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Quantum advantage in the NISQ era

• We’ve arrived at an era in which existing 
quantum experiments can solve problems 
that seem challenging for classical computers
• That is, experiments are now large enough so 

that best known classical simulation 
techniques take large amount of time on 
classical supercomputers 
• At the same time, these experiments have 

limitations, which could potentially be 
exploited by faster classical algorithms
• e.g., restricted depth, uncorrected noise

Artist rendition of Google’s 
“Sycamore” 53 qubit processor 
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“Quantum supremacy”

• First goal for the NISQ era: “quantum 
supremacy”
• “Quantum supremacy” is multifaceted –

Need to find a task that simultaneously:
1. Can be solved experimentally
2. Is “classically hard”

• Good theoretical (asymptotic) hardness 
evidence from complexity theory

• Also cannot be solved in a “comparable” 
amount of time by classical supercomputer

3. Has a procedure for verification

Photo Credit: “Domain of Science”



Random Quantum Circuit Sampling (RCS)

• Google’s approach: Random Circuit Sampling 
[Boixo et. al. 2017, Arute et. al. 2019]
• Generate a quantum circuit C on 𝑛 qubits on a 

2D lattice, with 𝑑 ∼ 𝑛 layers of (Haar) random 
nearest-neighbor gates
• In practice use a discrete approximation to the Haar

random distribution

• Start with |0n〉 input state, apply random 
quantum circuit and measure in computational 
basis

(single layer of Haar random two 
qubit gates applied on 2D grid of 
qubits)



Why are Random Circuits an attractive proposal?

• Experimentally feasible
• Hardness at comparatively low depth and system size

• Advantages for verification/benchmarking
• Output distribution of random circuits have “Porter-Thomas” property 

• For any outcome x, Pr
!
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• We can use this property to calculate the ideal score of a random circuit on 
benchmarking tests (e.g., to understand the ideal “cross-entropy” score)



Why is RCS hard classically?

• There is good evidence that RCS is classically hard in the noiseless case 
(e.g., [Terhal & DiVincenzo’04][Bremner, Jozsa & Shepherd’10][Aaronson 
& Arkhipov ‘12][Aaronson & Chen’17], [BFNV’19]…)
• Some of these arguments may “carry over” to the noisy case, but we’re 

less certain – generally requires nonstandard hardness conjectures…



Today’s focus: hardness of computing output 
probabilities of (noisy) random circuits
• As compared with sampling…

• Experiments can’t efficiently solve this problem
• Possible to prove much stronger hardness results
• In practice, many classical simulation algorithms do compute output 

probabilities, so these hardness results are barriers for these algorithms

• Agenda:
1. We’ll review the average-case #P-hardness for near-exact computation of 

the output probability of random quantum circuits [BFNV’19]
2. We’ll show that these results still hold if the circuit is noisy (wrt a fixed noise 

model, e.g., local depolarizing noise) [ongoing joint work]
3. We’ll talk about new classical simulation results for 1D noisy random 

quantum circuits [Noh, Jiang, F’20]



Hardness of average-case problem [F, with Bouland, 
Nirkhe and Vazirani’19] 
• Random Quantum Circuit Output Computation:

• Input: Random quantum circuit 𝐶
• Output: Compute output probability, 𝑝!! 𝐶 =

0" 𝐶 0" # with probability 1 − 𝛿 over 𝐶

• To prove this is #P-hard we give a worst-case to 
average-case reduction 
• We build on result of [Lipton’91, AA’11] on average-case 

hardness of computing the Permanent of a matrix

Quantum circuits

Worst-case circuit

Average-case 
circuits



Average case hardness for Permanent [Lipton ‘91]

• Permanent of 𝑛 × 𝑛 matrix is #P-hard in the worst-case [Valiant ‘79]
• 𝑃𝑒𝑟 𝑋 = ∑$∈&!∏'()

" 𝑋',$(')
• Algebraic property: 𝑃𝑒𝑟[𝑋] is a degree 𝑛 polynomial with 𝑛# variables
• Need compute 𝑃𝑒𝑟 𝑋 of worst-case matrix 𝑋

• But we only have access to algorithm 𝑂 that correctly computes most permanents over 𝔽'
• i.e., Pr

(∈!𝔽"#×#
𝑂 𝑌 = 𝑃𝑒𝑟 𝑌 ≥ 1 − +

',-.(")

• Choose 𝑛 + 1 fixed non-zero points 𝑡), 𝑡#… , 𝑡"-) ∈ 𝔽. and uniformly random matrix 𝑅
• Consider line 𝐴(𝑡) = 𝑋 + 𝑡𝑅

• Observation 1 “marginal property”: for each 𝑖, 𝐴(𝑡1) is a random matrix over 𝔽'" ×"
• Observation 2: “univariate polynomial”: 𝑃𝑒𝑟[𝐴(𝑡)] is a degree 𝑛 polynomial in 𝑡

• But now these 𝑛 + 1 evaluation points uniquely define the polynomial, so use error-
correction (i.e., polynomial interpolation) and evaluate 𝑃𝑒𝑟[𝐴(0)] = 𝑃𝑒𝑟[𝑋]



[BFNV’18]: Hardness for Random Quantum Circuits

• Algebraic property: much like 𝑃𝑒𝑟[𝑋], output probability of random 
quantum circuits have low-degree polynomial structure
• Consider circuit 𝐶 = 𝐶/𝐶/0)…𝐶)
• Polynomial structure comes from Feynman path integral:

• ⟨0" 𝐶 0"⟩ = ∑1" ,1# ,…,1$∈ !,) ! 0" 𝐶/ 𝑦/ 𝑦/ 𝐶/0) 𝑦/0) … 𝑦# 𝐶) 0"

• This is a polynomial of degree 𝑚 in the gate entries of the circuit
• So the output probability 𝑝9!(𝐶) is a polynomial of degree 2𝑚



Worst-to-Average Reduction – Attempt 1:  
Copy Lipton’s proof
• Our case: want to compute 𝑝9!(𝐶) for worst case 𝐶

• But we only have the ability to compute output probabilities for most circuits

• Recall: Lipton wanted to compute 𝑃𝑒𝑟[𝑋], choose random 𝑅, considered 
line 𝐴(𝑡) = 𝑋 + 𝑡𝑅
• Problem:  can’t just perturb gates in a random linear direction 

• i.e., if 𝐶 is unitary, 𝐷 is unitary, 𝐶 + 𝑡𝐷 is not generally unitary



New approach to scramble gates of fixed circuit
• Choose and fix 𝐻: :∈[<] Haar random gates 
• Now consider new circuit 𝐶= = 𝐶<= 𝐶<>?= …𝐶?= so that for each gate 
𝐶:= = 𝐶:𝐻:
• Notice that each gate in 𝐶′ is completely random – “marginal property”

• Problem: no univariate polynomial structure connects worst-case 
circuit 𝐶 with the new circuit 𝐶= !!



Correlating via quantumness

• We need the analogue to Lipton’s “univariate polynomial structure”
• Main idea: “Implement tiny fraction of 𝐻:>?” 

• i.e., 𝐶'3 = 𝐶'𝐻'𝑒0'4%5

• If 𝜃 = 1 the corresponding circuit 𝐶′ = 𝐶, and if 𝜃 ≈ 𝑠𝑚𝑎𝑙𝑙, each gate is 
close to Haar random

• Now take several non-zero but small 𝜃 and apply polynomial interpolation



This is still not the “right way” to scramble!

• Problem: 𝑒>:@"A is not polynomial in 𝜃
• Solution: take fixed truncation of Taylor series for 𝑒>:@"A

• i.e., each gate of 𝐶3 is 𝐶'𝐻' ∑6(!7 0'4%5 &

6!
• So each gate entry is a polynomial in 𝜃 and so is 𝑝!!(𝐶′)
• Now interpolate and compute 𝑞(1) = 𝑝!!(𝐶)



Understanding the [BFNV’19] construction
• First point: Polynomial interpolation is very sensitive to additive error

• Severely constrains the robustness of this argument.

• As a result we can only show hardness for any point on the red line (𝑝!! 𝐶3 ± 20"# )
• To prove hardness of sampling, it suffices to show that computing any point on the 

black interval is #P-hard [Stockmeyer’83]
• Second point: Truncated circuit 𝐶= is slightly non-unitary

• We show wrt ”hardness of sampling” level of approximation, the truncations don’t 
matter 

• i.e., 𝑝!!(𝐶) ±
#'!

.9:1
is hard to compute iff 𝑝!! 𝐶3 ± #'!

.9:1
is hard

𝑝!!(𝐶)

20"/𝑝𝑜𝑙𝑦 20"/𝑒𝑥𝑝

𝑝!!(𝐶")



Movassagh’s result

• In recent follow-up work, hardness has been shown around original 
output probability
• i.e., computing 𝑝! 𝐶 ± 20"# is #P-hard [Movassagh ’20]

• To do this, Movassagh gives a new method to interpolate between 
the worst-case and random quantum circuit, using the “Cayley path”, 
which stays unitary throughout the entire path

𝑝!!(𝐶)

20"/𝑝𝑜𝑙𝑦 20"/exp

𝑝!!(𝐶")



Is it hard to (nearly exactly) compute noisy random 
circuit probabilities? [ongoing joint work]
• Fact: output distribution of noisy quantum circuit converges rapidly to 

uniform [e.g., Aharonov, Ben-Or, Impagliazzo & Nisan ’96, Gao & Duan
‘18…]
• Intuition: quantum hardness is present in tiny deviations from uniform
• How to formalize?  Suppose we fix a noise model:

• Each ideal gate 𝐶' is followed by two qubit depolarizing noise 
• ℰ1 = 1 − 𝑞 𝜌 + $

+3
∑4,6∈𝒫×𝒫&(8,8)( 𝜎4⊗𝜎6)𝜌(𝜎4⊗𝜎6)

• That is, we can think about choosing a noisy random circuit by:
• First pick ideal circuit 𝐶 = 𝐶9𝐶9&+…𝐶+ from the random circuit distribution
• Then environment chooses operators 𝑁, from a distribution 𝒩 (specified by the channel)
• We get a sample from output distribution of 𝑁 ⋅ 𝐶 without learning the noise operators



Noisy circuit output probability

• Then, by linearity, can write the output probability of the noisy circuit as:
• 𝐸'∼𝒩 0* 𝑁 ⋅ 𝐶 0* + = 𝐸'∼𝒩 𝑝,!(𝑁 ⋅ 𝐶)

• This can be written as a weighted sum of Feynman path integrals:
• ∑' Pr𝒩 𝑁 ⋅ ∑-(,-",…,-$∈ ,,1 ! 0* 𝑁2𝐶2 𝑦2 … 𝑦+ 𝑁1𝐶1 0*

+

• Key point: this is still a polynomial of degree 2𝑚 in the ideal gate entries

• So by the same arguments as before, we have a worst-to-average case 
reduction for computing 𝐸!∼𝒩[𝑝$!(𝑁 ⋅ 𝐶)] to within ±2%&3

• i.e., if we can compute this quantity for a random 𝐶 can also compute for a worst 
case 𝐶

• How hard is that?



Worst-case hardness of computing noisy 
output probabilities [Fujii ‘16]
• How hard is computing 𝐸!∼𝒩[𝑝$!(𝑁 ⋅ 𝐶)] for a worst-case circuit 𝐶?
• Fujii has shown this is classically hard if it’s possible to error detect

• i.e., if gate error rate, 𝑞, is below a constant error detection threshold 
• Proof idea 

• As with prior quantum supremacy arguments [BJS’10], it suffices to be able to show 
universality of noisy quantum circuits under postselection

• If we can detect errors, we can postselect on the syndrome measurement outcomes 
corresponding to no error occurring

• This requires high overhead to error detect nearly perfectly
• As a consequence of [Fujii ‘16],[BFNV’19] computing output probabilities of 

noisy random quantum circuits is classically hard if the noise per gate is 
below the error detection threshold



New easiness results
• Many recent classical simulation results for restricted classes of random 

quantum circuits (e.g., [Napp et. al. ’20], [Zhou et al.’20])
• Our focus: 1D random circuits with Haar random two-qubit gates and 

local depolarizing noise 
• Recall: With depolarizing noise, output distribution of random circuit eventually 

converges to uniform
• But for a given gate error rate, what is the “hardest” depth, system size to 

implement?  Where do quantum correlations “peak”?



Numerical results for noisy 1D RCS [Noh, Jiang, F’20]

• We consider the “MPO entanglement entropy” of the resulting mixed state
• A measure of quantum correlations between two disjoint subsystems of qubits 
1,… , ℓ , [ℓ + 1,… , 𝑛]

• Reduces to standard entanglement entropy in case of pure states

• Motivation for this quantity: determines the cost of classical MPO 
simulation
• Can compute the output probability in time ∼ 2&$)*'+,-'.. ;

• Because “Maximum MPO entanglement entropy” can be used to bound the required bond 
dimension, 𝜒, needed to accurately describe a mixed state

• Running time is 𝑝𝑜𝑙𝑦(𝑛, 𝑑, 𝜒) and so exponential in 𝑆/<=0>?@0AA(𝜌)



Plots from [Noh, Jiang, F’20] (1)

• Each plot has different fixed two-qubit error rate 𝑝
• For each system size 𝑛 = 4…18 we compute the Max 

MPO Entanglement Entropy measure, averaged over 
𝑁' =24 different random circuits
• We see that for each error rate, there’s a peak depth 

for which correlations are maximized
• Moreover in each plot, at this peak depth, after 

sufficiently large system size, adding more qubits 
doesn’t change the Max MPO Entanglement Entropy
• So from the perspective of this particular algorithm, 

once we fix the noise rate, hardness “saturates” at 
fixed system size.



Plots from [Noh, Jiang, F’20] (2)

• To see this saturation behavior more 
directly we plot Number of qubits vs 
Max MPO Entanglement Entropy 
• Each curve represents a different error-

rate at optimal depth for that error-rate 
(from prior plot)
• Again, we see there’s a maximum 

system size, determined by the error 
rate, after which we don’t gain in 
quantum correlations using this 
measure



Conclusions

• Numerically, we observe that for noisy 1D random circuits there is a sense 
in which quantum correlations peak at a particular system size
• We can make use of this observation to compute noisy output 

probabilities using Matrix Product Operator (MPO) methods
• On the other hand, we can prove that computing noisy output 

probabilities (to extreme precision) is hard in 2D below a noise threshold 
• combining our results from [BFNV’19] with [Fujii’16]
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