
Quantum computational speed-ups
with smaller quantum computers

Vedran Dunjko
v.dunjko@liacs.leidenuniv.nl

based on: J. Math Phys 61, 012201 (2020);, Phys. Rev. Lett. 121, 250501 (2018) + works in progress

with Y. Ge, I. Cirac, M. Rennela, A. Laarman; H. Calandra, C. Moussa

Basic motivational question:
suppose you have a problem instance (say SAT) of size n,

and quantum computer handling k<<n qubits.

Is the QC any good for you?

50 qubit QC… in 3 years 100-1000 qubit QC

Banana for scale

Also one qubit is much more
expensive than a banana…

1) dealing with just size issues - no errors

2) speed-ups/enhancements
not supremacy, common hard probs.

3) basic curiosity - how much can a
smaller device help bigger problems

Here:

Motivation

Question: suppose you have a (3SAT) problem of size n,
and quantum computer handling k<<n qubits.

What can you do?

(B) “Quantum circuit chop”
Find a suitable quantum algorithm for problem; chop up the circuit.
(Bravyi, Smith, Smolin ’16; Peng, Harrow, Ozols, Wu ’19)

Related work and settings

(A) Hack it. Identify all smaller subroutines, speed those up.

(C) “Classical algorithm chop”
Find a good classical algorithm which chops well, and can be quantum-enhanced

A bit more systematic:

Question: suppose you have a (3SAT) problem of size n,
and quantum computer handling k<<n qubits.

What can you do?

(B) “Quantum circuit chop”
Find a suitable quantum algorithm for problem; chop up the circuit.
(Bravyi, Smith, Smolin ’16; Peng, Harrow, Ozols, Wu ’19)

Related work and settings

(A) Hack it. Identify all smaller subroutines, speed those up.

(C) “Classical algorithm chop”
Find a good classical algorithm which chops well, and can be quantum-enhanced

A bit more systematic:

Trade-offs in applicability, and
which approach gives better results

• have n-sized instance of a problem (“solution space size”)

• but only a k<n-sized QC

When does the QC “genuinely help”?
def. here: polynomial speed-up, asymptotically

• have some classical algorithm for a problem in mind :
 Schöning, PPSZ, DPLL for boolean satisfiability (SAT),

Eppstein for Hamilton cycles

• there is a faster quantum algorithm (few options)

O* (2γcn) → O* (2γqn)
γc ≤ γq

Our setting - more detail

• have n-sized instance of a problem (“solution space size”)

• but only a k<n-sized QC

When does the QC “genuinely help”?
def. here: polynomial speed-up, asymptotically

• have some classical algorithm for a problem in mind :
 Schöning, PPSZ, DPLL for boolean satisfiability (SAT),

Eppstein for Hamilton cycles

• there is a faster quantum algorithm (few options)

Our setting - more detail

k cannot be constant

most interesting case:
 k = αn; α ∈ (0,1)

The method: hybrid divide-and-conquer

f(x1, . . . , xn) = C1 ^ C2 ^ · · ·Ck ^ · · ·CL

Ck = (u _ v _ w), u, v, w 2 {x1, . . . , xn} [{x̄1, . . . , x̄n}

f(x1, . . . , xn) = (x1 _ x10 _ x̄51) ^ (x̄3 _ x̄10 _ x̄11) ^ (x̄11 _ x̄44 _ x̄51) · · ·

f : {0, 1}n ! {0, 1}

“Naturally” chop-uppable algorithms: divide-conquer, recursive, backtracking

E.g. backtracking algorithms exploring trees of possible (partial) solutions

But nodes could be more general
“subproblems”

The method: hybrid divide-and-conquer

Problem

subproblem subproblem

1) pick a suitable classical and quantum algorithm

2) do:

k

n

n-2

n-3

…

“Naturally” chop-uppable algorithms: divide-conquer, recursive, backtracking

Obvious hybrid method:

Intuition

Instance naturally shrinks,
eventually fits on QC.

The method: hybrid divide-and-conquer

Problem

subproblem subproblem

specified by
algorithm A

what is run on the QC can be
-quantum-enhanced A

-something different (B)k

n

n-2

n-3

…

Goal: express complexity as function of k, n and complexities of A and B

The process need not be fully homogeneous

A few catches: we can fail get asymptotic speed-ups for a few reasons.

What can “B” be?
Here focus on quantum algorithms for NP-hard problems

• NP probably not in BQP (1996 / 1993?)

Worst case exact
• “Goverization” (Schöning), quantum walks (cubic Hamilton cycles), q. dynamic programming (graph

problems)

Approximation algorithms
• QAOA

Heuristics
• natural: annealers & adiabatic QC
• enhancements: Grover, backtracking (tree exploration)
• via linear algebra approaches (in prep.)

• Enhancements v.s. “genuinely new” algorithms

What can “B” be?
Here focus on quantum algorithms for NP-hard problems

• NP probably not in BQP (1996 / 1993?)

Worst case exact
• “Goverization” (Schöning), quantum walks (cubic Hamilton cycles), q. dynamic programming (graph

problems)

Approximation algorithms
• QAOA

Heuristics
• natural: annealers & adiabatic QC
• enhancements: Grover, backtracking (tree exploration)
• via linear algebra approaches (in prep.)

• Enhancements v.s. “genuinely new” algorithms

Mostly here algorithms A = B,
easier analysis,

also a smart way to do
heuristics

How it would work ideally: e.g. tree search for exponential binary trees

n-k

k

Algorithm A: Brute force search (BFS)
Algorithm B: Grover (Q. BFS)

Problem: SAT (=full, balanced binary tree)

Classical: 2n (= 2γcn, γc = 1)
Quantum: 2n/2 (= 2γqn, γq = 1/2)

Hybrid: 2(n−k) × 2k/2 = 2((n−k)/n+k/n)n = 2((1−α)γc+αγq)n

 α = k/nInterpolates between classical and quantum run-times:

Setting

Complexities

exp (�cn)

exp (�qn)

exp

✓
n� k

n
�c +

k

n
�q

◆�
n

�hybrid

classical run-time ~
quantum run-time ~

Quantum backtracking algorithms can achieve γq ≈
γc

2

exp

✓
n� k

n
�c +

k

n
�q

◆
n

�
hybrid run-time ~

�hybrid = (1� ↵)�c + (↵)�q

↵ = k/n 2 O(1)

n-k

k

Can be done more generally e.g. for algos with run-times
given in terms of standard recurrence relations

How it would work ideally

= exp [((1 − α) γc + αγq) n]

exp (�cn)

exp (�qn)

exp

✓
n� k

n
�c +

k

n
�q

◆�
n

�hybrid

(x1 _ x4 _ x10)| {z }

exp (�cn)

exp (�qn)

exp

✓
n� k

n
�c +

k

n
�q

◆�
n

�hybrid

classical run-time ~
quantum run-time ~

n-k

k

Can be done more generally e.g. for algos with run-times
given in terms of standard recurrence relations

How it would work ideally

exp(�qn) < exp(�hybrid n) < exp(�cn)

threshold-free: speed-ups attained for all !α

For all constant α = k/n,

In other words: no matter how small your QC is relative to the instance,
there is a poly-speed-up attainable. When is this possible?

Freely control a trade-off between problem size(es) and speed-up attainable

-“fat” algorithms (space complexity) ➡ no real speed-up (in limit)

-bad trees ➡ speed-up attained only for high (not threshold-free)α

How it fails

hybrid run-time ~

 - in expression above, size of formula we can handleα × n = k

n-k

k

depth = #variables in subinstance

Fat algorithm example

subtlety: what is “size” matters…

exp [((1 − α) γc + αγq) n]

but in general “size of formula I can handle” < number of qubits I have

hybrid run-time ~

 - in expression above, size of formula we can handleα × n = k

Space-complexity* of q. algorithm f(n) ➡ can handle sized-formula, not f −1(α × n) αn

E.g.:
exp

✓✓
1�

r
↵

n

◆
�c +

r
↵

n
�q

◆
n

�if f(n) = n2

(x1 _ x4 _ x10)| {z }

not poly speed-up

n-k

k

effective size handleable:

(x
1
_
x
4
_
x
1
0
)

|
{z

}

Fat algorithm example

subtlety: what is “size” matters…

exp [((1 − α) γc + αγq) n]

k = αn

hybrid run-time ~

 - in expression above, size of formula we can handleα × n = k

Space-complexity* of q. algorithm f(n) ➡ can handle sized-formula, not f −1(α × n) αn

E.g.:
exp

✓✓
1�

r
↵

n

◆
�c +

r
↵

n
�q

◆
n

�if f(n) = n2

(x1 _ x4 _ x10)| {z }

not poly speed-up

n-k

k

effective size handleable:

(x
1
_
x
4
_
x
1
0
)

|
{z

}

Fat algorithm example

subtlety: what is “size” matters…

exp [((1 − α) γc + αγq) n]

k = αn

Space complexity of Q.A. needs to be (essentially) linear…

Bad tree example

(x
1
_
x
4
_
x
1
0
)

|
{z

}
(x

1
_
x
4
_
x
1
0
)

|
{z

}

exponential (hard) region

poly (or linear or constant) region

k1

k2

k1

k1

QC does some hard work — poly speed-up
QC speeds-up easy work — no speed-up (worse: quantum overheads & cost of reversibility…)

Speed-up is not threshold-free

So when does it work?

Search tree decomposition:

T = T0 + ∑
j

Tj

T0

T1 T2 Tj

Tl

can start QC
at leaves of T0

Algo A induces tree; and with quantum algo B and
size limit () a search-tree decomposition αn

So when does it work?

Main theorem

Given classical algo A, quantum algo B, a size limit (),
consider induced search tree and its decomposition.

αn

Assume T is exponential (can be relaxed)

The hybrid approach achieves poly speed-up if:

(1) is poly slower than 𝔼j Time(A, Tj) 𝔼j Time(B, Tj)

(2) Constant fraction of is exponentially sizedTj

So when does it work?

Main theorem

Given classical algo A, quantum algo B, a size limit (),
consider induced search tree and its decomposition.

αn

Assume T is exponential (can be relaxed)

The hybrid approach achieves poly speed-up if:

Intuition:

QC is actually faster when used

There is still sufficient work for
QC to do (subtle)

Don’t have to care about overheads
and fine-grained complexities

(1) is poly slower than 𝔼j Time(A, Tj) 𝔼j Time(B, Tj)

(2) Constant fraction of is exponentially sizedTj

Both (1) and (2) can be contingent on . If not, threshold-free speed-upα

Now, when does it actually work?

Examples where quantum algos. could be made
sufficiently space efficient… without sacrificing speed… while reversible

Example 1: Derandomized Schöning for 3-SAT & PromiseBallSAT

f (1)

f (2)

f (3)

f (1,1)

f (1,2)

f (1)

f (2)

f (3)

f (1,1)

f (1,2)

f (1)

f (2)

f (3)

f (1,1)

f (1,2)

f (1)

f (2)

f (3)

f (1,1)

f (1,2)

f (1)

f (2)

f (3)

f (1,1)

f (1,2) …

s1

s2
...

sr

s1

s2
...

sr

x3 x11x10

f(x1, . . . , xn) = C1 ^ C2 ^ · · ·Ck ^ · · ·CL

Ck = (u _ v _ w), u, v, w 2 {x1, . . . , xn} [{x̄1, . . . , x̄n}

f(x1, . . . , xn) = (x1 _ x10 _ x̄51) ^ (x̄3 _ x̄10 _ x̄11) ^ (x̄11 _ x̄44 _ x̄51) · · ·

f(x1, . . . , xn) = C1 ^ C2 ^ · · ·Ck ^ · · ·CL

Ck = (u _ v _ w), u, v, w 2 {x1, . . . , xn} [{x̄1, . . . , x̄n}

f(x1, . . . , xn) = (x1 _ x10 _ x̄51) ^ (x̄3 _ x̄10 _ x̄11) ^ (x̄11 _ x̄44 _ x̄51) · · ·

s1

s2
...

sr

s1

s2
...

sr

x1 x10 x51

Yields a ternary search tree

However! Naïve space complexity:
 O(l × log(n))

Too much…

E. Dantsin et al, Theoretical Computer Science 289, 69 (2002).
R. A. Moser and D. Scheder, in STOC 2011

Given assignment ⃗x
assignment within hamming distance l?

does there exist a satisfying
l

Storing sets v.s. lists

list = Ω(k × log(n))
set = ; O(k × log(n/k)) n/k = 1/α ∈ O(1)

Problem: set update is not reversible (which element did I add last?)

Solution: special memory structure.
 space complexity, and poly-time updatesk × log(n/k)

direct reversibilization exponentially slow

Phys. Rev. Lett. 121, 250501 (2018)

Example 1: Derandomized Schöning for 3-SAT & PromiseBallSAT

Obstacles

Example 2: Eppstein’s algorithm for Hamilton cycles cubic graphs

J. Math Phys 61, 012201 (2020)

• application to Eppstein’s algorithm for
cubic graphs

• can “carry” sets of edges
• can identify terminating conditions
• can perform simplification of graphs

Developed a number of space-efficient
subroutines for dealing with sets

In these cases
• polynomial speed up relative

to best classical upper bound
• the speed up is threshold free
• full search trees (for bounds): based on Grover

Backtracking cases for boolean satisfiability
f(x1, . . . , xn) = C1 ^ C2 ^ · · ·Ck ^ · · ·CL

Ck = (u _ v _ w), u, v, w 2 {x1, . . . , xn} [{x̄1, . . . , x̄n}

f(x1, . . . , xn) = (x1 _ x10 _ x̄51) ^ (x̄3 _ x̄10 _ x̄11) ^ (x̄11 _ x̄44 _ x̄51) · · ·

• node = partial assignment = subformula

• tree depends on ordering, and
simplification method

• can we infer the value of a given variable?

• E.g. unit resolution & pure literal rule (DPLL* algorithm),
s-implication (PPSZ algorithm)

• Grover: no guaranteed speed-up; Quantum backtracking: speed-up in queries

Ambainis, Kokainis, STOC ‘17
Montanaro ToC ‘18*DPLL: Davis–Putnam–Logemann–Loveland

Example class 3: uniformly dense trees and SETH

Lm: In backtracking, assume the search tree
is s.t. every subtree of depth larger than
 is of size κn Ω(2κλn)

Then poly-speed ups whenever QC can handle
 size instances (using space eff. quantum backtracking)κn

http://turnoff.us/geek/binary-tree/

Quantum backtracking can be done space-efficiently
if search heuristics can be done cleverly (space efficiently)

Example class 3: uniformly dense trees and SETH

Under strong exponential time hypothesis, for every there exists a
SAT family for which the hybrid approach is poly faster than any classical algorithm

α = QC-size/n

http://turnoff.us/geek/binary-tree/

If problem is hard enough, no need to be clever.

Lm: In backtracking, assume the search tree
is s.t. every subtree of depth larger than
 is of size κn Ω(2κλn)

Then poly-speed ups whenever QC can handle
 size instances (using space eff. quantum backtracking)κn

Quantum backtracking can be done space-efficiently
if search heuristics can be done cleverly (space efficiently)

Example class 3: uniformly dense trees and SETH

Lm: In backtracking, assume the search tree
is s.t. every subtree of depth larger than
 is of size κn Ω(2κλn)

Then poly-speed ups whenever QC can handle
 size instancesκn

http://turnoff.us/geek/binary-tree/

Ω(2κλn)

if Grover suffices for speed-upλ > 1/2

if need q. backtracking for speed-up
(condition 1 of main th. violated for Grover)

1/2 ≥ λ > 0

BTW:

- is a measure of densityλ

Example 4 (ongoing): PPSZ special cases

PPSZ = Paturi, Pudlak, Saks and Zane

Basis for fastest exact SAT solver

Order fixed, variable is s-implied or guessed
PPSZ Theorem: finding solution needs no more than
 guesses (for many orderings)≈ 0.38n

Would have been cool to speed up the best algorithm threshold free…
alas…šmrc (sniff)…

Runtime: O*(2γn); γ ≈ 0.38

Example 4 (ongoing): PPSZ special cases

• Bad trees: early guesses QC no hard work→

PPSZ = Paturi, Pudlak, Saks and Zane

• Requires *very* space efficient implementation
() of s-implication-based resolutiono(n)

• Works for some special cases of formulas (s-implication is efficient!)

• In general no; it seems it would imply P-complete problems can
be resolved in sublinear space, with subexponential time….

Some theory and some practice…

Limits of speed-ups of all hybrid methods?

Limits of speed-ups of all hybrid methods?
Low hanging fruit results:

For simple hybrid approach, generically poly speed-ups at best
(even if quantum algo is exponentially faster)

Problem

subproblem subproblem

Already this costs
 exp((1 − α′)γcn) = exp(γoptn)

Some theory and some practice…

Low hanging fruit results:

Assume (a specific) BQP (say) decision problem take classicallyΩ(2λn)

We can ofc go beyond “vanilla hybrid”. To an
(likely exponential) point.

Then for every , there exist problem families where
 yet

α
Time(A) = Ω(2λαn) Time(Hybrid) = poly(n)

Artificial problem: QGate(k)-adaptive-boolean-circuit evaluation
Intuitively “complete" for “what one can do” with a smaller QC

Some theory and some practice…

Artificial promise problem: QGate()-adaptive-boolean-circuit evaluationαn
QGate(k) = quantum poly-sized circuit, k inputs, one output, promise bounded
away from 1/2, output the more likely value

QGate

CC CC

QGate

CC

…

…

(x
1 _

x
4 _

x
1
0)

|
{z

}

n

αn

…

…

QGate(, n, Program), where Program(x), |x| = n, specifies a poly-sized
circuit over qubits. Kind of “all we can do" in the model. Bounds trivial.

αn
αn

Early days…

Some theory and some practice…

• Speed-ups for heuristics (DPLL & poly-sized trees)

• Real-world speed-ups

heuristically combining classical with quantum algorithms.
e.g. QAOA with ML-based algorithm selection used for
the “chopping up” process (GW v.s. QAOA: arXiv:2001.08271)

intuition: chop it up such that QC has to do the work as early as possible

Some theory and some practice…

• Many other possibilities (e.g. branch-and-bound)

Final remarks, loose ends

• addressed: can a smaller QC help asymptotically & provably

• “smaller"= one possible choice, here most stringent reasonable

smaller QCs at least as helpful as what is shown

• still a gap between presented model, and what really matters in reality
• fine grained analyses…

• pudding: real-world numerical tests needed for heuristics!

• why NP-hard? Matters (hard, common (AI, need speedups));
Because we don’t have much better solutions than search, it works

Thank you, and thanks to the co-authors:

Cirac Ge Rennela Laarman

Moussa
Calandra

More on what we do in the neighborhood:

www.aqa.universiteitleiden.nlApplied Quantum Algorithms (aQa) Leiden:

Quantum Software Consortium (QSC): quantumsc.nl

