
Homomorphic Encryption in the SPDZ
Protocol for MPC

Peter Scholl

Lattices: From Theory to Practice, Simons Institute
1 May 2020

Thanks to: Carsten Baum and Marcel Keller

Plan for today

Peter Scholl 2

SPDZ Protocol

What does it do?

How does it work?
(passive security)

Active security

Where is it going?

sacrificing

zero knowledge

MACs

secret sharing

MPC

open problems

distributed
decryption

Secure Multi-Party Computation

a b

c d

Goal: Securely compute f(a,b,c,d)

4Peter Scholl

The SPDZ setting
• Dishonest majority

 Up to 𝑡𝑡 = 𝑛𝑛 − 1 parties may be corrupt
 Requires computational assumptions

• Active security:
 Security with abort
 No fairness

• Arithmetic circuits
 Typically in 𝐹𝐹𝑝𝑝, large prime 𝑝𝑝
 Can also handle Boolean circuits, rings, …

• Originally: [Damgård Pastro Smart Zakarias `12]
 Building on ideas from [BDOZ 11]
 Many subsequent improvements and variants
[DKLPSS13], [KOS16], [KPR18], [CDESX18], [BCS19], …

Peter Scholl 6

MPC in the preprocessing model

Peter Scholl 7

Preprocessing

• Sample 𝑅𝑅1, … ,𝑅𝑅𝑛𝑛
Online

• Preprocessing protocol can be done in advance

• Online phase:

 After inputs are known

 Lightweight: only ≈ 2x computational overhead on plaintext circuit evaluation

𝑥𝑥1,𝑅𝑅1 𝑥𝑥2,𝑅𝑅2

𝑥𝑥3,𝑅𝑅3 𝑥𝑥4,𝑅𝑅4

Additive secret sharing with MACs

• Fixed MAC key 𝛼𝛼 ← 𝑍𝑍𝑝𝑝

• Linear MAC scheme

𝑀𝑀𝑀𝑀𝑀𝑀 𝑥𝑥 = 𝑥𝑥 ⋅ 𝛼𝛼 mod 𝑝𝑝

Secret share the MAC key, and 𝑥𝑥, 𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥):

𝑥𝑥 , 𝛼𝛼 ⋅ 𝑥𝑥 , 〈𝛼𝛼〉

Where 〈𝑥𝑥〉 denotes 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 , such that 𝑥𝑥 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖, and party 𝑃𝑃𝑖𝑖 holds 𝑥𝑥𝑖𝑖

Peter Scholl 8

[DPSZ12,DKLPSS13]

Reconstructed shared values

𝑥𝑥 , 𝛼𝛼 ⋅ 𝑥𝑥 , 〈𝛼𝛼〉

where 𝑥𝑥 = ∑𝑥𝑥𝑖𝑖 , 𝛼𝛼𝑥𝑥 = ∑𝑚𝑚𝑖𝑖 , 𝛼𝛼 = ∑𝛼𝛼𝑖𝑖

Challenge: how to check the MAC without revealing 𝛼𝛼?

• Parties open 𝑥𝑥′ = 𝑥𝑥 + Δ

• 𝑃𝑃𝑖𝑖 commits to 𝑑𝑑𝑖𝑖 = 𝛼𝛼𝑖𝑖 ⋅ 𝑥𝑥′ − 𝑚𝑚𝑖𝑖

Note: 𝑑𝑑1 + ⋯+ 𝑑𝑑𝑛𝑛 = 𝛼𝛼 ⋅ 𝑥𝑥′ − MAC(𝑥𝑥)

• Open 𝑑𝑑𝑖𝑖 and check they sum to 0

Peter Scholl 9

= 𝛼𝛼 ⋅ Δ

If Δ ≠ 0, have to
guess 𝛼𝛼 to pass

[DPSZ12,DKLPSS13]

SPDZ online phase : securely computing
arithmetic circuits

Peter Scholl 10

Main invariant:

• For every wire 𝑥𝑥, parties have 𝑥𝑥 , 〈𝛼𝛼𝑥𝑥〉

Linear gates: local operations on shares

• Have ⟨𝑥𝑥⟩, ⟨𝑦𝑦⟩, want ⟨𝑥𝑥 ⋅ 𝑦𝑦⟩.
• Use random triple ⟨𝑎𝑎⟩, ⟨𝑏𝑏⟩, ⟨𝑎𝑎 ⋅ 𝑏𝑏⟩
• Compute and open 𝑥𝑥 + 𝑎𝑎 , 〈𝑦𝑦 + 𝑏𝑏〉

• Observe:

𝑥𝑥 ⋅ 𝑦𝑦 = 𝑥𝑥 + 𝑎𝑎 − 𝑎𝑎 ⋅ 𝑦𝑦 + 𝑏𝑏 − 𝑏𝑏
= 𝑥𝑥 + 𝑎𝑎 ⋅ 𝑦𝑦 + 𝑏𝑏 − 𝑥𝑥 + 𝑎𝑎 ⋅ 𝑏𝑏 − 𝑎𝑎 ⋅ 𝑦𝑦 + 𝑏𝑏 + 𝑎𝑎 ⋅ 𝑏𝑏

Multiplication of secret-shared values

Peter Scholl 11

preprocessedopened

• SPDZ Basics: secret-sharing with MACs, online phase

• Passively secure preprocessing

• Active security
Zero knowledge proofs
Triple verification

• Open questions

Peter Scholl 12

Peter Scholl 13

How do we get ⟨𝑎𝑎⟩, ⟨𝑏𝑏⟩, ⟨𝑎𝑎 ⋅ 𝑏𝑏⟩?

Preprocessing box

𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, …

𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, …

𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛, 𝑐𝑐𝑛𝑛, …

Triple generation: two main approaches

SPDZ-style

• Depth-1 HE
• Communication via broadcast
• Scales better with 𝑛𝑛 parties

[BDOZ11]-style

• Linearly HE
• Pairwise communication

channels
• Can be faster for 2 parties

Peter Scholl 14

Threshold homomorphic encryption

• Scheme (𝐾𝐾𝐾𝐾𝑦𝑦𝐾𝐾𝐾𝐾𝑛𝑛, 𝐸𝐸𝑛𝑛𝑐𝑐, 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝐾𝐾𝑐𝑐), plaintext space 𝑍𝑍𝑝𝑝.

• Homomorphism: 𝑂𝑂(𝑛𝑛) additions, 1 multiplication

• KeyGen setup:
 Common 𝑝𝑝𝑝𝑝, additive shares 〈𝐷𝐷𝑝𝑝〉

• Distributed decryption protocol:
 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝐾𝐾𝑐𝑐 𝑚𝑚 → 𝑚𝑚

Peter Scholl 15

Write 𝑎𝑎 ≔ 𝐸𝐸𝑛𝑛𝑐𝑐𝑝𝑝𝑝𝑝(𝑎𝑎)

Not today

Instantiating threshold homomorphic
encryption
Parameters: 𝑅𝑅 = 𝑍𝑍 𝑋𝑋 /(𝑋𝑋𝑁𝑁 + 1), 𝑁𝑁 is a power of two.
Modulus 𝑞𝑞 > 𝑝𝑝. “Small” distributions 𝜒𝜒𝑠𝑠𝑝𝑝,𝜒𝜒𝑒𝑒𝑒𝑒𝑒𝑒.
Plaintext space: 𝑅𝑅𝑝𝑝 ≅ 𝑍𝑍𝑝𝑝𝑁𝑁 (via CRT)

𝐾𝐾𝐾𝐾𝑦𝑦𝐾𝐾𝐾𝐾𝑛𝑛:

• 𝑎𝑎 ← 𝑅𝑅𝑞𝑞, 𝐷𝐷 ← 𝜒𝜒𝑠𝑠𝑝𝑝, 𝐾𝐾 ← 𝜒𝜒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑏𝑏 = 𝑎𝑎𝐷𝐷 + 𝑝𝑝𝐾𝐾
• 𝒑𝒑𝒑𝒑 = (𝑏𝑏,−𝑎𝑎), 𝐷𝐷𝑝𝑝 = (𝐷𝐷)

𝐸𝐸𝑛𝑛𝑐𝑐(𝒑𝒑𝒑𝒑,𝑚𝑚), (𝑚𝑚 ∈ 𝑅𝑅𝑝𝑝):

• 𝑢𝑢 ← 𝜒𝜒𝑠𝑠𝑝𝑝, 𝐾𝐾0, 𝐾𝐾1 ← 𝜒𝜒𝑒𝑒𝑒𝑒𝑒𝑒
• 𝒄𝒄 = 𝑐𝑐0, 𝑐𝑐1 = 𝑢𝑢 ⋅ 𝒑𝒑𝒑𝒑 + 𝑝𝑝 ⋅ 𝐾𝐾0, 𝐾𝐾1 + (𝑚𝑚, 0)

𝐷𝐷𝐾𝐾𝑐𝑐 𝐷𝐷𝑝𝑝, 𝒄𝒄 , using:

• 𝑐𝑐0 + 𝑐𝑐1 ⋅ 𝐷𝐷 = 𝑝𝑝 ⋅ 𝐾𝐾′ + 𝑚𝑚

Peter Scholl 16

Multiplicative homomorphism:

• View 𝒄𝒄 as polynomial:
𝑐𝑐0 + 𝑐𝑐1(𝑥𝑥)

• Decrypt with 𝑐𝑐(𝐷𝐷)
• Multiply two polynomials ⇒ multiply

ciphertexts!
 Decryption requires 𝐷𝐷2

[BV11, BGV12]

Distributed decryption protocol

• Parties have (𝑐𝑐0, 𝑐𝑐1) and shared 〈𝐷𝐷〉

Want to open: 〈𝑐𝑐0 + 𝑐𝑐1 ⋅ 𝐷𝐷〉

• Problem: 𝑐𝑐0 + 𝑐𝑐1 ⋅ 𝐷𝐷 = 𝑝𝑝 ⋅ 𝐾𝐾𝑒 + 𝑚𝑚
Noise 𝐾𝐾𝑒 depends on the secret key!

• Solution: noise drowning
Open

〈𝑐𝑐0 + 𝑐𝑐1 ⋅ 𝐷𝐷〉 + 𝑝𝑝 ⋅ 〈�̃�𝐾〉

Peter Scholl 17

Superpolynomially larger than 𝐾𝐾𝑒
e.g. �̃�𝐾 ≈ 2𝜅𝜅 ⋅ |𝐾𝐾𝑒|

Passive triple generation: basic protocol

• 𝑃𝑃𝑖𝑖 samples 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 , 𝑐𝑐𝑖𝑖𝑒, broadcasts 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 , 𝑐𝑐𝑖𝑖𝑒

• All parties:

 Compute 𝑎𝑎 = ∑𝑖𝑖[𝑎𝑎𝑖𝑖], 𝑏𝑏 = ∑𝑖𝑖 𝑏𝑏𝑖𝑖 𝑐𝑐𝑒 = ∑𝑖𝑖 𝑐𝑐𝑖𝑖𝑒

 Compute Δ = 𝑀𝑀𝑢𝑢𝑀𝑀𝑡𝑡 𝑎𝑎 , 𝑏𝑏 − [𝑐𝑐′]

 Δ = 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝐾𝐾𝑐𝑐(Δ)

• 𝑃𝑃1 outputs 𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1𝑒 + Δ, 𝑃𝑃𝑖𝑖 outputs 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 , 𝑐𝑐𝑖𝑖𝑒 (𝐷𝐷 > 1)

Peter Scholl 18

Directly gives 𝑎𝑎 , 𝑏𝑏 , ⟨𝑎𝑎 ⋅ 𝑏𝑏⟩

Adding MACs: essentially the
same procedure

• SPDZ Basics: secret-sharing with MACs, multiplication triples

• Passively secure SPDZ

• Active security
Zero knowledge proofs
Triple verification

• Open questions

Peter Scholl 19

Active security in two steps

• 1: zero knowledge proof of plaintext knowledge

Ensure ciphertexts are correctly generated

Whenever 𝑃𝑃𝑖𝑖 sends [𝑎𝑎𝑖𝑖], prove knowledge of 𝑎𝑎𝑖𝑖 and randomness

• II: triple verification

Even with ZK proofs, may be additive errors in 〈𝑐𝑐〉, due to 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝐾𝐾𝑐𝑐

“sacrifice” one triple, to check another (soundness 1/𝑝𝑝)

Peter Scholl 20

Zero knowledge proofs in SPDZ

• Given ciphertext

• Prove knowledge of short pre-image satisfying linear relation

Peter Scholl 21

𝑐𝑐0
𝑐𝑐1

−𝑏𝑏
𝑎𝑎

𝐾𝐾0
𝐾𝐾1

𝑚𝑚
0++= 𝑢𝑢⋅

−𝑏𝑏 1 0 1
𝑎𝑎 0 1 0

𝑢𝑢
𝐾𝐾0
𝐾𝐾1
𝑚𝑚

= ⋅

Introduces large soundness
slack, need bigger 𝑞𝑞

Proving knowledge of short preimages

Standard Σ-protocol:

Two options: (a) rejection sampling, or (b) noise drowning

Peter Scholl 22

𝒄𝒄 = 𝑴𝑴
𝒓𝒓

⋅

𝒄𝒄′ = 𝑴𝑴 ⋅ 𝒓𝒓𝑒

𝐾𝐾 ← {0,1}
𝒛𝒛 = 𝒓𝒓′ + 𝐾𝐾 ⋅ 𝒓𝒓

Can leak on 𝒓𝒓

Soundness ½

Proving knowledge of short preimages

Peter Scholl 23

𝒄𝒄 = 𝑴𝑴
𝒓𝒓

⋅

Optimizations:

• Larger challenge space {𝑋𝑋𝑖𝑖}𝑖𝑖 [BCS19]

 Reduces # repetitions

 Only proves that 2𝑟𝑟 is short

• Amortization

 Batch many proofs together

 Additive overhead of O(𝜅𝜅) ciphertexts, instead of multiplicative

Variations on the basic SPDZ protocol

• [CKRRSW20]
Depth-2 instead of depth-1
Scale-invariant HE instead of BGV
Matrix triples via HE automorphisms

• Local distributed decryption (2 parties only)
 “Local rounding” of 〈𝑐𝑐0 + 𝑐𝑐1𝐷𝐷〉 gives shared 〈𝑚𝑚〉
From homomorphic secret sharing [DHRW16, BKS19]

• Key switching, modulus switching [DPSZ 12]
Can reduce overhead of soundness slack [KPR18]

Peter Scholl 24

• SPDZ Basics: secret-sharing with MACs, multiplication triples

• Passively secure SPDZ and variants

• Active security
Zero knowledge proofs
Triple verification

• Open questions

Peter Scholl 25

Where can we hope to do better?

• HE parameters: (log 𝑞𝑞 ≈ 300-600 bits)

Noise drowning in ZK proofs and distributed decryption

• ZK proofs of plaintext knowledge:

Need to run in large batches for efficiency

Computationally expensive (≈40%)

𝑂𝑂(𝑛𝑛2) communication complexity for 𝑛𝑛 parties
 Passive protocol can be 𝑂𝑂(𝑛𝑛)

Peter Scholl 26

Improving zero knowledge proofs

• Ideally: want negligible soundness in one-shot, and tight bounds

• Possibly via proofs on committed values: [AELNS20]
Commit to randomness and prove shortness
Prove commitments satisfy linear relation given by 𝒄𝒄 and 𝒑𝒑𝒑𝒑

• Questions:
How practical is this vs naïve methods?
Does it amortize well?

Peter Scholl 27

A step further: removing zero knowledge
proofs?
• Intuition: triple verification already
guarantees correctness

• Challenge: ensure failure event is
independent of sensitive information

• Potential impact: 𝑂𝑂(𝑛𝑛) complexity, better parameters, less computation

• Related: Overdrive [KPR18] removes proof of correct multiplication, security related to
“linear-only encryption” assumption

Peter Scholl 28

A step further: removing zero knowledge
proofs?
• Problem I: no independence of inputs

Solution: commit to ciphertexts

• Problem II: decryption failures can leak
In SPDZ, restricted form of leakage
Possible mitigations:

 Abort/re-key on failure
 Restrict number of executions
 Increase 𝐷𝐷𝑝𝑝 entropy
 Randomness extractor on triples

Peter Scholl 29

My ciphertext
is 14159265 Mine is

− 14159265

If 𝐷𝐷𝐾𝐾𝑐𝑐 𝒄𝒄 succeeds:
𝑏𝑏 = 1

Else:
𝑏𝑏 = 0

𝒄𝒄

𝑏𝑏

(oversimplified)

Noise drowning in distributed decryption

• Distributed decryption reveals values of the form:

𝑚𝑚 + 𝑝𝑝 ⋅ 𝐾𝐾 + 𝐾𝐾′𝐷𝐷 + �̃�𝐾

• Q: Is there an approach without noise flooding?

• Q: What goes wrong if we reduce size of �̃�𝐾?

Peter Scholl 30

secret keynoise terms

Uniform in {±𝐵𝐵 ⋅ 2𝜅𝜅}

Alternative approach: non-interactive triple
generation

• Goal: locally expand short seeds into large batch of triples

• [BCGIKS20]: candidate construction from low-noise ring-LPN in 𝑍𝑍𝑝𝑝 𝑥𝑥 /(𝑥𝑥𝑁𝑁 + 1)
+ good concrete efficiency
− Still requires many SPDZ triples to setup seeds
− Assumption less studied when 𝑥𝑥𝑁𝑁 + 1 splits completely

Peter Scholl 31

correlated
seeds

SPDZ triples

Conclusion

• SPDZ Protocol
Currently, most practical approach to dishonest majority MPC

• Lattices in SPDZ
Low-depth SHE, large parameters

Heavily reliant on ZK proofs of plaintext knowledge

Noise drowning in distributed decryption

Peter Scholl 32

room for
improvement

References
• [AELNS20] New Techniques for Practical Lattice-Based Zero-Knowledge – Thomas Attema, Muhammed Esgin,

Vadim Lyubashevsky, Khanh Ngoc, Gregor Seiler. (Simons Institute Workshop)
• [BCS19] Using TopGear in Overdrive: A More Efficient ZKPoK for SPDZ – Baum, Cozzo, Smart. 2019/035
• [BDOZ11] Semi-Homomorphic Encryption and Multiparty Computation – Bendlin, Damgard, Orlandi, Zakarias.

2011/091
• [BCGIKS20] Pseudorandom Correlation Generators From Ring-LPN – Boyle, Couteau, Gilboa, Ishai, Kohl, Scholl.

(coming soon)
• [BKS19] Homomorphic Secret Sharing From Lattices Without FHE – Boyle, Kohl, Scholl. 2019/129
• [CKRRSW20] Maliciously Secure Matrix Multiplication with Applications to Private Deep Learning – Chen, Kim,

Razenshteyn, Rotaru, Song, Wagh. 2020/451
• [DKLPSS13] Practical Covertly Secure MPC for Dishonest Majority – or: Breaking the SPDZ Limits - Damgård,

Keller, Larraia, Pastro, Scholl, Smart. 2012/642
• [DPSZ12] Multiparty Computation from Somewhat Homomorphic Encryption – Damgård, Pastro, Smart, Zakarias.

2011/535
• [KPR18] Overdrive: Making SPDZ Great Again – Keller, Pastro, Rotaru. 2017/1230

Peter Scholl 33

Access yyyy/zzz at https://ia.cr/yyyy/zzz

	Homomorphic Encryption in the SPDZ Protocol for MPC
	Plan for today
	Secure Multi-Party Computation
	The SPDZ setting
	MPC in the preprocessing model
	Additive secret sharing with MACs
	Reconstructed shared values
	�SPDZ online phase : securely computing arithmetic circuits�
	Multiplication of secret-shared values
	Slide Number 12
	How do we get ⟨𝑎⟩,⟨𝑏⟩,⟨𝑎⋅𝑏⟩?
	Triple generation: two main approaches
	Threshold homomorphic encryption
	Instantiating threshold homomorphic encryption
	Distributed decryption protocol
	Passive triple generation: basic protocol
	Slide Number 19
	Active security in two steps
	Zero knowledge proofs in SPDZ
	Proving knowledge of short preimages
	Proving knowledge of short preimages
	Variations on the basic SPDZ protocol
	Slide Number 25
	Where can we hope to do better?
	Improving zero knowledge proofs
	A step further: removing zero knowledge proofs?
	A step further: removing zero knowledge proofs?
	Noise drowning in distributed decryption
	Alternative approach: non-interactive triple generation
	Conclusion
	References

