Quantum , .
Software i .
Consortium

Quantum computational speed-ups
with smaller quantum computers

Vedran Dunjko
v.dunjko@liacs.leidenuniv.nl

based on: J. Math Phys 61, 012201 (2020),, Phys. Rev. Lett. 121, 250501 (2018) + works in progress

with Y. Ge, I. Cirac, M. Rennela, A. Laarman; H. Calandra, C. Moussa

| .
|
o
oo e Advanced
¢q . Computer
. ® Science

Basic motivational question:
suppose you have a problem instance (say SAT) of size n,
and quantum computer handling k<<n qubits.

Is the QC any good for you?

Motivation 50 qubit QC... in 3 years 100-1000 qubit QC

amenable to
architecture
limits

amenable to
size limits

Banana for scale

broad
impact &
relevance

tolerance
to noise

Here:

1) dealing with just size issues - no errors

Also one qubit is much more
expensive than a banana...

2) speed-ups/enhancements

not supremacy, common hard probs.

3) basic curiosity - how much can a
smaller device help bigger problems

Related work and settings

Question: suppose you have a (3SAT) problem of size n,
and quantum computer handling k<<n qubits.

What can you do?

(A) Hack it. Identify all smaller subroutines, speed those up.

A bit more systematic:

(B) “Quantum circuit chop”

Find a suitable quantum algorithm for problem; chop up the circuit.
(Bravyi, Smith, Smolin '16; Peng, Harrow, Ozols, Wu '19)

(C) “Classical algorithm chop”
Find a good classical algorithm which chops well, and can be quantum-enhanced

Related work and settings

Question: suppose you have a (3SAT) problem of size n,
and quantum computer handling k<<n qubits.

What can you do?

(A) Hack it. Identify all smaller subroutines, speed those up.

A bit more systematic:

(B) “Quantum circuit chop”

Find a suitable quantum algorithm for problem; chop up the circuit.
(Bravyi, Smith, Smolin 16; Peng, Harrow, Ozols, Wu "19)

(C) “Classical algorithm chop”
Find a good classical algorithm which chops well, and can be quantum-enhanced

Trade-offs in applicability, and
which approach gives better results

Our setting - more detail

* have some classical algorithm for a problem in mind :

Schoning, PPSZ, DPLL for boolean satisfiability (SAT),
Eppstein for Hamilton cycles

» there is a faster quantum algorithm (few options)

* have n-sized instance of a problem (“solution space size”)

* but only a k<n-sized QC

When does the QC “genuinely help™? % (2“”) — O <2yqn)
def. here: polynomial speed-up, asymptotically y <y
c = 1/q

Our setting - more detail

* have some classical algorithm for a problem in mind :

Schoning, PPSZ, DPLL for boolean satisfiability (SAT),
Eppstein for Hamilton cycles

» there is a faster quantum algorithm (few options)

* have n-sized instance of a problem (“solution space size”)

* but only a k<n-sized QC

, k cannot be constant
When does the QC “genuinely help™? ::> | |
def. here: polynomial speed-up, asymptotically Z‘OSt '”terest'”(gociiei
=an;,a € (0,

The method: hybrid divide-and-conquer

“Naturally” chop-uppable algorithms: divide-conquer, recursive, backtracking

f:{0,1}" = {0,1}

f(ﬂi’l, “ .. ,le‘n) — (5131 \V4 10 \V4 3_351) YA\ (i’g \V le \/ :Ell) /\ (5311 \/ j44 \ j51) “ ..

E.g. backtracking algorithms exploring trees of possible (partial) solutions

1: procedure ALG(P)
if TRIVIAL(P) =1
return f(P)

return g(ALG(R:(P)),..., ALG(R,(P)))

2
3:
4: else
5:
6: end procedure

by

But nodes could be more general
“subproblems”

The method: hybrid divide-and-conquer

“Naturally” chop-uppable algorithms: divide-conquer, recursive, backtracking

Obvious hybrid method:

1) pick a suitable classical and quantum algorithm

2) do:

N
Problem
M -2 subproblem
0
/ 4
n -3 Sub-sub- Sub-sub- Sub-sub- Sub-sub-

problem 00 problem 01 problem 10 problem 11

Intuition

Instance naturally shrinks,
eventually fits on QC.

The method: hybrid divide-and-conquer

The process need not be fully homogeneous

n specified by
Problem algorithm A
n-2 subprooblem
n-3 Sub-sub- Sub-sub- Sub-sub- Sub-sub-
. ‘“mb'eW“ what is run on the QC can be
' "— -quantum-enhanced A
K -something different (B)

Goal: express complexity as function of £, » and complexities of 4 and B

A few catches: we can fail get asymptotic speed-ups for a few reasons.

What can “B” be?
Here focus on quantum algorithms for NP-hard problems

+ NP probably not in BQP (1996 / 19937)

Worst case exact
» “Goverization” (Schoning), quantum walks (cubic Hamilton cycles), g. dynamic programming (graph
problems)

Approximation algorithms
« QAOA

Heuristics

* natural: annealers & adiabatic QC

* enhancements: Grover, backtracking (tree exploration)
* via linear algebra approaches (in prep.)

 Enhancements v.s. “genuinely new” algorithms

What can “B” be?
Here focus on quantum algorithms for NP-hard problems

+ NP probably not in BQP (1996 / 19937)

Worst case exact

» “Goverization” (Schoning), quantum walks (cubic Hamilton cycles), g. dynamic programming (graph
problems)

Approximation algorithms
« QAOA

Heuristics

* natural: annealers & adiabatic QC
* enhancements: Grover, backtracking (tree exploration) Mostly here algorithms A = B
* via linear algebra approaches (in prep.) easier analysis, ’

also a smart way to do
heuristics

S. “genuinely new” algorithms

How it would work ideally: e.g. tree search for exponential binary trees

Setting

Algorithm A: Brute force search (BFS)
Algorithm B: Grover (Q. BFS) n-k

Problem: SAT (=full, balanced binary tree)

Complexities
Classical: 2" (= 2/"y. = 1)
Quantum: 2% (= 21"y, = 1/2)

—

Interpolates between classical and quantum run-times: o = k/n

How it would work ideally

Can be done more generally e.g. for algos with run-times
given in terms of standard recurrence relations

. . n-k
classical run-time ~ €xp (Ven)

quantum run-time ~ exp (v4n)
. k

Quantum backtracking algorithms can achieve y,, ~

. : —k k
hybrid run-time ~ exp Kn Ve + qu) n]

(1

= exp ((1 —)y, + (x;/q> n Thybria = (1 — a)ye + (@)
| a=k/ne0(1)

N ———— ——
Yhybrid

How it would work ideally

Can be done more generally e.g. for algos with run-times
given in terms of standard recurrence relations

classical run-time ~ €xp (ven) A

quantum run-time ~ exp (vqn)

For all constant & = k/n,

exp(Ygn) < exp(Yaybria 1) < exp(Yen)

threshold-free: speed-ups attained for all o!

In other words: no matter how small your QC is relative to the instance,
there is a poly-speed-up attainable. When is this possible?

Freely control a trade-off between problem size(es) and speed-up attainable

It

k

How it fails

-“fat” algorithms (space complexity) =» no real speed-up (in limit)

-bad trees = speed-up attained only for high ar (not threshold-free)

Fat algorithm example

subtlety: what is “size” matters... A ln_ k

hybrid run-time ~exp [((1 —a)y,.+ ayq) n] k

depth = #variables 1n subinstance

aXn=k-in expression above, size of formula we can handle

but in general “size of formula | can handle” < number of qubits | have

Fat algorithm example

subtlety: what is “size” matters...
A ln'k

hybrid run-time ~exp [((1 —a)y,.+ ayq) n] L

aXn=k-in expression above, size of formula we can handle

Space-complexity* of g. algorithm f{71) = can handle £~ (& X 1) sized-formula, not an

()

J not poly speed-up

Eg.: ifffn) =n?

effective size handleable: k = A/ an

Fat algorithm example

subtlety: what is “size” matters...
A l”’k

hybrid run-time ~exp [((1 —a)y.+ a;/q) n]

aXn=k-in expression above, size of formula we can handle

Space-complexity* of g. algorithm f{71) = can handle £~ (& X 1) sized-formula, not an

()

J not poly speed-up

Eg.: ifffn) =n?

effective size handleable: k = A/ an

Space complexity of Q.A. needs to be (essentially) linear...

Bad tree example

ki > exponential (hard) region

gﬁ\

n

00—
0—0—

k
: > poly (or linear or constant) region

0—0--@
0—0--0
0—0--0
O0—0—-0
O—0--0—
0—0—-0—
0—0--0—

ki QC does some hard work — poly speed-up

k1 QC speeds-up easy work — no speed-up (worse: quantum overheads & cost of reversibility...)

Speed-up is_not threshold-free

So when does it work?

can start QC
at leaves of 1,

Iy

Algo A induces tree; and with quantum algo B and
size limit (an) a search-tree decomposition

Search tree decomposition:

T=Ty+) T,
j

So when does it work?

Main theorem

Given classical algo A, quantum algo B, a size limit (an),
consider induced search tree and its decomposition.

Assume T'is exponential (can be relaxed)

The hybrid approach achieves poly speed-up If:

(1) [Ej Time(A, 7}-) is poly slower than [Ej Time(B, 7})

(2) Constant fraction of 7} is exponentially sized

Search tree decomposition:

T=Ty+) T,

J

So when does it work?

Main theorem

Intuition:
Given classical algo A, quantum algo B, a size limit (an),
consider induced search tree and its decomposition.
. . Don’t have to care about overheads
Assume T'is exponential (can be relaxed) >

and fine-grained complexities

The hybrid approach achieves poly speed-up If:

(1) IE; Time(A, T}) is poly slower than E; Time(B, T;) +——— QC is actually faster when used

(2) Constant fraction of 7} is exponentially sized > There s still sufficient work for

QC to do (subtle)

Both (1) and (2) can be contingent on . If not, threshold-free speed-up

Now, when does it actually work?

Examples where quantum algos. could be made
sufficiently space efficient... without sacrificing speed... while reversible

Example 1: Derandomized Schoning for 3-SAT & PromiseBallSAT

PromiseBallSat(x, /)

o
Given assignment x does there exist a satisfying
assignment within hamming distance /?

Yields a ternary search tree (21 V 210V B51) A (83 V 0 V Z01) A (F11 V Tag V 51) -+
. , Sl/lmﬂ
However! Naive space complexity: b M
O log(m) /N NN
S% e 3 i
Too much... .
S|

E. Dantsin et al, Theoretical Computer Science 289, 69 (2002).
R. A. Moser and D. Scheder, in STOC 2011

Example 1: Derandomized Schoning for 3-SAT & PromiseBallSAT

Obstacles

Storing sets v.s. lists s

list = Q(k X log(n))
set= 0k X log(n/k)), nlk = 1/a € O(1)

Problem: set update is not reversible (which element did | add last?)
direct reversibilization exponentially slow

Solution: special memory structure.
k X log(n/k) space complexity, and poly-time updates

Phys. Rev. Lett. 121, 250501 (2018)

Example 2: Eppstein’s algorithm for Hamilton cycles cubic graphs

Developed a number of space-efficient
subroutines for dealing with sets

» application to Eppstein’s algorithm for
cubic graphs

* can “carry” sets of edges
* can identify terminating conditions
* can perform simplification of graphs

In these cases

+polynomial speed up relative
to best classical upper bound

- the speed up is threshold free

+full search trees (for bounds): based on Grover

J. Math Phys 61, 012201 (2020)

Backtracking cases for boolean satisfiability

f(ﬂ?l, ce ,wn) = (:Cl V Z10 \/if51) N (3_33 V x19 V :1_311) VAN (jll V Z44 \/j51) c.

* node = partial assignment = subformula

» tree depends on ordering, and
simplification method

» can we infer the value of a given variable?

* E.g. unit resolution & pure literal rule (DPLL* algorithm),
s-implication (PPSZ algorithm)

* Grover: no guaranteed speed-up; Quantum backtracking: speed-up in queries

*DPLL: Davis—Putnam-Logemann-Loveland Montanaro ToC ‘18
Ambainis, Kokainis, STOC ‘17

uniformly dense trees and SETH

Example class 3

0-602
2259250258 =9
W\Gmmomo ooR

Z09-=255 %" oo,
00-5°% 503203

joint
i0l0
\ O
]

o
So0ie

g

°10Ig 1

19,
o°
1100

0

LAY

o025, 00%%

ol IIoN0,

ol

‘o

1100,
°|,°nl: "

leb)
a5
=
£ &
IS
| -
© S
O
o 3
er
= ©
leb)
mum
O
> O
N -
Sr_l
© S
O O
S o
S B
C S
..WS
A
£ 5
©
o >
- @
— 4+
o
E o

Kﬂn)

fsize Q2

Kniso

Then poly-speed ups whenever QC can handle

-9 2000 = 2%
mwmmmmm%w 2
OWmM|
5= v
°iN T : £
- H - Q
<" T s £
~ o :
5y 5o 22
<) 2 pr £
) o PN Wn/ =
&) -
w o
d P ‘ < ™ o 124\ -
= - i3 @
Q
SN

tances (using space eff. quantum backtrack

KN size Ins

istics can be done cleverly (space efficiently)

Quantum backtracking can be done space-efficiently

if search heur

inary-tree/

/lturnoff.us/geek/bi

http

Example class 3: uniformly dense trees and SETH

Lm: In backtracking, assume the search tree

IS s.t. every subtree of depth larger than 2:“,:.,,::“;;'&:?1“
/ / KAn (
K1 is of size Q2% ,&_@ N

Then poly-speed ups whenever QC can handle

Kn size instances (using space eff. quantum backtracking) s just a
S?f,jij tree..
Quantum backtracking can be done space-efficiently

if search heuristics can be done cleverly (space efficiently)

Daniel Stori {turnoff.us}

If problem is hard enough, no need to be clever.

Under strong exponential time hypothesis, for every & = QC-size/n there exists a
SAT family for which the hybrid approach is poly faster than any classical algorithm

http://turnoff.us/geek/binary-tree/

uniformly dense trees and SETH

Example class 3

)
i 1010
olllll:mlool
010
1100,
On

'

ool
Q1010

0
U
10

oo
o

X _, : -
d,u anm @ o m
35 o 22 -
5® A &
&% TETC ;
== O
g >
N]
S
= L o
@ = S a
= (qv] L (/)
o = O =
O © C D O
rh a G
®© = (&) (N
35 O 7 @
O O @ S ks
c = — g=
amu._.m) - n
o - -
2 O D (qo] DO
n O < >
O Y= W .nb O
.,Omll (7)) L
sg¢ & < O
= = & MW B ' e\
 —
= 9 o o @© ~ |
< > N N
8 & .» ic a0 A
o = Jw S o o
o N—’
S . o»n QN <
Es s B2 = G =
- c S m =
1 .9 —

if 1/2 > A > 0 need q. backtracking for speed-up

(condition 1 of main th. violated for Grover)

-tree/

inary

[lturnoff.us/geek/b

http

Example 4 (ongoing): PPSZ special cases

PPSZ = Paturi, Pudlak, Saks and Zane

Basis for fastest exact SAT solver

Order fixed, variable is s-implied or guessed

PPSZ Theorem: finding solution needs no more than
~ (.38n guesses (for many orderings)

Runtime: O*(2""); v =~ 0.38

Would have been cool to speed up the best algorithm threshold free...
alas...smrc (sniff)...

Example 4 (ongoing): PPSZ special cases

PPSZ = Paturi, Pudlak, Saks and Zane O

Bad t | QC no hard work (/(;!' ":i:é'?ib
* bad rees: early guesses — NO Nara wor ?0?00 ? SO
e il &
© e

© =
* Requires *very* space efficient implementation
(0(n)) of s-implication-based resolution

» Works for some special cases of formulas (s-implication is efficient!)

* In general no; it seems it would imply P-complete problems can
be resolved in sublinear space, with subexponential time....

Some theory and some practice...

Limits of speed-ups of all hybrid methods?

Some theory and some practice...

Limits of speed-ups of all hybrid methods?
Low hanging fruit results:

For simple hybrid approach, generically poly speed-ups at best
(even if quantum algo is exponentially faster)

Problem Already this costs
exp((l T al)}/cn) — exp(yoptn)

ubproble

1

Sub-sub- Sub-sub- Sub-sub- Sub-sub-
problem 00 problem 01 problem 10 problem 11

Smaller QC

Some theory and some practice...

Low hanging fruit results:

We can ofc go beyond “vanilla hybrid®. To an
(likely exponential) point.

Assume (a specific) BQP (say) decision problem take Q(24) classically

Then for every @, there exist problem families where
Time(A) = Q2" yet Time(Hybrid) = poly(n)

Artificial problem: QGate(k)-adaptive-boolean-circuit evaluation
Intuitively “complete” for “what one can do” with a smaller QC

Some theory and some practice...

Artificial promise problem: QGate(ar)-adaptive-boolean-circuit evaluation

QGate(k) = quantum poly-sized circuit, k inputs, one output, promise bounded
away from 1/2, output the more likely value

an

QGate " |QGate

CC CC CC

QGate(an, n, Program), where Program(x), |X| = n, specifies a poly-sized
circuit over an qubits. Kind of “all we can do" in the model. Bounds trivial.

Early days...

Some theory and some practice...

» Many other possibilities (e.g. branch-and-bound)

» Speed-ups for heuristics (DPLL & poly-sized trees)

* Real-world speed-ups

heuristically combining classical with quantum algorithms.
e.g. QAOA with ML-based algorithm selection used for
the “chopping up” process (GW v.s. QAOA: arXiv:2001.08271)

intuition: chop it up such that QC has to do the work as early as possible

Final remarks, loose ends

» why NP-hard? Matters (hard, common (Al, need speedups));
Because we don’t have much better solutions than search, it works

» addressed: can a smaller QC help asymptotically & provably
* “smaller"= one possible choice, here most stringent reasonable

smaller QCs at least as helpful as what is shown

» Still a gap between presented model, and what really matters in reality
* fine grained analyses...

» pudding: real-world numerical tests needed for heuristics!

Thank you, and thanks to the co-authors:

Rennela Laarman

TOTAL I | 5 ‘I Moussa

Calandra

More on what we do in the neighborhood:

Applied Quantum Algorithms (aQa) Leiden: wWww.aqga.universiteitleiden.nl

Quantum Software Consortium (QSC): quantumsc.nl

