A Theory of Trotter Error

Yuan Su
University of Maryland

Andrew M. Childs Minh C. Tran Nathan Wiebe Shuchen Zhu
Maryland Maryland Washington Georgetown
arXiv:1901.00564 /PRL arXiv:1912.08854

1
/28
Yuan Su A Theory of Trotter Error y



Quantum simulation

e Dynamics of a quantum system are given by its Hamiltonian
S (t) according to the Schrodinger equation

%%(t) = —iH(t)%(t), % (0)=1.
e We formally write the solution % (t) = exp, (—ifot d71%”(7')).

When (t) = H is time-independent, we have closed-form
solution % (t) = e~ M.

Quantum simulation problem
Given a description of the Hamiltonian H and evolution time t,
perform e~ up to some error ¢ (in spectral norm):

e <
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Reasons to study quantum simulation

.
.

H(1)

“..nature isn't classical, dammit, and if you
want to make a simulation of nature, you'd
better make it quantum mechanical, and by
golly it's a wonderful problem, because it
doesn't look so easy.”

o’ — Richard Feynman
3
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Product formulas

e Also known as Trotterization or the splitting method.

e Target system: H = Z;Zl H,, where each H, is Hermitian and
can be exponentiated with cost O (1).

Can use the first-order Lie-Trotter formulal

yl(t) — e—itHr . e—itH1 — e—itH + O(tz)

with Trotter error O(¢?).

To simulate for a large t, divide the evolution into r Trotter
steps and simulate each step with error at most ¢/r.

Choose the Trotter number r to be sufficiently large so that
the entire simulation has error at most e.

HLloyd 96]
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Higher-order product formulas

e A general pth-order product formula takes the form

T T
Zo(t) =11 11 et Hry) = ¢=itH 4 O (tpH) .

v=1~y=1

Higher-order Suzuki formulas?

The (2k)th-order Suzuki formula .5 (t) = e~ ™ + O(t?**1) is
defined recursively by

_it _itHr it L
5/2(1') = e '2H1...e ’2Hre ’2H|’...e ’2H1,

Fok(t) = %H(uktf Fok—2((1 — 4u)t) szfz(ukt)?

where uy = 1/(4 — 4Y/(k1)),

2[Suzuki 92]
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Other simulation algorithms

e Recent algorithms have improved asymptotic performance as a
function of t and € over the product-formula approach...
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Other simulation algorithms

e Recent algorithms have improved asymptotic performance as a

function of t and € over the product-formula approach...

e ... but the empirical performance of product formulas can

be significantly better.?
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Reasons to study product formulas

e The product-formula algorithm is ancilla-free and is arguably
the simplest approach to quantum simulation.

* Product formulas can use Hamiltonian commutativity to give
surprisingly efficient simulation in practice.

e Product formulas can preserve locality of the simulated system,
which can be used to reduce the simulation cost.

e Other applications: classical simulation of quantum systems,
numerical analysis...
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Previous analyses of Trotter error

e For sufficiently small t, Trotter error can be represented exactly
by the Baker—Campbell-Hausdorff formula:

—itB —itA _ —it(A+B)— 5 [B A+ [BBA] - LA B A+

e (S e

e Truncating the BCH expansion ignores significant, potentially
dominant contributions of Trotter error.*

e Using tail bounds does not exploit the commutativity of Hamil-
tonian summands.®

¢ Infinite-series expansion is only advantageous for systems with
Lie-algebraic structure.®

*[Wecker, Bauer, Clark, Hastings, Troyer 14]
®[Berry, Ahokas, Cleve, Sanders 07], [Bravyi, Gosset 17]
6[Somma 16]
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Analysis of the first-order formula

e For Hamiltonian H = A+ B and t > 0, the first-order formula
S1(t) = e "Be A satisfies the differential equation

Eyl(t) = —iHA(t) + e B (e’tBiAe_’tB — iA) e ™A
with initial condition .#1(0) = /.

e Using the variation-of-parameters formula,

t
Fi(t) = e—itH+/ o e—i(t—n)He—inB(ei'rlBl-Ae—inB B iA) o—inA
0

e We further have
eMBife=mB _ A = /Tl dm eiT?B[iB iA} e~ inB,
0
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Analysis of the first-order formula

e Altogether, we have the integral representation
. t 1 . , . . .
yl(t) _ e—ltH :/ dTl/ dT2 e_’(t_Tl)He_’”Be’TzB[iB, IA] e—szBe—/nA
0 0
and the error bound
i t2
_ At <
|6 — e < 3 [|[B.A][.
A multi-term Hamiltonian H = Z;Zl H, can be handled by
bootstrapping the above bound.

e A similar bound holds for the second-order formula.

e Generalization to arbitrary higher-order formulas was previously
unknown.
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Trotter error with commutator scaling

Trotter error with commutator scaling

A pth-order product formula .#,(t) can approximate the evolution
of Hermitian H = 25:1 H, for t > 0 with Trotter error

HYP(t) - e"'t”H = O(Geommt™™),

Vp1r " [H"Yz' H%” H

H

where Qcomm -= 271,’72 ----- Yp+1

e Need O (F&}:é,’;m t”l/") gates to achieve constant accuracy.

e Asymptotic complexity is independent of how the Hamiltonian
summands are ordered.

e Related bounds exist for multiplicative error and imaginary-time

evolution.
11 /
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Nearest-neighbor lattice Hamiltonian

1D Nearest-neighbor lattice Hamiltonian
H = 3771 H; j+1, where H; ;.1 acts only on qubits j and j + 1.

e Models many important physical systems in condensed matter
physics, nuclear physics, and quantum field theory.

e Previously claimed without rigorous justification that product

formulas have gate complexity (nt)**°(1) 7

"[Jordan, Lee, Preskill 12] 1
/28‘
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Nearest-neighbor lattice Hamiltonian

e For nearest-neighbor interactions, we can use locality to simplify
&commv gIVIng
Geomm = 30 [ [Hu ]| = O (.

Y1.7Y20- 0 Yp+1

e We thus proved the Jordan-Lee-Preskill claim, giving a
simple lattice simulation with nearly optimal gate complexity.®

8[Haah, Hastings, Kothari, Low 18] £
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Electronic structure Hamiltonian
(= rj)]N+27chos[n,, er]NN

4 cos
Z K2 cos[k, - ry J]ATA,( o > G cosfy - 5
njkl/ iju#O Ry wj;ék K/l/
v#0

“on

T U
\2
e An efficient simulation can help design and engineer new phar-
maceuticals, catalysts and materials.

e To simulate n spin orbitals for time t, the best previous approach
is the interaction-picture method® with complexity O(n?t) (and
a likely large prefactor).

°[Low, Wiebe 18]
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Electronic structure Hamiltonian

e Using fermionic Fourier transform, we can diagonalize the ki-
netic term in the plane-wave basis

1 1
2 D i coslry - re—JAIA, = FFFT! (5 3 ﬁiN,,) FFFT.
n 14

j kv

e Using the commutation rules of second-quantized operators, we
estimate

o= 5[ [ ]| =0 (7).

Y1V2yees Yp+1

e We thus showed that product formulas have gate com-
plexity n?to()1+90)  confirming a recent numerical study.®

10Kivlichan, Gidney, Berry et al. 19] 15 /s
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k-local Hamiltonian

k-local Hamiltonian

H =% i Hu..j. where each Hj _ ; actsonly on k = O(1)
qubits ji, ..., jk-

e Ubiquitous in physics.

o The best previous algorithm is the qubitization approach'* with
complexity O(n* ||H||; t), scaling with the 1-norm

IHl; = Z 1H, el -

.....

"Low, Chuang 19]
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k-local Hamiltonian

e Using locality to simplify @comm, We obtain

Geomm = 2. ||[Hypers -+ [Hoae Hoa ]| = O UIHIE IHIL).
YL Y25Yp+1

where
IH]ly = maxmax 37 [Hy il

JireeJi=1J1410 - dk

e We thus gave a simulation algorithm with complexity
a4\ H|l, [[H])2Y £7+2() scaling with the induced 1-norm.

e We have the norm inequality
170y = maxmax > (1Hy il < IHL = Z [Hj, el

Jueedi—tdisrede o e

and the gap can be significant for many k-local Hamlltonlans.
17



Rapidly decaying power-law Hamiltonian

Rapidly decaying power-law Hamiltonian

H = 3277 H:7, where H; acts only on qubits 7]6 A Cc RY and
1, if i =],
‘ < 1

T o if? _",
g P
with dimension d and exponent o > 2d.

H(

)

e Examples include the dipole-dipole interactions (« = 3) and the
Van der Waals interactions (« = 6).

* The best previous approach is an algorithm based on Lieb-
Robinson bounds*? using O((nt)*29/(2=d)) gates.

12[Tran, Guo et al. 19]
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Rapidly decaying power-law Hamiltonian

e We truncate terms with distance larger than a cut-off ¢ =

O ((nt/e)/e= ).
e For the truncated Hamiltonian, we estimate

= 5| [t ] =000

Y1725 Yp+1

e We gave a product-formula algorithm with complexity
(nt)++d/le=d)yteld) = outperforming the best previous approach
based on Lieb-Robinson bounds.
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Clustered Hamiltonian

Clustered Hamiltonian

H=A+B=}% H,(l) + 3 H,(z), where terms in A act on qubits
within a single party and terms in B act between different parties.

e Appears naturally in classical fragmentation and Quantum Me-
chanics/Molecular Mechanics methods for large molecules.

e Group the terms within each party in A and simulate the result-
ing Hamiltonian using product formulas.!3

¢ Our new result implies a hybrid simulator with runtime

o(h“‘l) 1o() ou)) L :
p\e B/ ith interaction strength hg and contrac-

tion complexity cc(g), improving the original result 20(5tc<(g)/¢)

13[Peng, Harrow, Ozols, Wu 19] 5o
/28 )
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Transverse field Ising model

H=- Y ju 2.2 — Y hX, where X,, Z, are Pauli

1<u<v<n 1<u<n
operators acting on the uth qubit and j,, > 0, h, > 0.

e The goal is to approximate the partition function Tr(e‘”) up
to a multiplicative error.

* We gave a Monte Carlo simulation of the transverse field
Ising model with runtime O (n*j"¢2 4 nj?1e9), tighten-
ing the previous result O (n®°j?'¢=°) of Bravyi.!*

e Similar improvement holds for the ferromagnetic quantum spin
systems.1®

14[Bravyi 15]
15[Bravyi, Gosset 17] 21
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Simulating local observables

e We show that local observables can be simulated with
complexity independent of the system size for power-law
Hamiltonians, implying a Lieb-Robinson bound as a byproduct.
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Tight prefactor
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A theory of Trotter error

Application System Best previous result New result
Nearest-neighbor lattice  (nt)*+°(® (Conjecture), O (nt) (Lieb-Robinson bound) (nt)t+o®)
Electronic structure 0 (n?t) (Interaction picture) p2+o(1) p1+o(1)
Simulating

quantum dynamics

k-local Hamiltonians
1/x* (o > 2d)

Clustered Hamiltonians

0 (”k [|H|l; t) (Qubitization)

O ((nt)1+29/(2=) (Lieb-Robinson bound)

20(;@:2 ce(g)/<)

Akl I HIY £+e@
(nt)1+d/(n—d)+o(1)

20 (».‘;‘”r‘*"“’ cr.(g)/e"“))

Simulating
local observables

1/x*(a > 2d)

H(14d255) (14 525 +o(1)

Monte Carlo simulation

Transverse field Ising model

Quantum ferromagnets

@ (n59j215—9)

6 (n115(1 + ,646)/625)

@ (n45j145—2 + n38j21€—9)

O (n2(1+5*)/®)

e Underpinning these improvements is a theory concerning the types,
order conditions, and representations of Trotter error.

Yuan Su
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Error types

e Suppose that we use product formula .#(t) to approximate the
evolution of H for time t > 0.

e We consider the additive, exponentiated, and multiplicative type
of Trotter error

(1) = et [Cdr e Mg (1) 7 (1),
Z(t) = expr (—i/otd7'<H - é”(T)))
S(t) = e ™ exp, <—i/0t dr eiTHé"(T)e'iTH>,

where 7 (7), &(7) consist of unitary conjugations of the form

el’TAs . el’TA2 eITAl Be—ITAl e—ITA2 . e—ITAsl

25 /
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Order conditions

e For a pth-order formula .#,(t), we have the following equivalent
order conditions:
0 (1) = e 1 0 (17,
o Z(1) = 0(7"); and
o &y(1) = O(7P).

e Order conditions can be used to cancel lower-order terms in the
Taylor expansion:

F(1)=0(1P) —= F(0)=2F(0)=---=FFPI0)=0.

26 /
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Error representations

e A unitary conjugation €™ . . . eiTA2e/TA1 Be=iTALe=ITA2 . @=iTAS

has the expansion
G+ Gr+ -+ Gt +4(7).

e Time-independent operators Cy, (4, ..., C,—1 can be canceled by
order conditions.

e Operator-valued function €(7) is given by

s

%(7_) = Z Z eiTAs . eiTAj+1

Jj=1 quttq=p
q7#0
(7— _ Tz)qi*17q1+~-+qj—1

(@ —1lgja! - !

-
iTA A9 . a1 —imA; |
/0 dr, e™%adyy, - - - adj} (B)e™ ™%

—iTAj1 |, —iTAs
'

- e

where ad;, (B) = [iAl, B].
27/
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Outlook

e simulating time-dependent Hamiltonian 37 _, 7 (7);

e analysis of generalized product formulas (divide-and-conquer,
randomized, LCU);

e improved circuit implementation for concrete systems;
e faster numerical computation of Trotter error bounds;
e different cost metric (e.g., sub-circuit model);

e simulating low-energy state;

e simulation in the presence of noise;

e other applications...

28 /
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Analysis of the second-order formula

e For Hamiltonian H = A+B and t > 0, the second-order formula
F(t) = e 2"e"™Be~13A can be represented as

. t . . T . T
yg(t) — e—H:H_i_/0 dTl e—l(t—Tl)He—l%A%(Tl)e—TlBe—l%A,

. A\ A .
7 = (i e i+ ¥ (im)e 3 i

e We expand Z(71) to second-order, obtaining

eme(_iMeme A |_ig _iA| +/n dry /TZ drs e ™| _iB, |—iB, —i2||eim8,
2 2 2 0 0 2

i1 e i . A . u & i3 A A . i3
e’TA(IB>e A _ B = [15,13]71 +/0 dTg/O drs e 23‘{15, {IE,BHe 7A,

1
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Analysis of the second-order formula

e Altogether, we have the integral representation

Yz(t) it
—/ dT1/ dT2/ drs e” i(t=r )H —i3A
(el sl gt gl

e 867 TA’

and the error bound

| #5(6) — e < L 1B.18. Al + o A, [A, Bl

e The general case follows by bootstrapping the above bound.
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Trotter error with commutator scaling

e Consider a general pth-order product formula

.
t) = H H —ita(,y)Hry(v) — ef"tH + 0 (thrl) ’
where a(, ) are real numbers with |a(, )| < 1.

Trotter error with commutator scaling

A pth-order formula .#,(t) can approximate the evolution of H =
5:1 H, for time t > 0 with Trotter error

|
750~ ][ 750) ] = O (RammeetieTEm)

P [ ]

A Theory of Trotter Error

where Acomm = D,

V1Y20- Vptl
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