_q, s \leftarrow \chi_{sk}, e \leftarrow \chi_{err}, b = as + pe$$

• pk = (b, -a), sk = (s)

 $Enc(\mathbf{pk}, m), (m \in R_p)$:

- $u \leftarrow \chi_{sk}, e_0, e_1 \leftarrow \chi_{err}$
- $c = (c_0, c_1) = u \cdot pk + p \cdot (e_0, e_1) + (m, 0)$

Dec(sk, c), using:

• $c_0 + c_1 \cdot s = p \cdot e' + m$

Multiplicative homomorphism:

• View *c* as polynomial:

 $c_0 + c_1(x)$

- Decrypt with c(s)
- Multiply two polynomials ⇒ multiply ciphertexts!
 - \succ Decryption requires s^2

Distributed decryption protocol

• Parties have (c_0, c_1) and shared $\langle s \rangle$

 \succ Want to open: $\langle c_0 + c_1 \cdot s \rangle$

- **Problem:** $c_0 + c_1 \cdot s = p \cdot e' + m$ >Noise e' depends on the secret key!
- Solution: noise drowning
 ➢Open

Passive triple generation: basic protocol

- P_i samples a_i, b_i, c_i' , broadcasts $[a_i], [b_i], [c_i']$
- All parties:

➢ Compute [a] = ∑_i[a_i], [b] = ∑_i[b_i] [c'] = ∑_i[c_i']
 ➢ Compute [Δ] = Mult([a], [b]) - [c']

 $\succ \Delta = DistDec([\Delta])$

•
$$P_1$$
 outputs $a_1, b_1, c_1' + \Delta$, P_i outputs a_i, b_i, c_i' $(i > 1)$

Adding MACs: essentially the same procedure

Directly gives $\langle a \rangle$, $\langle b \rangle$, $\langle a \cdot b \rangle$

- SPDZ Basics: secret-sharing with MACs, multiplication triples
- Passively secure SPDZ
- Active security
 Zero knowledge proofs
 Triple verification
- Open questions

Active security in two steps

zero knowledge proof of plaintext knowledge

Ensure ciphertexts are correctly generated

 \succ Whenever P_i sends $[a_i]$, prove knowledge of a_i and randomness

• II: triple verification

> Even with ZK proofs, may be additive errors in $\langle c \rangle$, due to *DistDec*

 \succ "sacrifice" one triple, to check another (soundness 1/p)

Zero knowledge proofs in SPDZ

• Given ciphertext

• Prove knowledge of short pre-image satisfying linear relation

Proving knowledge of short preimages

Proving knowledge of short preimages

Optimizations:

- Larger challenge space $\{X^i\}_i$ [BCS19]
 - Reduces # repetitions
 - > Only proves that 2r is short
- Amortization
 - > Batch many proofs together
 - > Additive overhead of $O(\kappa)$ ciphertexts, instead of multiplicative

Variations on the basic SPDZ protocol

• [CKRRSW20]

Depth-2 instead of depth-1
Scale-invariant HE instead of BGV
Matrix triples via HE automorphisms

- Local distributed decryption (2 parties only)
 ➤ "Local rounding" of (c₀ + c₁s) gives shared (m)
 ➤ From homomorphic secret sharing [DHRW16, BKS19]
- Key switching, modulus switching [DPSZ 12]
 Can reduce overhead of soundness slack [KPR18]

- SPDZ Basics: secret-sharing with MACs, multiplication triples
- Passively secure SPDZ and variants
- Active security
 Zero knowledge proofs
 Triple verification

• Open questions

Where can we hope to do better?

• **HE parameters:** ($\log q \approx 300-600$ bits)

➢Noise drowning in ZK proofs and distributed decryption

• ZK proofs of plaintext knowledge:

 \geq Need to run in large batches for efficiency

> Computationally expensive (\approx 40%)

 $\geq O(n^2)$ communication complexity for n parties

Passive protocol can be O(n)

Improving zero knowledge proofs

- Ideally: want negligible soundness in one-shot, and tight bounds
- Possibly via proofs on committed values: [AELNS20]
 Commit to randomness and prove shortness
 Prove commitments satisfy linear relation given by c and pk
- Questions:

>How practical is this vs naïve methods?

Does it amortize well?

A step further: removing zero knowledge proofs?

• Intuition: triple verification already guarantees correctness

• **Challenge:** ensure failure event is independent of sensitive information

- Potential impact: O(n) complexity, better parameters, less computation
- Related: Overdrive [KPR18] removes proof of correct multiplication, security related to "linear-only encryption" assumption

A step further: removing zero knowledge proofs?

- Problem I: no independence of inputs
 - Solution: commit to ciphertexts

- Problem II: decryption failures can leak
 - In SPDZ, restricted form of leakage
 Possible mitigations:
 - Abort/re-key on failure
 - Restrict number of executions
 - Increase sk entropy
 - Randomness extractor on triples

Noise drowning in distributed decryption

• Distributed decryption reveals values of the form:

• Q: Is there an approach without noise flooding?

• **Q**: What goes wrong if we reduce size of \tilde{e} ?

Alternative approach: non-interactive triple generation

- Goal: locally expand short seeds into large batch of triples
- [BCGIK**S**20]: candidate construction from low-noise ring-LPN in $Z_p[x]/(x^N + 1)$
 - + good concrete efficiency
 - Still requires many SPDZ triples to setup seeds
 - Assumption less studied when $x^N + 1$ splits completely

Conclusion

• SPDZ Protocol

Currently, most practical approach to dishonest majority MPC

• Lattices in SPDZ

Low-depth SHE, large parameters

>Heavily reliant on ZK proofs of plaintext knowledge

>Noise drowning in distributed decryption

room for improvement

References

Access yyyy/zzz at https://ia.cr/yyyy/zzz

- [AELNS20] New Techniques for Practical Lattice-Based Zero-Knowledge Thomas Attema, Muhammed Esgin, Vadim Lyubashevsky, Khanh Ngoc, Gregor Seiler. (Simons Institute Workshop)
- [BCS19] Using TopGear in Overdrive: A More Efficient ZKPoK for SPDZ Baum, Cozzo, Smart. 2019/035
- [BDOZII] Semi-Homomorphic Encryption and Multiparty Computation Bendlin, Damgard, Orlandi, Zakarias. 2011/091
- [BCGIKS20] Pseudorandom Correlation Generators From Ring-LPN Boyle, Couteau, Gilboa, Ishai, Kohl, Scholl. (coming soon)
- [BKS19] Homomorphic Secret Sharing From Lattices Without FHE Boyle, Kohl, Scholl. 2019/129
- [CKRRSW20] Maliciously Secure Matrix Multiplication with Applications to Private Deep Learning Chen, Kim, Razenshteyn, Rotaru, Song, Wagh. 2020/451
- [DKLPSS13] Practical Covertly Secure MPC for Dishonest Majority or: Breaking the SPDZ Limits Damgård, Keller, Larraia, Pastro, Scholl, Smart. 2012/642
- [DPSZ12] Multiparty Computation from Somewhat Homomorphic Encryption Damgård, Pastro, Smart, Zakarias. 2011/535
- [KPR18] Overdrive: Making SPDZ Great Again Keller, Pastro, Rotaru. 2017/1230

