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Plan for today

Peter Scholl 2

SPDZ Protocol

What does it do?

How does it work?
(passive security)

Active security

Where is it going?

sacrificing

zero knowledge

MACs

secret sharing

MPC

open problems

distributed
decryption



Secure Multi-Party Computation

a b

c d

Goal: Securely compute f(a,b,c,d)

4Peter Scholl



The SPDZ setting
• Dishonest majority

 Up to 𝑡𝑡 = 𝑛𝑛 − 1 parties may be corrupt
 Requires computational assumptions

• Active security:
 Security with abort
 No fairness

• Arithmetic circuits
 Typically in 𝐹𝐹𝑝𝑝, large prime 𝑝𝑝
 Can also handle Boolean circuits, rings, …

• Originally: [Damgård Pastro Smart Zakarias `12]
 Building on ideas from [BDOZ 11]
 Many subsequent improvements and variants
[DKLPSS13], [KOS16], [KPR18], [CDESX18], [BCS19], …
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MPC in the preprocessing model
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Preprocessing

• Sample 𝑅𝑅1, … ,𝑅𝑅𝑛𝑛
Online

• Preprocessing protocol can be done in advance

• Online phase:

 After inputs are known

 Lightweight: only ≈ 2x computational overhead on plaintext circuit evaluation

𝑥𝑥1,𝑅𝑅1 𝑥𝑥2,𝑅𝑅2

𝑥𝑥3,𝑅𝑅3 𝑥𝑥4,𝑅𝑅4



Additive secret sharing with MACs

• Fixed MAC key 𝛼𝛼 ← 𝑍𝑍𝑝𝑝

• Linear MAC scheme

𝑀𝑀𝑀𝑀𝑀𝑀 𝑥𝑥 = 𝑥𝑥 ⋅ 𝛼𝛼 mod 𝑝𝑝

Secret share the MAC key, and 𝑥𝑥, 𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥):

𝑥𝑥 , 𝛼𝛼 ⋅ 𝑥𝑥 , 〈𝛼𝛼〉

Where 〈𝑥𝑥〉 denotes 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 , such that 𝑥𝑥 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖, and party 𝑃𝑃𝑖𝑖 holds 𝑥𝑥𝑖𝑖
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[DPSZ12,DKLPSS13]



Reconstructed shared values

𝑥𝑥 , 𝛼𝛼 ⋅ 𝑥𝑥 , 〈𝛼𝛼〉

where 𝑥𝑥 = ∑𝑥𝑥𝑖𝑖 , 𝛼𝛼𝑥𝑥 = ∑𝑚𝑚𝑖𝑖 , 𝛼𝛼 = ∑𝛼𝛼𝑖𝑖

Challenge: how to check the MAC without revealing 𝛼𝛼?

• Parties open 𝑥𝑥′ = 𝑥𝑥 + Δ

• 𝑃𝑃𝑖𝑖 commits to 𝑑𝑑𝑖𝑖 = 𝛼𝛼𝑖𝑖 ⋅ 𝑥𝑥′ − 𝑚𝑚𝑖𝑖

Note: 𝑑𝑑1 + ⋯+ 𝑑𝑑𝑛𝑛 = 𝛼𝛼 ⋅ 𝑥𝑥′ − MAC(𝑥𝑥)

• Open 𝑑𝑑𝑖𝑖 and check they sum to 0
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= 𝛼𝛼 ⋅ Δ

If Δ ≠ 0, have to 
guess 𝛼𝛼 to pass

[DPSZ12,DKLPSS13]



SPDZ online phase : securely computing 
arithmetic circuits
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Main invariant:

• For every wire 𝑥𝑥, parties have 𝑥𝑥 , 〈𝛼𝛼𝑥𝑥〉

Linear gates: local operations on shares



• Have ⟨𝑥𝑥⟩, ⟨𝑦𝑦⟩, want ⟨𝑥𝑥 ⋅ 𝑦𝑦⟩.
• Use random triple ⟨𝑎𝑎⟩, ⟨𝑏𝑏⟩, ⟨𝑎𝑎 ⋅ 𝑏𝑏⟩
• Compute and open 𝑥𝑥 + 𝑎𝑎 , 〈𝑦𝑦 + 𝑏𝑏〉

• Observe:

𝑥𝑥 ⋅ 𝑦𝑦 = 𝑥𝑥 + 𝑎𝑎 − 𝑎𝑎 ⋅ 𝑦𝑦 + 𝑏𝑏 − 𝑏𝑏
= 𝑥𝑥 + 𝑎𝑎 ⋅ 𝑦𝑦 + 𝑏𝑏 − 𝑥𝑥 + 𝑎𝑎 ⋅ 𝑏𝑏 − 𝑎𝑎 ⋅ 𝑦𝑦 + 𝑏𝑏 + 𝑎𝑎 ⋅ 𝑏𝑏

Multiplication of secret-shared values
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preprocessedopened



• SPDZ Basics: secret-sharing with MACs, online phase

• Passively secure preprocessing

• Active security
Zero knowledge proofs
Triple verification

• Open questions
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How do we get ⟨𝑎𝑎⟩, ⟨𝑏𝑏⟩, ⟨𝑎𝑎 ⋅ 𝑏𝑏⟩?

Preprocessing box

𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, …

𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, …

𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛, 𝑐𝑐𝑛𝑛, …



Triple generation: two main approaches

SPDZ-style

• Depth-1 HE
• Communication via broadcast
• Scales better with 𝑛𝑛 parties

[BDOZ11]-style

• Linearly HE
• Pairwise communication 

channels
• Can be faster for 2 parties
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Threshold homomorphic encryption

• Scheme (𝐾𝐾𝐾𝐾𝑦𝑦𝐾𝐾𝐾𝐾𝑛𝑛, 𝐸𝐸𝑛𝑛𝑐𝑐, 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝐾𝐾𝑐𝑐), plaintext space 𝑍𝑍𝑝𝑝.

• Homomorphism: 𝑂𝑂(𝑛𝑛) additions, 1 multiplication

• KeyGen setup:
 Common 𝑝𝑝𝑝𝑝, additive shares 〈𝐷𝐷𝑝𝑝〉

• Distributed decryption protocol:
 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝐾𝐾𝑐𝑐 𝑚𝑚 → 𝑚𝑚
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Write 𝑎𝑎 ≔ 𝐸𝐸𝑛𝑛𝑐𝑐𝑝𝑝𝑝𝑝(𝑎𝑎)

Not today



Instantiating threshold homomorphic 
encryption
Parameters:  𝑅𝑅 = 𝑍𝑍 𝑋𝑋 /(𝑋𝑋𝑁𝑁 + 1), 𝑁𝑁 is a power of two.
Modulus 𝑞𝑞 > 𝑝𝑝. “Small” distributions 𝜒𝜒𝑠𝑠𝑝𝑝,𝜒𝜒𝑒𝑒𝑒𝑒𝑒𝑒.
Plaintext space: 𝑅𝑅𝑝𝑝 ≅ 𝑍𝑍𝑝𝑝𝑁𝑁 (via CRT)

𝐾𝐾𝐾𝐾𝑦𝑦𝐾𝐾𝐾𝐾𝑛𝑛:

• 𝑎𝑎 ← 𝑅𝑅𝑞𝑞, 𝐷𝐷 ← 𝜒𝜒𝑠𝑠𝑝𝑝, 𝐾𝐾 ← 𝜒𝜒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑏𝑏 = 𝑎𝑎𝐷𝐷 + 𝑝𝑝𝐾𝐾
• 𝒑𝒑𝒑𝒑 = (𝑏𝑏,−𝑎𝑎), 𝐷𝐷𝑝𝑝 = (𝐷𝐷)

𝐸𝐸𝑛𝑛𝑐𝑐(𝒑𝒑𝒑𝒑,𝑚𝑚), (𝑚𝑚 ∈ 𝑅𝑅𝑝𝑝):

• 𝑢𝑢 ← 𝜒𝜒𝑠𝑠𝑝𝑝, 𝐾𝐾0, 𝐾𝐾1 ← 𝜒𝜒𝑒𝑒𝑒𝑒𝑒𝑒
• 𝒄𝒄 = 𝑐𝑐0, 𝑐𝑐1 = 𝑢𝑢 ⋅ 𝒑𝒑𝒑𝒑 + 𝑝𝑝 ⋅ 𝐾𝐾0, 𝐾𝐾1 + (𝑚𝑚, 0)

𝐷𝐷𝐾𝐾𝑐𝑐 𝐷𝐷𝑝𝑝, 𝒄𝒄 , using:

• 𝑐𝑐0 + 𝑐𝑐1 ⋅ 𝐷𝐷 = 𝑝𝑝 ⋅ 𝐾𝐾′ + 𝑚𝑚
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Multiplicative homomorphism:

• View 𝒄𝒄 as polynomial:
𝑐𝑐0 + 𝑐𝑐1(𝑥𝑥)

• Decrypt with 𝑐𝑐(𝐷𝐷)
• Multiply two polynomials ⇒ multiply 

ciphertexts!
 Decryption requires 𝐷𝐷2

[BV11, BGV12]



Distributed decryption protocol

• Parties have (𝑐𝑐0, 𝑐𝑐1) and shared 〈𝐷𝐷〉

Want to open: 〈𝑐𝑐0 + 𝑐𝑐1 ⋅ 𝐷𝐷〉

• Problem: 𝑐𝑐0 + 𝑐𝑐1 ⋅ 𝐷𝐷 = 𝑝𝑝 ⋅ 𝐾𝐾𝑒 + 𝑚𝑚
Noise 𝐾𝐾𝑒 depends on the secret key!

• Solution: noise drowning
Open

〈𝑐𝑐0 + 𝑐𝑐1 ⋅ 𝐷𝐷〉 + 𝑝𝑝 ⋅ 〈�̃�𝐾〉
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Superpolynomially larger than 𝐾𝐾𝑒
e.g. �̃�𝐾 ≈ 2𝜅𝜅 ⋅ |𝐾𝐾𝑒|



Passive triple generation: basic protocol

• 𝑃𝑃𝑖𝑖 samples 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 , 𝑐𝑐𝑖𝑖𝑒, broadcasts 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 , 𝑐𝑐𝑖𝑖𝑒

• All parties:

 Compute 𝑎𝑎 = ∑𝑖𝑖[𝑎𝑎𝑖𝑖], 𝑏𝑏 = ∑𝑖𝑖 𝑏𝑏𝑖𝑖 𝑐𝑐𝑒 = ∑𝑖𝑖 𝑐𝑐𝑖𝑖𝑒

 Compute Δ = 𝑀𝑀𝑢𝑢𝑀𝑀𝑡𝑡 𝑎𝑎 , 𝑏𝑏 − [𝑐𝑐′]

 Δ = 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝐾𝐾𝑐𝑐( Δ )

• 𝑃𝑃1 outputs 𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1𝑒 + Δ, 𝑃𝑃𝑖𝑖 outputs 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 , 𝑐𝑐𝑖𝑖𝑒 (𝐷𝐷 > 1)
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Directly gives 𝑎𝑎 , 𝑏𝑏 , ⟨𝑎𝑎 ⋅ 𝑏𝑏⟩

Adding MACs: essentially the 
same procedure



• SPDZ Basics: secret-sharing with MACs, multiplication triples

• Passively secure SPDZ

• Active security
Zero knowledge proofs
Triple verification

• Open questions
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Active security in two steps

• 1: zero knowledge proof of plaintext knowledge

Ensure ciphertexts are correctly generated

Whenever 𝑃𝑃𝑖𝑖 sends [𝑎𝑎𝑖𝑖], prove knowledge of 𝑎𝑎𝑖𝑖 and randomness

• II: triple verification

Even with ZK proofs, may be additive errors in 〈𝑐𝑐〉, due to 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝐾𝐾𝑐𝑐

“sacrifice” one triple, to check another (soundness 1/𝑝𝑝)
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Zero knowledge proofs in SPDZ

• Given ciphertext

• Prove knowledge of short pre-image satisfying linear relation
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𝑐𝑐0
𝑐𝑐1

−𝑏𝑏
𝑎𝑎

𝐾𝐾0
𝐾𝐾1

𝑚𝑚
0++= 𝑢𝑢⋅

−𝑏𝑏 1 0 1
𝑎𝑎 0 1 0

𝑢𝑢
𝐾𝐾0
𝐾𝐾1
𝑚𝑚

= ⋅



Introduces large soundness 
slack, need bigger 𝑞𝑞

Proving knowledge of short preimages

Standard Σ-protocol:

Two options: (a) rejection sampling, or (b) noise drowning
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𝒄𝒄 = 𝑴𝑴
𝒓𝒓

⋅

𝒄𝒄′ = 𝑴𝑴 ⋅ 𝒓𝒓𝑒

𝐾𝐾 ← {0,1}
𝒛𝒛 = 𝒓𝒓′ + 𝐾𝐾 ⋅ 𝒓𝒓

Can leak on 𝒓𝒓

Soundness ½ 



Proving knowledge of short preimages

Peter Scholl 23

𝒄𝒄 = 𝑴𝑴
𝒓𝒓

⋅

Optimizations:

• Larger challenge space {𝑋𝑋𝑖𝑖}𝑖𝑖 [BCS19]

 Reduces # repetitions

 Only proves that 2𝑟𝑟 is short

• Amortization

 Batch many proofs together

 Additive overhead of O(𝜅𝜅) ciphertexts, instead of multiplicative



Variations on the basic SPDZ protocol

• [CKRRSW20]
Depth-2 instead of depth-1
Scale-invariant HE instead of BGV
Matrix triples via HE automorphisms

• Local distributed decryption (2 parties only)
 “Local rounding” of 〈𝑐𝑐0 + 𝑐𝑐1𝐷𝐷〉 gives shared 〈𝑚𝑚〉
From homomorphic secret sharing [DHRW16, BKS19]

• Key switching, modulus switching [DPSZ 12]
Can reduce overhead of soundness slack [KPR18]
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• SPDZ Basics: secret-sharing with MACs, multiplication triples

• Passively secure SPDZ and variants

• Active security
Zero knowledge proofs
Triple verification

• Open questions
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Where can we hope to do better?

• HE parameters: (log 𝑞𝑞 ≈ 300-600 bits)

Noise drowning in ZK proofs and distributed decryption

• ZK proofs of plaintext knowledge:

Need to run in large batches for efficiency

Computationally expensive (≈40%)

𝑂𝑂(𝑛𝑛2) communication complexity for 𝑛𝑛 parties
 Passive protocol can be 𝑂𝑂(𝑛𝑛)
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Improving zero knowledge proofs

• Ideally: want negligible soundness in one-shot, and tight bounds

• Possibly via proofs on committed values: [AELNS20]
Commit to randomness and prove shortness
Prove commitments satisfy linear relation given by 𝒄𝒄 and 𝒑𝒑𝒑𝒑

• Questions:
How practical is this vs naïve methods?
Does it amortize well?
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A step further: removing zero knowledge 
proofs?
• Intuition: triple verification already
guarantees correctness

• Challenge: ensure failure event is
independent of sensitive information

• Potential impact: 𝑂𝑂(𝑛𝑛) complexity, better parameters, less computation

• Related: Overdrive [KPR18] removes proof of correct multiplication, security related to
“linear-only encryption” assumption
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A step further: removing zero knowledge 
proofs?
• Problem I: no independence of inputs

Solution: commit to ciphertexts

• Problem II: decryption failures can leak
In SPDZ, restricted form of leakage
Possible mitigations:

 Abort/re-key on failure
 Restrict number of executions
 Increase 𝐷𝐷𝑝𝑝 entropy
 Randomness extractor on triples
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My ciphertext
is 14159265 Mine is 

− 14159265

If 𝐷𝐷𝐾𝐾𝑐𝑐 𝒄𝒄 succeeds:
𝑏𝑏 = 1

Else:
𝑏𝑏 = 0

𝒄𝒄

𝑏𝑏

(oversimplified)



Noise drowning in distributed decryption

• Distributed decryption reveals values of the form:

𝑚𝑚 + 𝑝𝑝 ⋅ 𝐾𝐾 + 𝐾𝐾′𝐷𝐷 + �̃�𝐾

• Q: Is there an approach without noise flooding?

• Q: What goes wrong if we reduce size of �̃�𝐾?

Peter Scholl 30

secret keynoise terms

Uniform in {±𝐵𝐵 ⋅ 2𝜅𝜅}



Alternative approach: non-interactive triple 
generation

• Goal: locally expand short seeds into large batch of triples

• [BCGIKS20]: candidate construction from low-noise ring-LPN in 𝑍𝑍𝑝𝑝 𝑥𝑥 /(𝑥𝑥𝑁𝑁 + 1)
+ good concrete efficiency
− Still requires many SPDZ triples to setup seeds
− Assumption less studied when 𝑥𝑥𝑁𝑁 + 1 splits completely
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correlated
seeds

SPDZ triples



Conclusion

• SPDZ Protocol
Currently, most practical approach to dishonest majority MPC

• Lattices in SPDZ
Low-depth SHE, large parameters

Heavily reliant on ZK proofs of plaintext knowledge

Noise drowning in distributed decryption
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room for
improvement
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