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Variational methods

How well do these (1) What is the best energy attained by a state from S
methods perform? (2) What is the best energy of a state that can be computed efficiently.

min(y|H ) < min(y|H [1))
Y Yes
optimization over Hilbert space 1 A set of states that can be
of exponential dimension represented efficiently
many-body Hamiltonian H
) optimize over product states

mean-field theory



Variational methods

How well do these (1) What is the best energy attained by a state from S
methods perform? (2) What is the best energy of a state that can be computed efficiently.
min(y|H ) < min(y|H [1))
Y YES
. 1 A set of states that can be
This talk: represented efficiently
“Classical” (diagonal) Hamiltonians Variational families of states defined by quantum circuits
circuit U

H= ) C@l)x —

xe{0,1}"

Combinatorial optimization Quantum approximate optimization (QAOA)



Combinatorial optimization

KGiven: A function C:{0,1}" - R.

approximates the maximum

k max C(x)

x€{0,1}"

Goal: Find x* € {0,1}" such that C(x™)

~

Example: MaxCUT for G = (V,E)

Co (0= Zaumer(l = (D™ (=1)™)

/

(expected) approximation ratio

By n[C(xY)]
k a(A) = max C(x)

x€{0,1}"

ﬂigure of merit for an algorithm ﬂ\

/

Computing maximum exactly Is NP-hard.

‘ Xu =
® =

A polynomial-time algorithm achieving| Goemans and
a (A) = 0.878 for every graph G ! Williamson (1995)

Assuming the unique games conjecture and
P # NP there is no polynomial-time algorithm

\c/l satisfying a(A) > 0.878 for every graph Gj

h S. Khot and

N. Vishnoi,
FOCS (2005)



The quantum approximate optimization algorithm

KGiven: A function C:{0,1}" - R.

approximates the maximum

\ max C(x)

x€{0,1}"

Goal: Find x* € {0,1}" such that C(x™)

~

/

(expected) approximation ratio

By n[C(xY)]
\ a(A) = max C(x)

x€{0,1}"

/Figure of merit for an algorithm CA:\

/

E. Farhi, J. Goldstone, S. Gutmann, arXiv:1411.4028.

H = Sefoap COOR]

|x) = 1x1) @ |x2) ® -+ & |x)

Level-p QAOA algorithm

1. Prepare state Y™ such that
(Y*|H|Y*) approximates

max (W|H[p)

2. Measure in basis {|x)} to obtain x



The quantum approxmate optimization algorithm

E. Farhi, J. Goldstone, S. Gutmann, arXiv:1411.4028.
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Level-p QAOA algorithm

1. Prepare state Y™ such that
(Y*|H|Y*) approximates

x Y, N R

AL

level-p QAOA variational state
max (W[H[Y)

(B, V=T, -, 8 eer |)@n

2. Measure in basis {|x)} to obtain x



The quantum approxmate optimization algorithm

E. Farhi, J. Goldstone, S. Gutmann, arXiv:1411.4028.
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i D J 77\]= Level AOA algorith
+) _D_ A evel-p Q algorithm
|+>—Q—D‘_}—D;Q (] A= 1. Prepare state Y* such that

(W*|H|p*) approximates

level-p QAOA variational state
max (W[H[Y)

(B, V=T, -, 8 eer |)@n

2. Measure in basis {|x)} to obtain x



The quantum approxmate optimization algorithm

E. Farhi, J. Goldstone, S. Gutmann, arXiv:1411.4028.
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Level-p QAOA algorithm

1. Prepare state Y™ such that
(Y*|H|Y*) approximates

—J

&)

level-p QAOA variational state
max (W[H[Y)

(B, V=T, -, 8 eer |)@n

2. Measure in basis {|x)} to obtain x



The quantum approxmate optimization algorithm

E. Farhi, J. Goldstone, S. Gutmann, arXiv:1411.4028.
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— — — AOA algorithm: Limitations on level
9 A A e A0R "
\ —Xn » descriptive power of variational class
iy —— ] H A

of states increases with level p

level-p QAOA variational state + energy maximization becomes

. _ more challenging with increasing p

W(B, v)=]1,_, ePeP elvetl |4)®n

* NISQ implementation requires
constant (small) p



-

Main question:

Can constant-level QAOA outperform the best known classical
algorithm (i.e., Goemans-Williamson) for MAXCUT?

~

J

Main theme:

Lower bounds on circuit-depth/circuit-range
necessary to prepare low-energy states
using symmetric unitary preparation circuits

0) 4—)———{)—)
= | ==
0) Ho—f—+—f—_— output
0) {B——0—8—

et Il b B b e B )




Symmetric Hamiltonians/unitaries and states

[ A Hamiltonian H is Z,-symmetric if [H,X®"] = 0. J
Examples: Hrp = — Z X Hising = — Z A4
KEZLy KEZLy

[ A state U is Z,-symmetric if X" = or XY = —1/).}

Examples: )" = 1R+ R R |+) |GHZ,) = \/_15“0)@)11 + |1)®m)

{ A unitary U is Z,-symmetric if UX®" Ut = x®n J

Examples: U=Xx%9" any circuit U composed of Z,-symmetric gates.



QAOA: a Z,-symmetric circuit

+= H H F H
|+) — B — B B - [H — er.{o’l}n C(X)lX)(Xl] [ B = Z] 1 ] J
w4 H H F - —

_ei]/lH_eiﬁlB_eiyzH_eiﬁlB el'ypH_einB_ |x> = |.X'1> ® |X2> ® ® |xn>

This circuit is Z,-symmetric if

C(x)=C(x) where x;=1-—x;

This initial state is Z,-
symmetric!

e.g., for MAXCUT!




Limitations of Z,-symmetric circuits: a case study

Hy= ) (1= ZiZin)

KEZL,

/Conventions throughout this talk: \

» {H,}, family of local Hamiltonians with n =number of qubits
* Hamiltonians are sums of local terms of strength 0(1)

* Ground state energy zero for every Hamiltonian:

\ miny, (Y|Hy, ) = 0 /




Limitations of Z,-symmetric circuits: a case study

Hy= ) (= ZiZin)

KEZL,

Goal: prepare a ground state |Y) = U|+)®" from |+)®"

What is the required circuit range for U?

U has

(backward) range R if the
backward light-cone of every
output qubit j is contained in
G —R%j+R)

(forward) range R~ if the

forward light-cone of every

input qubit k is contained in
(k—R”,k+R7)

range R = max{R", R™}.

Jj—R®
0;
j+ RS
k —R”
Ok

k+ R~



Limitations of Z,-symmetric circuits: a case study

Ho= ) (= ZiZess)

KEZL,

Goal: prepare a ground state |Y) = U|+)®" from |+)®"

/If U is arbitrary (no symmetry): \ / If U is Z-symmetric: \

|Y) = a|0)®" + B|1)®", a,f arbitrary |Y)) has to be
U GHZy, ) = H{0)®" +[1)®")

Choose [p) = |0)®" and U = H®"

\ Easy! (range-1, local) J \ Need linear range! /

This is a fundamental limitation of Z,-symmetric circuits!




Circuit range lower bound for preparing |GHZ.,)

Claim: Suppose a circuit U prepares |GHZ,,) from a product state, i.e., |GHZ,) = U|+)®" :

Then the range of U satisfies R > % :

1
GHZ) = Z(0)®" +|[1)®") ., UYGHZE) = [+)®"
e
-y — L0®n _ [1\®n ~1 -
GHZ;) = 5(10)®" — |1)®") U IGHZy,) \
+)
These two states are orthogonal, These states are locally \B
but locally indistinguishable: the distinguishable because +)
reduced density operators on they are orthogonal and the
n-1 qubits are identical. first is a product state iR |GHZ , )
The observable
U . . ) . 0.
UOjU_l | There is a single-qubit i+ RS J

observable 0]-

distinguishes these two states. L
& distinguishing these two states. +)



Saturating the range lower bound: GHZ-preparing circuit

n qubits |+)®n ——  |GHZ,) =%(|0)®" +(1)®n)

. T
n :I: = e‘”/4exp(—lZZ ®Z) “—_ Eachgate
range R = [E } commutes
T / with X®m
—8— = exp(—lZX)

[Thus the circuit is Z,-symmetric. J



Limitations of Z,-symmetric circuits: a case study

Hy= ) (= ZiZisn)

k€Zy,

Goal: prepare a ground state |Y) = U|+)®" from |+)®"

If U is arbitrary (no symmetry): If U is Z-symmetric:
(range-1 suffices) Need linear range!

H,

“Symmetry protection”

Phase A

Haldane. PRL 50:1153-1156, 1983. \ “‘
Affleck, Kennedy, Lieb, Tasaki. PRL 59:799-802, 1987.

Gu, Wen, PRB 80:155131, (2009) ‘
Pollmann, Turner, Berg, Oshikawa. PRB 81:054439 (2010)

Haegeman, Perez-Garcia, Cirac, Schuch, PRL 102, 050402 (2012)

Chiu, Teo, Schnyder, Ryu. Rev. Mod. Phys., 88:035005,2016.

H,




Low-energy states of Ising model. Preparation with symmetry

Hy= ) (1= ZiZir)

K€Ly,
. .\
Theorem: Suppose |p) = U|+)®" where U has range R < n/4 and is Z,-symmetric.
1
>
Then (W|H, )= ——n

" /

Preparing any state with an energy density lower than € density requires R = 2(1/¢).

Symmetry obstructs the preparation of low-energy states!

also see G. Mbeng, R. Fazio, G. Santoro, arXiv:190608948 for QAOA



Toric code: no zero-energy trivial states

Bravyi, Hastings, Verstraete,
[ Geometrically local circuits require .Q(\/ﬁ) depth. } PRL 97, 050401 (2006)

All toric code zero-energy states are non-trivial (topologically ordered).

-~ s,

|+) geometrically |
trivial  |4) local circuit —
n-qubit : —p - Yroric
state | depth at least 2(y/n)
+) T - S N
toric code
ground state worfie medle
Vn with n

qubits




Toric code: existence of low-energy trivial states

2 . e Bravyi, Hastings, Verstraete,
If n = d“ the output state is NOT a ground state of Hy, PRL 97, 050401 (2006)

All toric code zero-energy states are non-trivial (topologically ordered).

[+)  ~geometrically ——
+) _glocalcwcwt U:

. Qn constant-size patches of
| — U ‘ +> local ground states
— — (can be created in parallel)
. of depthd |
_ c=0(1)

t ¥
For every constant € > 0 there is a constant-depth circuit U

such that (+|®TUTHLTCU|+)O" < en Nm

The toric code has low-energy states that are trivial.




The NLTS conjecture

K No low-energy trivial states (NLTS) property: \

Thereis € > 0 and a function f: N — N such that for any depth-d
Freedman and Hastings, Quant. (local) circuit U

Inf. Comp. 14 (2014)

(+|9"UTH, U|+)®" > en  forany n = f(d) J

"

[Conjecture: There is a family {Hn }n of local Hamiltonians that has the NLTS property}

toric code Hamiltonians Freedman & Hastings 2014
2-local Hamiltonians on non-expanding graphs Brandao and Harrow 2013
The following families {H,, }
. n 2-local Hamiltonians with commuting terms Bravyi and Vyalyi 2005
do nOt SatISfy the N LTS property: 3-qubit Hamiltonian with commuting terms Aharonov and Eldar 2011
0O(1)-local Hamiltonians with commuting terms Aharonov and Eldar 2015

with high local expansion

Sparse commuting O(1)-local Hamiltonians Hastings 2012
corresponding to graphs with high girth



The NLTS conjecture

/ No low-energy trivial states (NLTS) property: \

Thereis € > 0 and a function f: N — N such that for any depth-d

Freedman and Hastings, Quant. (local) circuit U

Inf. Comp. 14 (2014)

\ (+|®"UTH, U|+)®" > en forany n = f(d)

J

[Conjecture: There is a family {Hn }n of local Hamiltonians that has the NLTS property}

 There is a family of toric-code like (CSS-stabilizer)
Hamiltonians on simplicial complexes such that an NLTS-like
statement holds when one restricts to a certain subset of
excited states. (Freedman and Hastings)

Evidence for
the NLTS conjecture:

* There is a family of Hamiltonians satisfying a related “no low-
error trivial states property” (Harrow and Eldar, FOCS 2017)



Main result: NLTS with symmetry protection

for a family

{H,},, of local Z,-symmetric
Hamiltonians

K No low-energy 7., -trivial states property: \

\ (+|®"UTH, U|+)®" > en  forany n = f(d) J

Thereis € > 0 and a function f: N — N such that for any Z,-symmetric
depth-d (local) circuit U

[Main result: Construction of a family {Hn }n of local Hamiltonians that has the NLZ, TS property. }

___________________

|+) — symmetric
|_|_> — circuit U

P
|+) — of depth d

____________________

|- Symmetry-

— U|+)®" protected NLTS




Main result: Ising models on expander graphs satisfy NLZ, TS

Let {G.}.cr be an infinite family of D-regular graphs such that h(G,) > h forallne [

Ramanujan graphs:

e connected .
e satisfy A(G) > §(D —2vD — 1)

J

KGraph G = (V,E) given ScV \
(edge) boundary O(S)=1lec E|lenS| =1} We need infinite families of
D-regular graphs with h = 2(1).
Cheeger constantof G:  h(G) = SI'nCl% %
\ 0<|S|<|V /2 J
e 2

There is an infinite family of D-regular
Ramanujan graphs for every D = 3.

Marcus, Spielman, Srivastava, Annals of Mathematics 182, 307 (2015)



Main result: Ising models on expander graphs satisfy NLZ, TS

Let {G.}.cr be an infinite family of D-regular graphs such that h(G,) > h forallne [

et H, = 1Y uyen, (T~ ZuZ)

h d
Theorem: (+|®nu’anU|+)®n > (E) n for any n > 24294d/3
and any Zz-s/ymﬁvetric depth-d (local) circuit U
|+) — symmetric—
|_|_> — Circuit U
D — G
|+) — of depth d

____________________

Corollary: Unless d = 2(logn), no low energy (density) state can be prepared.



Main result: Ising models on expander graphs satisfy NLZ, TS

Let {G.}.cr be an infinite family of D-regular graphs such that h(G,) > h forallne [

et H, = 1Y uyen, (T~ ZuZ)

h
Theorem: <+|®nU'|'HnU|_|_>®n > (g) n for any n > 242944/3
and any Z,-symmetric depth- d (local) circuit U
Proof: |+) —'symmetric\— Suppose  (+|®"UTH, U|+)®" < (%)n
|_|_> —circuitU ____

D U|+)®n
|+) — of depth d —

____________________




Main result: Ising models on expander graphs satisfy NLZ, TS

Let {G,}.cr be an infinite family of D-regular graphs such that

et H, = 1Y uyen, (T~ ZuZ)

h(Gp) > h forallnel

h
Theorem: (+|®"UTH, U|+)®" > (—)n

6

forany  n > 242244/3

and any Z,-symmetric depth- d (local) circuit U

___________________

Proof: |+) — symmetric‘;—

|_|_> __ circuit U ,_
;L

|+) — of depth d _5]= X,

____________________

X1
X2

T

Suppose  (+|®"UTH, U|+)®" < (%)n

Consider the distribution

p(x) = |[(x|U|+)®™ |?> where x € {0,1}"

By Markov’s inequality [p(SlOW) >1/2

where S;,, == {x € {0,1}* | (x|H|x) < %n}}

“low energy configurations”



Main result: Ising models on expander graphs satisfy NLZ, TS

Let {G.}.cr be an infinite family of D-regular graphs such that h(G,) > h forallne [

ﬂ H, = %Z(ugv)eEn (I —Z,%Zy) \
h
Siow = {x €{0,1}" | {x|H|x) < En}
W \ “low energy configurations”
|0 ‘ ‘ qubit with orthonormal i °

basis state |0), |1)

A classical configuration |x) = |x1) @ |x2) @ - Q |xp,)
has energy

(x|H|x) = cutsize for the bipartition [ Siow € So U 54 }
Voi={u:x, =0} Vii={u:x, =1}

\ > h - min{|Vy|, |V1]}

So ={x€{0,1}" | |x| < g} “low weight strings”

S ={xe{01}" | |x|] > Z?n} “high weight strings”



Main result: Ising models on expander graphs satisfy NLZ, TS

Let {G.}.cr be an infinite family of D-regular graphs such that h(G,) > h forallne [

et H, = 1Y uyen, (T~ ZuZ)

h
Theorem: (+|®nu’anU|+)®n > (E) n for any n > 24294d/3
and any Z,-symmetric depth- d (local) circuit U
Proof: |+) — symmetric\—@= X1 Suppose (+|®"U+HnU|+)®" < (%)n
+) — circuit U _mj
| ;>_4_>_,—7\]= *2 Consider the distribution
A

|4+) — of depth d —

____________________

p(x) = |[(x|U|+)®™ |?> where x € {0,1}"

This is only possible if d = 2(logn)
SoUS1)=1/2
[p( oUS1) =1/ J /[(Eldar and Harrow, 2017) }

by Z,-symmetry: [p(SO) >1/4 and p(Sy) = 1/4}

So ={x€{0,1}" | |x| < g} “low weight strings”
S ={xe€{0,1}" | |x| > Z?n} “high weight strings’



Circuit depth lower bound for sampling from bimodal distributions

\
Theorem: Let p(x) denote the output distribution of a depth-d quantum circuit U.
(Corollary 43, Let Sy, S; < {0,1}" be such that p(Sy) > 0 and p(S;) > 0. Then
Eldar & Harrow, 2017) _ Anl/293d/2
< —=
_ dist (S0, 51) < m{ps0) 250 Y,

A distribution produced by a shallow quantum circuit does not have
large support on any two distant subsets of strings at the same time.

‘ O> ‘H ‘ --------- ‘H ‘ --------- ‘H\ @ . )

K B 5w =i
0 B—S— O
o — a1




level-p QAOA variational state

Classical vs Quantum ;" o s goen 4y0n

MAXCUT on graph approximation ratio | approximation ratio required
to classical algorithm | achieved by QAOA QAOA level p

Farhi et al. 2014

any 1 p = © Lloyd 2018
g Wang, Hadfield, Jiang, Rieffel,
trlangle-free ’ . PRA 97, 022304 (2018)
- =1 Ryan-Anderson, arXiv:1812.04735 (2018).
D-regular graphs —+—(1—=)P-D/2 p
gular grap BN, L)

Sampling from the output distribution of (p = 1) —QAOA cannot be
efficiently simulated classically unless the polynomial hierarchy collapses
(Farhi & Harrow 2016)



iati HEE R A e Bl -
; level-p QAOA variational state ik [ o e
asSSiCal VS Yuantum P BB v | \® NS e =
—_ l l n co
Y(B,y)= Hk;l e'Pk= ek | +) 1l A o o=
ORI v B e i S
|+) L HO— e
MAXCUT on graph approximation ratio | approximation ratio required
to classical algorithm | achieved by QAOA QAOA level p
classical
1 p - o algorithm Q
any D
2 10.2500 0.2500
. 3 [0.1875 0.1925
triangle-free numerically optimized 1 1 1 =1 : . 01624
D-regular graphs y op 4 ——(1—=)@-D/2 P = 5 |0.1562 0.1431
D < 1000 local algorithm 2 24D D 6 lo.1221 0.1294
- T 10.1282 0.1190
8 10.1166 0.1108
9 10.1077 0.1040
Classical and Quantum Bounded Depth Approximation Algorithms 10,0.1077 0.0984
Mattl B. Hasti 1,2 ].1 0-0925 0_0936
Iatthew B. Hastings™
!Station Q. Microsoft Research, Santa Barbara, CA 93106-6105, USA 1210.0987 0.0894
? Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052, USA 1310.0886 0.0858
We consider some classical and quantum approximate optimization algorithms with bounded MAXCUT on D'regUIar graphS, 14 10.0005 0.0825
depth. First, we define a class of “local” classical optimization algorithms and show that a single :
step version of these algorithms can achieve the same performance as the single step QAOA on for D S 1000 15(0.0853 0.0796
MAX-3-LIN-2. S d, how that this cl f classical algorith li 1 iousl
considered in theelcig;att‘?:e,o:nd :lso ‘;iacta:Ssiong(iea:zle(?o? tgl?; lclagéici‘iﬁ;i;izsﬁrs ;ﬁiiﬁ;‘;ﬂgiﬂ{ 16|0.0833 0.0770
the single-step QAOA on all triangle-free MAX-CUT instances. In fact, for all but 4 choices of
degree,gexistii)lg single-step classicf] algorithms already outperform the QAOA on these graphs, 1710.0816 0.0747
while for the remaining 4 choices we show that the generalization here outperforms it. Finally, we 1810.0771 0.0725
consider the QAOA and provide strong evidence that, for any fixed number of steps, its performance
on MAX-3-LIN-2 on bounded degree graphs cannot achieve the same scaling as can be done by a 19|0.0778 0.0705

class of “global” classical algorithms. These results suggest that such local classical algorithms are
likely to be at least as promising as the QAOA for approximate optimization.



. level-p QAOA variational state m ZHEQ_D_D-—.D_&DG
Classical vs Quantum T e 0 o B
¢(,3,V)—Hk_1€ e |+) { H O e

- ORI v B e i S

|+) L =CH O -

MAXCUT on graph approximation ratio | approximation ratio required
to classical algorithm | achieved by QAOA QAOA level p

Farhi et al. 2014

any 1 p > © Lloyd 2018
. Wang, Hadfield, Jiang, Rieffel,
triangle-free P;Rg97,%22204 88?8) o
D-regular graphs numerically optimized 1 N 1 1_ l)(D—1)/2 p=1 Ryan-Anderson, arXiv:1812.04735 (2018).
local algorithm 2 2D D Hastings 2019
D < 1000 (based on Hirvonen et al. 2014)
triangle-free bipartite Farhi et al. 2014
3-regular graphs, o(n) 0.87856 0.756 p=2
squares
WHAT ABOUT
0.87856 ? p>17?
(constant)

Goemans and
Williamson, 1995



Main result for MAXCUT-QAOA with p > 1

Kl'heorem: For every D > 3 there is an infinite family of D-regular bipartite graphs {G,,}..e; A
such that
(AOA)<E+ b1 - 11
a(Q404,) = - 3D if p <D™ (Clogan —4)
- /
In particular:
a(QAOAp) < 0.87856 = a(Goemans-Williamson) if D > 54

The best classical polynomial-time algorithm (Goemans-Williamson) beats QAOA for any constant level p




Main result for MAXCUT-QAOA with p > 1

KI'heorem: For every D > 3 there is an infinite family of D-regular bipartite graphs {G,,}..e; \
such that
D—-1 1
a(QA04,) < - 3D if p < D_l(glogzn — 4)

6
" )

Proof: Take {G,},, to be family of D-regular bipartite Ramanujan graphs. (Marcus, Spielman, Srivastava 2015)

1
max H = |E Hy, = 5 2wwek, — ZyZy)
Y Wt |$)= |Enl to2Tr o because G,, is bipartite.
|E | _ o 1
max  (WENIHYBY)) = == +max (FENIHIP Br)) =57 wves s
NL Z,TS: ("P(,B,y)| H,|¥ (,B,y)) < @ — h?n because HZ=1 e'PrB oWkHn s 7.,-symmetric depth, depth d < p D

The best classical polynomial-time algorithm (Goemans-Williamson) beats QAOA for any constant level p



level-p QAOA variational state m ]

Classical vs Quantum ;" o s goen 4y0n

|+) -
MAXCUT on graph approximation ratio | approximation ratio required
to classical algorithm | achieved by QAOA QAOA level p

Farhi et al. 2014
1 p > © Lloyd 2018

S
?
3

—/

any

Wang, Hadfield, Jiang, Rieffel,

triangle-free PRA 97, 022304 (2018)

D-regular graphs numerica”y optimized 1 1 ( _ _)(D 1)/2 p = 1 Ryan-Anderson, arXiv:1812.04735 (2018).
local algorithm 2 2\/— Hastings 2019
D < 1000 (based on Hirvonen et al. 2014)
triangle-free bipartite Farhi et al. 2014
3-regular graphs, o(n) 0.87856 0.756 p =2
squares
D-regular bipartite < g + C(\’/%St —0.8333 Goemans and
. t Williamson, 1995
expander graphs 0.87856 1 <p <2 i :
(D = o) P<—p 1980 s work

The best classical polynomial-time algorithm (Goemans-Williamson) beats QAOA for any constant level p



Conclusions and open problems

* Zo-symmetric No Low Energy Trivial States (NLTS) property
for a family of Ising models on expander graphs

e Other symmetries?
* General NLTS conjecture still open

* Limitations to quantum approximate optimization algorithm (QAOA):
Efficient (i.e., constant-level) QAOA underperforms compared to the best classical
polynomial-time algorithm (Goemans-Williamson)

] o ) The Quantum Approximate Optimization Algorithm Needs to See
» Comparison for generic instances (instead of worst-case)? the Whole Graph: A Typical Case
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* Non-local modifications of QAOA/RQAOA: some evidence for their suitability:

 More extensive benchmarks/case studies?



