Introduction to HEAAN (aka CKKS)

Yongsoo Song, Microsoft Research

Lattices: From Theory to Practice

Simons Workshop, April 30

Definition
= [Cheon-Kim-Kim-Song '17] Homomorphic Encryption for Arithmetic of Approximate Numbers
. is NOT a homomorphic encryption scheme

= Dec (Enc(m)) +m
= Dec (cty * ct,) # Dec(cty) * Dec(ct,)

Decrypt
ct; > m;
F o F
Decrypt

ct = F(ct;) > | F(m,)

Definition
= [Cheon-Kim-Kim-Song '17] Homomorphic Encryption for Arithmetic of Approximate Numbers
. is an approximate homomorphic encryption scheme

= Dec (Enc(m)) ~m
= Dec (cty * cty) = Dec(ct,) * Dec(ct,)

= Noise bounds are determined by the parameter set Decrypt
ct; > m;
= This talk: F &) F
= Construction (Leveled & Bootstrapping)
* Pros and cons Decrypt
. o ct = F(cty) > | F(my)
" |Implementation & optimization

= Subsequent works

Motivation

" Floating point representation

T~ 314 x 1072
NN

significand scaling factor (base®ronent)

= Approximate arithmetic
(314 *107%) * (314 *1072%) = 98596 * 10~* ~ 986 * 102

* The rounding-off operation makes a trade-off between accuracy and efficiency

= Not represented as a low-degree polynomial

Learning with Errors

= Homomorphic Encryption candidate

* Dec: Zgt' - Z, ¢ - (¢,s)=m

Ciphertext
MSB LSB
» |[WE-based scheme m E“
_
= Dec: Z’C}“ - Ly - I, " Y
p q/p

c — (c,s)=%m+e - m
= Dec is approximately homomorphic
= Exact computation over a discrete space modulo p

" Main Ildea:
= Consider the LWE noise as a part of numerical error in approximate computation
= Support homomorphic rounding-off

Algorithms in HEAAN

= 7n:Ring dimension (power of two)
= K=Q[X]/(X"+1), R=Z[X]/(X"+ 1), R, = Zq[X]/(X" + 1)

= Homomorphic operations
= Addition & Multiplication (relinearization)
= Rescaling
= Rotation

= Complex conjugation

encoding encryption

Message | « > Plaintext | = Ciphertext Homomorphic operations

decoding decryption (encrypted computation)
cn/? R

y

v

A

Encoding & Decoding

= Canonical embedding
o:K=Q[X]/(X"+1) - C" o(a) =(a(Q),a(@®),..,a(@®" 1)) where { = exp(mi/n).

T K = QIXI/(X"+1) - €2, (@) = (a((),a(d®), .., ag?*™?)).

= The precision of encoding is determined by the scaling factor A > 0.

cn/? encoding=|A-7()] R = 7[X]/(X™ + 1)

[
»

m = (my, My, .., My 2_1) A>0 u(X) suchthatt(u) = A-m

P
<

decoding=A"1-7(")

Toy example: n=4 A=10?

m=(1+4i,5-2i) & 3+\/%X+X2+\%X3 > u(X) =300+ 71X + 100X? + 354x3

(1) = (u(é),u(és)) = (99.89..+i * 400.52.., 500.11..—i * 200.52..) ~ A-m

Encrypt & Decrypt

q LSB

R Encrypt (pk/sk) MSB
() ; > n(X)
Decrypt (sk = s) Ciphertext

= Enc: u(X) »ct=(b+u,a) € RCZI for a random RLWE instance (b,a) s.t. b+as =e
= Dec: ct = (cy,c1) » cy+cq-s (mod q)

= (Approx) Correctness: Dec(Enc(u)) =ut+e if |ut+el <q/2

= Notation: ct(S) = co +¢; - S € Ry[S]
* Dec(ct) = ct(s) (mod q)

Arithmetic Operations

Given ct; suchthat ct;(s) = u; (mod q) and 7(y;) = A; - my
" Ctyqq = ctq + ct, (mod q)
* |nput should have the same scale A = A; to get a meaningful result

" Clpu = Cty - Clp (mOd CI) decrypt decode w/ A,
» The scaling factorissettobe A,y = A1 A, sothat ¢ty = M1 Uy > M Om,
" Ctpy = Co + 1S + ¢,S8? is quadratic

Replace S? by relinearization key rlk(S) = ko + k¢ - S such that rlk(s) = s?

= Scaling factor increases rapidly during homomorphic evaluation

tq (X) \

R— Hmul = M1 * M2

o (X) /

Rescaling

ct
l ~—
Homomorphic ‘rounding-off’
= Usually performed after multiplication ct’ u=~A1top
— _/
—
Given ct = ¢y + ¢1S € R, [S] of scale A?, q =q/A

computect’ = |[A™1 - ct] € R,[S] forq’ = q/Aand setits scale as A

The underlying plaintext is (approximately) divided by A
= ct’'(s)=|A" o]l + 1A]l s = AT (¢ + ¢ - 5)

Plaintexts u, u' are encodings of the same message with different scaling factors
= A% () =m =~ AT ()

Example: F(x) = x* Cipertex

Modulus Plaintext S':;acltigf Message

u q [z A m

l squaring
u’ q u’ A m?

l rescaling
A1 2 g =A"1-gq A1 2 A m>

l squaring
A2yt q A2 .yt A2 m*

l rescaling
A3 . g'=A1-g A3yt A m*

Leveled HE

= Ciphertext modulus g = p, - A
= Base modulus py (> A), g, =pg-Af for 0<£ <L
= Ciphertext level is £ = Ciphertext modulus is g,

= Support a fixed-point style computation

= QOther operations

= Based on the evaluation of automorphism X = X* in Gal(K/Q) = Z%,, = (5,—1)

T(H(Xk)) _ (‘u((k)“u((SR), ___,M(((Zn—S)k))
= 1fcg(X) + ¢, (X) - s(X) = u(X), then co(X*) + ¢y (X*) - s(X*) = u(x*)
= k=5 :rotationon (¢°) ={{,5,...,{%" 3} (as well as plaintext slots)

= k = —1:complex conjugate

From theory to practice

First proof-of-concept implementation : the HEAAN library (Seoul National Univ.)

= Modular g operation is expensive (NTL for high-precision arithmetic)

[CHKKS18b] RNS-friendly parameter setting, inspired by [BEHZ16] Full RNS variant of FV
" g =Dpgy- P1P2 --- Py, for distinct primes p4, ..., p; and use the CRT representation
The chain of ciphertext moduli determines the functionality of rescaling
= ‘Approximate basis’ : find prime integers such that p, = A

More than 5 libraries which are much of

a muchness from theoretic perspective HEAAN RNS-HEAAN SEAL Lattigo
= Different choices of gadget decomposition Institute SNU SNU Microsoft EPFL
for key-switching (relinearization) Decomposition Trivial Trivial Prime Hybrid
. ' ?
Standardization in progress RNS friendly: No ves Yes Yes

[Bajard-Eynard-Hasan-Zucca ‘16] A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes
[Cheon-Han-Kim-Kim-Song “18] A Full RNS Variant of Approximate Homomorphic Encryption

Two sides of HEAAN

precision, data range
o Best known solution for encrypted real number arithmetic

* logg =logpy+ L-logA grows linearly with the depth and precision
= Wide real-world applications

_ _ _ depth, packing
o Evaluation of analytic functions

= Multiplicative inverse, sigmoid, etc.

of gates
x Difficult-to-learn, hard-to-optimize

= Security, scaling factor, precision, depth, packing, data size, ...
= Polynomial approximation of a target function
= Huge performance gap between
fully/poorly optimized implementation TFHE BGV/BFV HEAAN

Definition and necessity [CHKKS18a]

= Bootstrapping of HE
= Given ct such that Decg,(ct) = m, let F(x) = Dec,(ct)

= ct' = F(Enc(sk)) = Enc(F(sk)) = Enc(m) refreshes the (noise) level

" Q1. What is bootstrapping of approximate HE?
= ct' = F(Enc(sk)) ~ Enc(F(sk)) = Enc(m)
= Adding a sufficiently small error is acceptable

= Q2. Why do we need approximate bootstrapping?
= Numerically stable circuits
= e.g. negative feedback in control systems, convergence property of ML training algorithms

[Cheon-Han-Kim-Kim-Song '18] Bootstrapping for approximate homomorphic encryption
[Chen-Chillotti-Song '19] Improved bootstrapping for approximate homomorphic encryption
[Han-Ki’20] Better bootstrapping for approximate homomorphic encryption

Main |dea

= Dec:ct »t=cy+cy s »lt];=u

= t=gql + u forsomesmall ||I|| < K

= Step 1:Raise the modulusupto Q > ¢
= Dec(ct) =[co+tcy-slp=t

= Step 2: Homomorphically evaluate the reduction modulo g function

A

Step 2: Modular reduction

= t - [t], is not continuous

= Cannot be approximated by a polynomial

= Assume thatt = gl + uforsome |u| < B K q
= Restrict the domain of the function to U, <x(gk — B, gk + B)

= Precisely approximated by the sine function [t], = %sin 0 for 8 = 2nt/q

Step 2: sine evaluation

= Naive approach: Taylor expansion —sine —T_31(x)
= Require a large degree
= Numerically unstable power representation . ﬂ ﬂ H ﬂ ﬂ ﬂ n ﬂ ﬂ (\ ” ﬂ

Step 2: sine evaluation

= Naive approach: Taylor expansion e —s 500
= Require a large degree .
= Numerically unstable power representation

= [CHKKS18a] Double-angle formula
= exp(if/2") = cos(8/2") + sin(6/2") for r > 0
(Small degree approximation is available)

= Repeat squaring r times to obtain exp(if)

= Extract its imaginary part

Step 2: sine evaluation

= Naive approach: Taylor expansion —sine —S_8(X)
= Require a large degree }
= Numerically unstable power representation ” ﬂ ﬂ ﬂ n ﬂ ” ﬂ ﬂ n

= [CHKKS18a] Double-angle formula
= exp(if/2") = cos(8/2") + sin(6/2") for r > 0
(Small degree approximation is available)
= Repeat squaring r times to obtain exp(if)

= Extract its imaginary part U

= [CCS19] Chebyshev approximation method
= Almost optimal depth consumption
= Efficient & numerically stable evaluation algorithm

Pre- and post-processing

Step 1: Raise the modulusupto Q@ > q, Dec(ct) =[co+c;-s]gp =t
Step 1.5: Move the coefficients t; = gl; + u; into the plaintext slots
Step 2: Homomorphically evaluate t = gl + u = [t], = u

Step 2.5 : Bring the values u; back to the coefficients
= Step 1.5 and 2.5 are homomorphic evaluation of encoding/decoding function (z and 77 1)

= [CHKKS18] General BSGS method for linear transformation

= Optimal in terms of depth, but expensive

= [CCS19] FFT-style algorithm using the property of t

= Fine trade-off between complexity and depth (3~4 are enough in practice)

Conclusion

= Defined and designed approximate HE and its bootstrapping
= Asymptotic/practical performance improvement

= Numerical analysis + cryptographic knowledge for optimization
= Need more studies on efficient polynomial approximation and evaluation
= Higher-level APl to provide better usability for general engineers

= (Open questions
= Build cryptographic protocol on the top of HEAAN
= Previous technigues (e.g. noise flooding, circuit privacy) for HE do not apply

