
Introduction to HEAAN (aka CKKS)

Yongsoo Song, Microsoft Research

Lattices: From Theory to Practice

Simons Workshop, April 30

Definition

▪ [Cheon-Kim-Kim-Song ’17] Homomorphic Encryption for Arithmetic of Approximate Numbers

▪ HEAAN is NOT a homomorphic encryption scheme

▪ 𝐷𝑒𝑐 𝐸𝑛𝑐 𝒎 ≠ 𝒎

▪ 𝐷𝑒𝑐 𝒄𝒕1 ∗ 𝒄𝒕2 ≠ 𝐷𝑒𝑐 𝒄𝒕1 ∗ 𝐷𝑒𝑐 𝒄𝒕2

𝑚𝑖𝑐𝑡𝑖

Decrypt

𝑐𝑡 = 𝐹(𝑐𝑡𝑖) 𝐹(𝑚𝑖)
Decrypt

𝐹 𝐹↻

Definition

▪ [Cheon-Kim-Kim-Song ’17] Homomorphic Encryption for Arithmetic of Approximate Numbers

▪ HEAAN is an approximate homomorphic encryption scheme

▪ 𝐷𝑒𝑐 𝐸𝑛𝑐 𝒎 ≈ 𝒎

▪ 𝐷𝑒𝑐 𝒄𝒕1 ∗ 𝒄𝒕2 ≈ 𝐷𝑒𝑐 𝒄𝒕1 ∗ 𝐷𝑒𝑐 𝒄𝒕2
▪ Noise bounds are determined by the parameter set

▪ This talk:

▪ Construction (Leveled & Bootstrapping)

▪ Pros and cons

▪ Implementation & optimization

▪ Subsequent works

𝑚𝑖𝑐𝑡𝑖

Decrypt

𝑐𝑡 = 𝐹(𝑐𝑡𝑖) 𝐹(𝑚𝑖)
Decrypt

𝐹 𝐹↻

Motivation

▪ Floating point representation

▪ Approximate arithmetic

314 ∗ 10−2 ∗ 314 ∗ 10−2 = 98596 ∗ 10−4 ≈ 986 ∗ 10−2

▪ The rounding-off operation makes a trade-off between accuracy and efficiency

▪ Not represented as a low-degree polynomial

𝜋 ≈ 314 ∗ 10−2

significand scaling factor (baseexponent)

Learning with Errors
▪ Homomorphic Encryption candidate

▪ Dec ∶ ℤ𝑞
𝑛+1 → ℤ𝑞, 𝒄 ↦ 𝒄, 𝒔 = 𝑚

▪ LWE-based scheme

▪ Dec ∶ ℤ𝑞
𝑛+1 → ℤ𝑞 → ℤ𝑝

𝒄 ↦ 𝒄, 𝒔 = 𝑞

𝑝
𝑚+ 𝑒 ↦ 𝑚

▪ Dec is approximately homomorphic

▪ Exact computation over a discrete space modulo 𝑝

▪ Main Idea:

▪ Consider the LWE noise as a part of numerical error in approximate computation

▪ Support homomorphic rounding-off

Ciphertext
MSB LSB

𝑚 𝑒

𝑝 𝑞/𝑝

Algorithms in HEAAN

Message Plaintext

encoding

Ciphertext Homomorphic operations
(encrypted computation)decoding

encryption

decryption

▪ 𝑛 : Ring dimension (power of two)

▪ 𝐾 = Τℚ 𝑋 (𝑋𝑛 + 1) , 𝑅 = Τℤ 𝑋 𝑋𝑛 + 1 , 𝑅𝑞 = Τℤ𝑞 𝑋 (𝑋𝑛 + 1)

▪ Homomorphic operations

▪ Addition & Multiplication (relinearization)

▪ Rescaling

▪ Rotation

▪ Complex conjugation

ℂ𝑛/2 𝑅

Encoding & Decoding
▪ Canonical embedding

𝜎 ∶ 𝐾 = Τℚ 𝑋 (𝑋𝑛 + 1) → ℂ𝑛, 𝜎 𝑎 = 𝑎 𝜁 , 𝑎 𝜁3 , … , 𝑎 𝜁2𝑛−1 where 𝜁 = exp(Τ𝜋𝑖 𝑛).

𝜏 ∶ 𝐾 = Τℚ 𝑋 (𝑋𝑛 + 1) → ℂ𝑛/2, 𝜏 𝑎 = 𝑎 𝜁 , 𝑎 𝜁5 , … , 𝑎 𝜁2𝑛−3 .

▪ The precision of encoding is determined by the scaling factor Δ > 0.

Toy example: 𝑛 = 4, Δ = 102

𝒎 = 1 + 4𝑖, 5 − 2𝑖 ↦ 3 +
1

2
𝑋 + 𝑋2 +

5

2
𝑋3 ↦ 𝜇 𝑋 = 300 + 71𝑋 + 100𝑋2 + 354𝑋3

𝜏 𝜇 = 𝜇 𝜁 , 𝜇 𝜁5 = 99.89. . +𝑖 ∗ 400.52. ., 500.11. . −𝑖 ∗ 200.52. . ≈ Δ ⋅ 𝒎

ℂ𝑛/2 𝑅 = Τℤ[𝑋] (𝑋𝑛 + 1)encoding = ⌊Δ ⋅ 𝜏−1(⋅)⌉

decoding = Δ−1 ⋅ 𝜏(⋅)

such that 𝜏(𝜇) ≈ Δ ⋅ 𝒎

Message vector Plaintext

𝒎 = 𝑚0, 𝑚1, … ,𝑚 Τ𝑛 2−1 Δ > 0 𝜇(𝑋)Scaling factor

Encrypt & Decrypt

▪ Enc: 𝜇 𝑋 ↦ 𝑐𝑡 = 𝑏 + 𝜇, 𝑎 ∈ 𝑅𝑞
2 for a random RLWE instance (𝑏, 𝑎) s.t. 𝑏 + 𝑎𝑠 = 𝑒

▪ Dec: 𝑐𝑡 = 𝑐0, 𝑐1 ↦ 𝑐0 + 𝑐1 ⋅ 𝑠 mod 𝑞

▪ (Approx) Correctness: Dec Enc 𝜇 = 𝜇 + 𝑒 if 𝜇 + 𝑒 < Τ𝑞 2

▪ Notation: 𝑐𝑡 𝑆 = 𝑐0 + 𝑐1 ⋅ 𝑆 ∈ 𝑅𝑞[𝑆]

▪ Dec 𝑐𝑡 = 𝑐𝑡 𝑠 (mod 𝑞)

𝑅 𝑅𝑞
2

Encrypt (pk/sk)

Decrypt (sk = 𝑠)
Plaintext

𝜇(𝑋)

Ciphertext

MSB LSB

𝜇(𝑋)

Arithmetic Operations
Given 𝑐𝑡𝑖 such that 𝑐𝑡𝑖 𝑠 ≈ 𝜇𝑖 mod 𝑞 and 𝜏 𝜇𝑖 ≈ Δ𝑖 ⋅ 𝒎𝑖

▪ 𝑐𝑡𝑎𝑑𝑑 = 𝑐𝑡1 + 𝑐𝑡2 (mod 𝑞)

▪ Input should have the same scale Δ = Δ𝑖 to get a meaningful result

▪ 𝑐𝑡𝑚𝑢𝑙 = 𝑐𝑡1 ⋅ 𝑐𝑡2 (mod 𝑞)

▪ The scaling factor is set to be Δ𝑚𝑢𝑙 = Δ1 ⋅ Δ2 so that 𝑐𝑡𝑚𝑢𝑙 ↦ 𝜇1 ⋅ 𝜇2 ↦ 𝒎1 ⊙𝒎2

▪ 𝑐𝑡𝑚𝑢𝑙 = 𝑐0 + 𝑐1𝑆 + 𝑐2𝑆
2 is quadratic

Replace 𝑆2 by relinearization key rlk(𝑆) = 𝑘0 + 𝑘1 ⋅ 𝑆 such that rlk s ≈ 𝑠2

▪ Scaling factor increases rapidly during homomorphic evaluation

decrypt decode w/ Δ𝑚𝑢𝑙

𝜇1(𝑋)

𝜇2(𝑋)

𝜇𝑚𝑢𝑙 = 𝜇1 ⋅ 𝜇2⊗

Rescaling

▪ Homomorphic ‘rounding-off’

▪ Usually performed after multiplication

▪ Given 𝑐𝑡 = 𝑐0 + 𝑐1𝑆 ∈ 𝑅𝑞 𝑆 of scale Δ2,

compute 𝑐𝑡′ = ⌊Δ−1 ⋅ 𝑐𝑡⌉ ∈ 𝑅𝑞′[𝑆] for 𝑞′ = Τ𝑞 Δ and set its scale as Δ

▪ The underlying plaintext is (approximately) divided by Δ

▪ 𝑐𝑡′ 𝑠 = Δ−1 ⋅ 𝑐0 + Δ−1 ⋅ 𝑐1 ⋅ 𝑠 ≈ Δ−1 ⋅ 𝑐0 + 𝑐1 ⋅ 𝑠

▪ Plaintexts 𝜇, 𝜇′ are encodings of the same message with different scaling factors

▪ Δ−2 ⋅ 𝜏 𝜇 ≈ 𝒎 ≈ Δ−1 ⋅ 𝜏(𝜇′)

𝜇′ ≈ Δ−1 ⋅ 𝜇

𝜇

𝑞′ = Τ𝑞 Δ

Δ

𝑐𝑡′

𝑐𝑡

Example: F x = x4

𝜇

𝜇2

Δ−1 ⋅ 𝜇2

Δ−2 ⋅ 𝜇4

Δ−3 ⋅ 𝜇4

squaring

rescaling

squaring

rescaling

Ciphertext
Modulus

Plaintext
Scaling
Factor

Message

𝑞 𝜇 Δ 𝒎

𝑞 𝜇2 Δ2 𝒎2

𝑞′ = Δ−1 ⋅ 𝑞 Δ−1 ⋅ 𝜇2 Δ 𝒎2

𝑞′ Δ−2 ⋅ 𝜇4 Δ2 𝒎4

𝑞′′ = Δ−1 ⋅ 𝑞′ Δ−3 ⋅ 𝜇4 Δ 𝒎4

Leveled HE

▪ Ciphertext modulus 𝑞 = 𝑝0 ⋅ Δ
𝐿

▪ Base modulus 𝑝0 (≫ Δ), 𝑞ℓ = 𝑝0 ⋅ Δ
ℓ for 0 ≤ ℓ ≤ 𝐿

▪ Ciphertext level is ℓ = Ciphertext modulus is 𝑞ℓ

▪ Support a fixed-point style computation

▪ Other operations

▪ Based on the evaluation of automorphism 𝑋 ↦ 𝑋𝑘 in 𝐺𝑎𝑙 Τ𝐾 ℚ ≈ ℤ2𝑛
× = 5,−1

𝜏 𝜇 𝑋𝑘 = 𝜇 𝜁𝑘 , 𝜇 𝜁5𝑘 , … , 𝜇 𝜁 2𝑛−3 𝑘

▪ If 𝑐0 𝑋 + 𝑐1 𝑋 ⋅ 𝑠 𝑋 = 𝜇 𝑋 , then 𝑐0 𝑋𝑘 + 𝑐1 𝑋𝑘 ⋅ 𝑠 𝑋𝑘 = 𝜇 𝑋𝑘

▪ 𝑘 = 5 : rotation on 𝜁5 = 𝜁, 𝜁5, … , 𝜁2𝑛−3 (as well as plaintext slots)

▪ 𝑘 = −1 : complex conjugate

From theory to practice
▪ First proof-of-concept implementation : the HEAAN library (Seoul National Univ.)

▪ Modular 𝑞 operation is expensive (NTL for high-precision arithmetic)

▪ [CHKKS18b] RNS-friendly parameter setting, inspired by [BEHZ16] Full RNS variant of FV

▪ 𝑞 = 𝑝0 ⋅ 𝑝1𝑝2…𝑝𝐿, for distinct primes 𝑝1, … , 𝑝𝐿 and use the CRT representation

The chain of ciphertext moduli determines the functionality of rescaling

▪ ‘Approximate basis’ : find prime integers such that 𝑝ℓ ≈ Δ

▪ More than 5 libraries which are much of

a muchness from theoretic perspective

▪ Different choices of gadget decomposition

for key-switching (relinearization)

▪ Standardization in progress

HEAAN RNS-HEAAN SEAL Lattigo

Institute SNU SNU Microsoft EPFL

Decomposition Trivial Trivial Prime Hybrid

RNS friendly? No Yes Yes Yes

[Bajard-Eynard-Hasan-Zucca ’16] A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes
[Cheon-Han-Kim-Kim-Song ’18] A Full RNS Variant of Approximate Homomorphic Encryption

Two sides of HEAAN

o Best known solution for encrypted real number arithmetic

▪ log 𝑞 = log 𝑝0 + 𝐿 ⋅ log Δ grows linearly with the depth and precision

▪ Wide real-world applications

o Evaluation of analytic functions

▪ Multiplicative inverse, sigmoid, etc.

× Difficult-to-learn, hard-to-optimize

▪ Security, scaling factor, precision, depth, packing, data size, …

▪ Polynomial approximation of a target function

▪ Huge performance gap between

fully/poorly optimized implementation TFHE BGV/BFV HEAAN

of gates

depth, packing

precision, data range

Definition and necessity [CHKKS18a]

▪ Bootstrapping of HE

▪ Given 𝑐𝑡 such that Dec𝑠𝑘 𝑐𝑡 = 𝒎, let 𝐹(𝑥) = Dec𝑥(𝑐𝑡)

▪ 𝑐𝑡′ ≔ 𝐹 Enc sk = Enc 𝐹 sk = Enc 𝒎 refreshes the (noise) level

▪ Q1. What is bootstrapping of approximate HE?

▪ 𝑐𝑡′ ≔ 𝐹 Enc sk ≈ Enc 𝐹 sk = Enc 𝒎

▪ Adding a sufficiently small error is acceptable

▪ Q2. Why do we need approximate bootstrapping?

▪ Numerically stable circuits

▪ e.g. negative feedback in control systems, convergence property of ML training algorithms

[Cheon-Han-Kim-Kim-Song ’18] Bootstrapping for approximate homomorphic encryption
[Chen-Chillotti-Song ’19] Improved bootstrapping for approximate homomorphic encryption
[Han-Ki ’20] Better bootstrapping for approximate homomorphic encryption

Main Idea

▪ Dec: 𝑐𝑡 ↦ 𝑡 = 𝑐0 + 𝑐1 ⋅ 𝑠 ↦ 𝑡 𝑞 = 𝜇

▪ 𝑡 = 𝑞𝐼 + 𝜇 for some small 𝐼 < 𝐾

▪ Step 1 : Raise the modulus up to 𝑄 ≫ 𝑞

▪ Dec 𝑐𝑡 = 𝑐0 + 𝑐1 ⋅ 𝑠 𝑄 = 𝑡

▪ Step 2: Homomorphically evaluate the reduction modulo 𝑞 function

Step 2: Modular reduction

▪ 𝑡 ↦ 𝑡 𝑞 is not continuous

▪ Cannot be approximated by a polynomial

▪ Assume that 𝑡 = 𝑞𝐼 + 𝜇 for some 𝜇 < 𝐵 ≪ 𝑞

▪ Restrict the domain of the function to ⋃ 𝑘 ≤𝐾(𝑞𝑘 − 𝐵, 𝑞𝑘 + 𝐵)

▪ Precisely approximated by the sine function 𝑡 𝑞 ≈
𝑞

2𝜋
sin 𝜃 for 𝜃 = Τ2𝜋𝑡 𝑞

Step 2: sine evaluation

▪ Naïve approach: Taylor expansion

▪ Require a large degree

▪ Numerically unstable power representation

Step 2: sine evaluation

▪ Naïve approach: Taylor expansion

▪ Require a large degree

▪ Numerically unstable power representation

▪ [CHKKS18a] Double-angle formula

▪ exp Τ𝑖𝜃 2𝑟 = cos Τ𝜃 2𝑟 + sin(Τ𝜃 2𝑟) for 𝑟 > 0

(Small degree approximation is available)

▪ Repeat squaring 𝑟 times to obtain exp 𝑖𝜃

▪ Extract its imaginary part

Step 2: sine evaluation

▪ Naïve approach: Taylor expansion

▪ Require a large degree

▪ Numerically unstable power representation

▪ [CHKKS18a] Double-angle formula

▪ exp Τ𝑖𝜃 2𝑟 = cos Τ𝜃 2𝑟 + sin(Τ𝜃 2𝑟) for 𝑟 > 0

(Small degree approximation is available)

▪ Repeat squaring 𝑟 times to obtain exp 𝑖𝜃

▪ Extract its imaginary part

▪ [CCS19] Chebyshev approximation method

▪ Almost optimal depth consumption

▪ Efficient & numerically stable evaluation algorithm

Pre- and post-processing

Step 1 : Raise the modulus up to 𝑄 ≫ 𝑞, Dec 𝑐𝑡 = 𝑐0 + 𝑐1 ⋅ 𝑠 𝑄 = 𝑡

Step 1.5: Move the coefficients 𝑡𝑖 = 𝑞𝐼𝑖 + 𝜇𝑖 into the plaintext slots

Step 2: Homomorphically evaluate 𝑡 = 𝑞𝐼 + 𝜇 ↦ 𝑡 𝑞 = 𝜇

Step 2.5 : Bring the values 𝜇𝑖 back to the coefficients

▪ Step 1.5 and 2.5 are homomorphic evaluation of encoding/decoding function (𝜏 and 𝜏−1)

▪ [CHKKS18] General BSGS method for linear transformation

▪ Optimal in terms of depth, but expensive

▪ [CCS19] FFT-style algorithm using the property of 𝜏

▪ Fine trade-off between complexity and depth (3~4 are enough in practice)

Conclusion

▪ Defined and designed approximate HE and its bootstrapping

▪ Asymptotic/practical performance improvement

▪ Numerical analysis + cryptographic knowledge for optimization

▪ Need more studies on efficient polynomial approximation and evaluation

▪ Higher-level API to provide better usability for general engineers

▪ Open questions

▪ Build cryptographic protocol on the top of HEAAN

▪ Previous techniques (e.g. noise flooding, circuit privacy) for HE do not apply

