Quantum Speedup for Graph Sparsification, Cut Approximation and Laplacian Solving

Simon Apers1 \quad Ronald de Wolf2

1Inria, France and CWI, the Netherlands
2QuSoft, CWI and University of Amsterdam, the Netherlands

Simons Institute, April 2020

(arXiv:1911.07306)
Graphs
graphs are nice
graphs are nice

- all over computer science, discrete math, biology, ...
graphs are nice

- all over computer science, discrete math, biology, ...
- describe relations, networks, groups, ...
graphs are nice

- all over computer science, discrete math, biology, ...
- describe relations, networks, groups, ...

sparse graphs are nicer
graphs are nice

- all over computer science, discrete math, biology, . . .
- describe relations, networks, groups, . . .

sparse graphs are nicer

- less space to store
graphs are nice

- all over computer science, discrete math, biology, ...
- describe relations, networks, groups, ...

sparse graphs are nicer

- less space to store
- less time to process
graphs are nice

- all over computer science, discrete math, biology, . . .
- describe relations, networks, groups, . . .

sparse graphs are nicer

- less space to store
- less time to process
- example: expanders are more interesting than complete graphs
graphs are nice

- all over computer science, discrete math, biology, . . .
- describe relations, networks, groups, . . .

sparse graphs are nicer

- less space to store
- less time to process
- example: expanders are more interesting than complete graphs

can we **compress** general graphs to sparse graphs?
Graph Sparsification
undirected, weighted graph $G = (V, E, w)$

n nodes and m edges, $m \leq \binom{n}{2}$
undirected, weighted graph \(G = (V, E, w) \)
\(n \) nodes and \(m \) edges, \(m \leq \binom{n}{2} \)

adjacency-list access
query \((i, k)\) returns \(k \)-th neighbor \(j \) of node \(i \)
Graph Sparsification

“graph sparsification”

= reduce number of edges, while preserving interesting quantities
Graph Sparsification

what are “interesting quantities”?

\[L_G = D - A \]

with

\[(D)_{ii} = \sum_j w(i, j) \]

and

\[(A)_{ij} = w(i, j) \]
Graph Sparsification

what are “interesting quantities”?

extremal cuts, eigenvalues, random walk properties, . . .
Graph Sparsification

what are “interesting quantities”? extremal cuts, eigenvalues, random walk properties, . . .

→ typically captured by graph Laplacian L_G
Graph Sparsification

what are “interesting quantities”?

extremal cuts, eigenvalues, random walk properties, . . .

→ typically captured by graph Laplacian L_G

$L_G = D - A$

with

$$(D)_{ii} = \sum_j w(i, j) \quad \text{and} \quad (A)_{ij} = w(i, j)$$
Graph Laplacian

equivalently,

$$L = \sum_{(i, j) \in E} w_{ij} L_{ij}$$

with

$$L_{ij} = (e_i - e_j) (e_i - e_j)^T$$

$$= \begin{bmatrix}
0 & \cdots & 0 \\
\cdots & 1 - 1 & 1 \\
0 & \cdots & 0
\end{bmatrix}$$
Graph Laplacian

equivalently,

\[L_G = \sum_{(i,j) \in E} w(i,j) L_{(i,j)} \]
Graph Laplacian

equivalently,

\[L_G = \sum_{(i,j) \in E} w(i,j) L_{(i,j)} \]

with

\[L_{(i,j)} = (e_i - e_j) (e_i - e_j)^T = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} & \vdots \\ 0 & \cdots & 0 \end{bmatrix}_{(i,j)} \]
Graph Laplacian

mainly interested in \textbf{quadratic forms in} L_G
Graph Laplacian

mainly interested in **quadratic forms in** L_G

$$x^T L_G x$$
Graph Laplacian

mainly interested in \textbf{quadratic forms in } \(L_G \)

\[
x^T L_G x = \sum_{(i,j)} w(i,j) x^T L_{(i,j)} x
\]
mainly interested in **quadratic forms in** L_G

$$x^T L_G x = \sum_{(i,j)} w(i,j)$$

$$= \sum_{(i,j)} w(i,j) \ (x(i) - x(j))^2$$
mainly interested in **quadratic forms in** \(L_G \)

\[
x^T L_G x = \sum_{(i,j)} w(i,j) \quad x^T L_{(i,j)} x = \sum_{(i,j)} w(i,j) \quad (x(i) - x(j))^2
\]
Graph Laplacian

mainly interested in \textbf{quadratic forms in} L_G

\[x^T L_G x = \sum_{(i,j)} w(i,j) x^T L_{(i,j)} x = \sum_{(i,j)} w(i,j) (x(i) - x(j))^2 \]

e.g., if x_S \textbf{indicator vector} on $S \subseteq V$:

![Graph Laplacian Diagram](image-url)
Graph Laplacian

mainly interested in **quadratic forms in** L_G

\[x^T L_G x = \sum_{(i,j)} w(i,j) x^T L(i,j) x = \sum_{(i,j)} w(i,j) (x(i) - x(j))^2 \]

e.g., if x_S **indicator vector** on $S \subseteq V$:

\[x^T_S L_G x_S \]
Graph Laplacian

mainly interested in **quadratic forms in** \(L_G \)

\[
x^T L_G x = \sum_{(i,j)} w(i,j) \quad x^T L(i,j)x = \sum_{(i,j)} w(i,j) \left(x(i) - x(j) \right)^2
\]

e.g., if \(x_S \) **indicator vector** on \(S \subseteq V \):

\[
x^T S L_G x_S = \sum_{(i,j)} w(i,j)(x_S(i) - x_S(j))^2
\]
Graph Laplacian

mainly interested in \textbf{quadratic forms in} L_G

\[x^T L_G x = \sum_{(i,j)} w(i,j) \]
\[x^T L_{(i,j)} x = \sum_{(i,j)} w(i,j) \ (x(i) - x(j))^2 \]

\[\text{e.g., if } x_S \text{ indicator vector on } S \subseteq V: \]

\[x_S^T L_G x_S = \sum_{(i,j)} w(i,j)(x_S(i) - x_S(j))^2 = \sum_{i \in S, j \in S^c} w(i,j) \]
Graph Laplacian

mainly interested in **quadratic forms in** L_G

$$x^T L_G x = \sum_{(i,j)} w(i,j) \ x^T L_{(i,j)} x = \sum_{(i,j)} w(i,j) \ (x(i) - x(j))^2$$

e.g., if x_S **indicator vector** on $S \subseteq V$:

$$x^T_S L_G x_S = \sum_{(i,j)} w(i,j) (x_S(i) - x_S(j))^2 = \sum_{i \in S, j \in S^c} w(i,j) = \text{cut}_G(S)$$
Graph Laplacian

as it turns out, quadratic forms

\[x^T L_G x \quad \text{and} \quad x^T L_G^+ x \quad \text{for} \quad x \in \mathbb{R}^n \]

describe cut values, eigenvalues, effective resistances, hitting times, ...
Graph Laplacian

as it turns out, **quadratic forms**

\[x^T L_G x \quad \text{and} \quad x^T L_G^+ x \quad \text{for} \quad x \in \mathbb{R}^n \]

describe cut values, eigenvalues, effective resistances, hitting times, . . .

\[\rightarrow \text{interested in preserving quadratic forms!} \]
Spectral Sparsification

\[H \] is an \(\epsilon \)-spectral sparsifier of \(G \) iff

\[x^T L H x = (1 \pm \epsilon) x^T L G x \quad \text{for all} \quad x \in \mathbb{R}^n \]

equivalently:

\[x^T L + H x = (1 \pm O(\epsilon)) x^T L + G x \]

equivalently:

\[(1 - \epsilon) L G \preceq L H \preceq (1 + \epsilon) L G \]
Spectral Sparsification

= approximately preserve all quadratic forms

\[H \] is \(\epsilon \)-spectral sparsifier of \(G \) iff

\[x^T L_H x = (1 \pm \epsilon) x^T L_G x \]

for all \(x \in \mathbb{R}^n \)

equivalently:

\[x^T (L_H + H) x = (1 \pm O(\epsilon)) x^T (L_G + G) x \]

equivalently:

\[(1 - \epsilon) L_G \preceq L_H \preceq (1 + \epsilon) L_G \]
Spectral Sparsification

= approximately preserve all quadratic forms

definition: H is ϵ-spectral sparsifier of G
Spectral Sparsification

\[\text{= approximately } \text{preserve all quadratic forms} \]

\[
\begin{align*}
\text{definition: } H \text{ is } \epsilon\text{-spectral sparsifier of } G \text{ iff } \\
x^T L_H x = (1 \pm \epsilon) x^T L_G x \text{ for all } x \in \mathbb{R}^n
\end{align*}
\]
Spectral Sparsification

= approximately preserve all quadratic forms

definition: H is ϵ-spectral sparsifier of G iff

$$x^T L_H x = (1 \pm \epsilon) x^T L_G x$$

for all $x \in \mathbb{R}^n$

equivalently:

$$x^T L_H^+ x = (1 \pm O(\epsilon)) x^T L_G^+ x$$
Spectral Sparsification

= approximately preserve all quadratic forms

definition: H is ϵ-spectral sparsifier of G iff

$$x^T L_H x = (1 \pm \epsilon) x^T L_G x \text{ for all } x \in \mathbb{R}^n$$

equivalently:

$$x^T L_H^+ x = (1 \pm O(\epsilon)) x^T L_G^+ x$$

equivalently:

$$(1 - \epsilon) L_G \preceq L_H \preceq (1 + \epsilon) L_G$$
Spectral Sparsification

how sparse can we go?
how sparse can we go?

Karger ’94, Benczúr-Karger ’96, Spielman-Teng ’04, Batson-Spielman-Srivastava ’08:

Theorem
Spectral Sparsification

how sparse can we go?

Karger ’94, Benczúr-Karger ’96, Spielman-Teng ’04, Batson-Spielman-Srivastava ’08:

Theorem

- Every graph has ε-spectral sparsifier H with a number of edges

$$\tilde{O}(n/\varepsilon^2)$$
Spectral Sparsification

how sparse can we go?

Karger ’94, Benczúr-Karger ’96, Spielman-Teng ’04, Batson-Spielman-Srivastava ’08:

Theorem

- every graph has ϵ-spectral sparsifier H with a number of edges
 \[
 \widetilde{O}(n/\epsilon^2)
 \]

- H can be found in time $\widetilde{O}(m)$
Spectral Sparsification

how sparse can we go?

Karger ’94, Benczúr-Karger ’96, Spielman-Teng ’04, Batson-Spielman-Srivastava ’08:

Theorem

- every graph has \(\epsilon \)-spectral sparsifier \(H \) with a number of edges
 \[\widetilde{O}(n/\epsilon^2) \]
- \(H \) can be found in time \(\widetilde{O}(m) \)

(only relevant when \(\epsilon \leq \sqrt{n/m} \))
important building stone of many
$\tilde{O}(m)$ cut approximation algorithms
Applications

important building stone of many

$\tilde{O}(m)$ cut approximation algorithms

- max cut (Arora-Kale ’16)
- min cut (Karger ’00)
- min st-cut (Peng ’16)
- sparsest cut (Sherman ’09)
- ...
Applications

crucial component of Spielman-Teng breakthrough Laplacian solver:

Theorem (Spielman-Teng '04)

Let G be a graph with m edges. The Laplacian system $L_G x = b$ can be approximately solved in time $\tilde{O}(m)$.
Applications

crucial component of Spielman-Teng breakthrough Laplacian solver:

Theorem (Spielman-Teng ’04)

*Let G be a graph with m edges. The Laplacian system $L_G x = b$ can be approximately solved in time $\tilde{O}(m)$.***
Applications

crucial component of Spielman-Teng breakthrough Laplacian solver:

Theorem (Spielman-Teng ’04)

Let \(G \) be a graph with \(m \) edges. The Laplacian system \(L_G x = b \) can be approximately solved in time \(\tilde{O}(m) \).

= Gödel prize 2015
Applications

crucial component of Spielman-Teng breakthrough Laplacian solver:

<table>
<thead>
<tr>
<th>Theorem (Spielman-Teng ’04)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let G be a graph with m edges. The Laplacian system $L_Gx = b$ can be approximately solved in time $\tilde{O}(m)$.</td>
</tr>
</tbody>
</table>

$\tilde{O}(m)$ approximation algorithms for

- electrical flows and max flows
- spectral clustering
- random walk properties
- learning from data on graphs
- ...
Our Contribution

classically, $\tilde{O}(m)$ runtime is optimal for most graph algorithms
Our Contribution

classically, $\tilde{O}(m)$ runtime is optimal for most graph algorithms

can we do better using a quantum computer?
Our Contribution

classically, $\tilde{O}(m)$ runtime is optimal for most graph algorithms

can we do better using a quantum computer?

(disclaimer: not with this one we won’t)
Our Contribution

this work:

1. Quantum algorithm to find \(\epsilon \)-spectral sparsifier \(H \) in time \(\tilde{O}(\sqrt{mn}/\epsilon) \)

2. Matching \(\tilde{\Omega}(\sqrt{mn}/\epsilon) \) lower bound

3. Applications:
 - Quantum speedup for max cut, min cut, min st-cut, sparsest cut, ...
 - Laplacian solving, approximating resistances and random walk properties, spectral clustering, ...
Our Contribution

this work:

1. **quantum algorithm** to find ϵ-spectral sparsifier H in time

$$\tilde{O}(\sqrt{mn}/\epsilon)$$
Our Contribution

this work:

1. **quantum algorithm** to find ϵ-spectral sparsifier H in time
 \[\tilde{O}(\sqrt{mn}/\epsilon) \]

2. matching \(\tilde{\Omega}(\sqrt{mn}/\epsilon)\) lower bound
Our Contribution

this work:

1. **quantum algorithm** to find ϵ-spectral sparsifier H in time

 $\tilde{O}\left(\sqrt{mn}/\epsilon\right)$

2. matching $\tilde{\Omega}\left(\sqrt{mn}/\epsilon\right)$ lower bound

3. **applications:** quantum speedup for

 - max cut, min cut, min st-cut, sparsest cut, . . .
 - Laplacian solving, approximating resistances and random walk properties, spectral clustering, . . .
this work:

1. **quantum algorithm** to find ϵ-spectral sparsifier H in time

 $O(\sqrt{mn}/\epsilon)$

2. matching $\tilde{\Omega}(\sqrt{mn}/\epsilon)$ lower bound

3. applications: quantum speedup for

 ▶ max cut, min cut, min st-cut, sparsest cut, . . .
 ▶ Laplacian solving, approximating resistances and random walk properties, spectral clustering, . . .
Classical Sparsification Algorithm

Sparsification by edge sampling:

1. Associate probabilities \(p_e \) to every edge.
2. Keep every edge \(e \) with probability \(p_e \), rescale its weight by \(\frac{1}{p_e} \).

This ensures that \(E(w_H) = w_G \) and hence \(E(L_H) = E(\sum w_e L_e) = L_G \).

How to ensure concentration?

[Spielman-Srivastava '08]: give high \(p_e \) to edges with high effective resistance!
Classical Sparsification Algorithm

Sparsification by edge sampling:

1. associate probabilities \(\{p_e\} \) to every edge
2. keep every edge \(e \) with probability \(p_e \), rescale its weight by \(1/p_e \)
Classical Sparsification Algorithm

Sparsification by edge sampling:

1. associate probabilities \(\{p_e\} \) to every edge
2. keep every edge \(e \) with probability \(p_e \), rescale its weight by \(1/p_e \)

ensures that

\[
\mathbb{E}(w_e^H) = w_e^G
\]
Classical Sparsification Algorithm

Sparsification by edge sampling:

1. associate probabilities \(\{p_e\} \) to every edge
2. keep every edge \(e \) with probability \(p_e \), rescale its weight by \(1/p_e \)

ensures that

\[
\mathbb{E}(w_e^H) = w_e^G
\]

and hence

\[
\mathbb{E}(L_H) = \mathbb{E}\left(\sum w_e L_e \right) = L_G
\]
Classical Sparsification Algorithm

Sparsification by edge sampling:

1. Associate probabilities \(\{p_e\} \) to every edge.
2. Keep every edge \(e \) with probability \(p_e \), rescale its weight by \(1/p_e \).

Ensures that

\[
\mathbb{E}(w^H_e) = w^G_e
\]

And hence

\[
\mathbb{E}(L_H) = \mathbb{E}\left(\sum w_e L_e\right) = L_G
\]

How to ensure **concentration**?
Classical Sparsification Algorithm

Sparsification by edge sampling:

1. associate probabilities \(\{p_e\} \) to every edge
2. keep every edge \(e \) with probability \(p_e \), rescale its weight by \(1/p_e \)

ensures that

\[
\mathbb{E}(w^H_e) = w^G_e
\]

and hence

\[
\mathbb{E}(L_H) = \mathbb{E}\left(\sum w_e L_e \right) = L_G
\]

how to ensure concentration?

[Spielman-Srivastava ’08]:
give high \(p_e \) to edges with high effective resistance!
Classical Sparsification Algorithm

effective resistance $R_{(i,j)}$
Classical Sparsification Algorithm

Effective resistance $R_{(i,j)}$

= resistance between i,j
after replacing all edges with resistors
Classical Sparsification Algorithm

effective resistance $R_{(i,j)}$

= resistance between i,j
 after replacing all edges with resistors

(Ohm’s law) \equiv voltage difference required between i,j
 when sending unit current from i to j
Classical Sparsification Algorithm

effective resistance $R_{(i,j)}$

= resistance between i, j
 after replacing all edges with resistors

(Ohm’s law) \Rightarrow voltage difference required between i, j
 when sending unit current from i to j

\rightarrow small if many short and parallel paths from i to j!
Classical Sparsification Algorithm

effective resistance $R_{(i,j)}$

red edge: $R_e = 1$

black edges: $R_e \in O(1/n)$
? how to identify high-resistance edges ?
how to identify high-resistance edges?

[Koutis-Xu ’14]: a graph spanner must contain all high-resistance edges
? how to identify high-resistance edges?

[Koutis-Xu ’14]:
a graph spanner must contain all high-resistance edges

= subgraph F of G with $\tilde{O}(n)$ edges
? how to identify high-resistance edges?

[Koutis-Xu ’14]:
a graph spanner must contain all high-resistance edges

=

- subgraph F of G with $\tilde{O}(n)$ edges
- all distances stretched by factor $\leq \log n$: for all i,j

$$d_G(i,j) \leq d_F(i,j) \leq \log(n) \cdot d_G(i,j)$$
how to identify high-resistance edges?

[Koutis-Xu ’14]:
a graph spanner must contain all high-resistance edges

=

subgraph F of G with $\tilde{O}(n)$ edges
all distances stretched by factor $\leq \log n$: for all i,j

$$d_G(i,j) \leq d_F(i,j) \leq \log(n) \cdot d_G(i,j)$$
? how to identify high-resistance edges ?

[Koutis-Xu ’14]:

a **graph spanner** must contain all high-resistance edges

=

- subgraph F of G with $\tilde{O}(n)$ edges
- all distances stretched by factor $\leq \log n$: for all i, j

\[d_G(i, j) \leq d_F(i, j) \leq \log(n) \cdot d_G(i, j) \]

\[\text{stretch}(e) = 4 \]
[Koutis-Xu ’14]: a graph spanner must contain all high-resistance edges!

proof idea for \(R_e = 1 \):
[Koutis-Xu ’14]:
a graph spanner must contain all high-resistance edges!

proof idea for $R_e = 1$:

- if $R_e = 1$, there are no alternative paths between endpoints
[Koutis-Xu ’14]:
a graph spanner must contain all high-resistance edges!

proof idea for $R_e = 1$:

- if $R_e = 1$, there are no alternative paths between endpoints
- hence, e must be present in spanner
Classical Sparsification Algorithm

Iterative sparsification:

1. construct $\tilde{O}(1/\epsilon^2)$ spanners and keep these edges
2. keep any remaining edge with probability $1/2$, and double its weight
Classical Sparsification Algorithm

Iterative sparsification:

1. construct $\tilde{O}(1/\epsilon^2)$ spanners and keep these edges
2. keep any remaining edge with probability $1/2$, and double its weight

(i.e., we set $p_e = 1$ for spanner edges and $p_e = 1/2$ for other edges)
Classical Sparsification Algorithm

Iterative sparsification:

1. construct $\tilde{O}(1/\epsilon^2)$ spanners and keep these edges
2. keep any remaining edge with probability 1/2, and double its weight

(i.e., we set $p_e = 1$ for spanner edges and $p_e = 1/2$ for other edges)

Theorem (Spielman-Srivastava ’08, Koutis-Xu ’14)

W.h.p. output is ϵ-spectral sparsifier with $m/2 + \tilde{O}(n/\epsilon^2)$ edges
Classical Sparsification Algorithm

Iterative sparsification:
1. construct $\tilde{O}(1/\epsilon^2)$ spanners and keep these edges
2. keep any remaining edge with probability $1/2$, and double its weight

(i.e., we set $p_e = 1$ for spanner edges and $p_e = 1/2$ for other edges)

Theorem (Spielman-Srivastava ’08, Koutis-Xu ’14)

W.h.p. output is ϵ-spectral sparsifier with $m/2 + \tilde{O}(n/\epsilon^2)$ edges

\[\rightarrow \text{repeat } O(\log n) \text{ times: } \epsilon\text{-spectral sparsifier with } \tilde{O}(n/\epsilon^2) \text{ edges} \]
Quantum Sparsification Algorithm
Quantum Sparsification Algorithm

= quantum spanner algorithm

+ k-independent oracle

+ a magic trick
Theorem ("easy")

There is a quantum spanner algorithm with query complexity
\[\tilde{O}(\sqrt{mn}) \]

quantum greedy spanner algorithm:

1. set \(F = (V, E_F = \emptyset) \)
2. iterate over every edge \((i, j) \in E \setminus E_F\):
 - if \(\delta_F(i, j) > \log n \), add \((i, j)\) to \(F \)

→ can prove: \(\tilde{O}(n) \) edges are found using \(\tilde{O}(\sqrt{mn}) \) queries.
Quantum Spanner Algorithm

Theorem ("easy")

There is a quantum spanner algorithm with query complexity

\(\tilde{O}(\sqrt{mn}) \)
Theorem ("easy")

There is a quantum spanner algorithm with query complexity

\[\tilde{O}(\sqrt{mn}) \]

- greedy spanner algorithm:

Quantum Spanner Algorithm
Quantum Spanner Algorithm

Theorem ("easy")

There is a quantum spanner algorithm with query complexity

\[\tilde{O}(\sqrt{mn}) \]

greedy spanner algorithm:

1. set \(F = (V, E_F = \emptyset) \)
Quantum Spanner Algorithm

Theorem ("easy")

There is a quantum spanner algorithm with **query complexity**

\[\tilde{O}(\sqrt{mn}) \]

- greedy spanner algorithm:
 1. set \(F = (V, E_F = \emptyset) \)
 2. iterate over every edge \((i, j) \in E \setminus E_F:\)
 - if \(\delta_F(i, j) > \log n \), add \((i, j)\) to \(F\)
Quantum Spanner Algorithm

Theorem ("easy")

There is a quantum spanner algorithm with query complexity

\[\tilde{O}(\sqrt{mn}) \]

- greedy spanner algorithm:
 1. set \(F = (V, E_F = \emptyset) \)
 2. iterate over every edge \((i, j) \in E \setminus E_F:\)
 - if \(\delta_F(i, j) > \log n \), add \((i, j)\) to \(F\)

- quantum greedy spanner algorithm:
Quantum Spanner Algorithm

Theorem ("easy")

There is a quantum spanner algorithm with query complexity

\[\tilde{O}(\sqrt{mn}) \]

- greedy spanner algorithm:
 1. set \(F = (V, E_F = \emptyset) \)
 2. iterate over every edge \((i, j) \in E \setminus E_F:\)
 if \(\delta_F(i, j) > \log n \), add \((i, j)\) to \(F \)

- quantum greedy spanner algorithm:
 1. set \(F = (V, E_F = \emptyset) \)
Quantum Spanner Algorithm

Theorem (“easy”)

There is a quantum spanner algorithm with query complexity

\[\tilde{O}(\sqrt{mn}) \]

- greedy spanner algorithm:
 1. set \(F = (V, E_F = \emptyset) \)
 2. iterate over every edge \((i, j) \in E \setminus E_F:\)
 if \(\delta_F(i, j) > \log n \), add \((i, j)\) to \(F\)

- quantum greedy spanner algorithm:
 1. set \(F = (V, E_F = \emptyset) \)
 2. until no more edges are found, do:
 Grover search for edge \((i, j)\) such that \(\delta_F(i, j) > \log n \). add \((i, j)\) to \(F\)
Quantum Spanner Algorithm

Theorem ("easy")

There is a quantum spanner algorithm with query complexity

\[\tilde{O}(\sqrt{mn}) \]

- **greedy spanner algorithm:**
 1. set \(F = (V, E_F = \emptyset) \)
 2. iterate over every edge \((i, j) \in E \setminus E_F:\)
 - if \(\delta_F(i, j) > \log n \), add \((i, j)\) to \(F \)

- **quantum** greedy spanner algorithm:
 1. set \(F = (V, E_F = \emptyset) \)
 2. until no more edges are found, do:
 - Grover search for edge \((i, j)\) such that \(\delta_F(i, j) > \log n \). add \((i, j)\) to \(F \)

→ can prove: \(\tilde{O}(n) \) edges are found using \(\tilde{O}(\sqrt{mn}) \) queries
Quantum Spanner Algorithm

Theorem ("less easy")

There is a quantum spanner algorithm with time complexity

\[\tilde{O}(\sqrt{mn}) \]
Quantum Spanner Algorithm

Theorem ("less easy")

There is a quantum spanner algorithm with time complexity

\(\tilde{O}(\sqrt{mn})\)

= (roughly)

[Thorup-Zwick ’01]

classical construction of a spanner by growing small shortest-path trees (SPTs)
Theorem ("less easy")

There is a quantum spanner algorithm with time complexity

\[\tilde{O}(\sqrt{mn}) \]

= (roughly)

[Thorup-Zwick ’01]

classical construction of a spanner by growing small shortest-path trees (SPTs)

+

[Dürr-Heiligman-Høyer-Mhalla ’04]

quantum speedup for constructing SPTs
Quantum Sparsification Algorithm

Iterative sparsification:

1. use quantum algorithm to construct $\tilde{O}(1/\epsilon^2)$ spanners, keep these edges
2. keep any remaining edge with probability $1/2$, and double its weight
Quantum Sparsification Algorithm

Iterative sparsification:

1. use quantum algorithm to construct $\tilde{O}(1/\epsilon^2)$ spanners, keep these edges
2. keep any remaining edge with probability $1/2$, and double its weight

→ after 1 iteration: “intermediate” graph with $\approx m/2$ edges
Quantum Sparsification Algorithm

Iterative sparsification:

1. use quantum algorithm to construct $\tilde{O}(1/\epsilon^2)$ spanners, keep these edges
2. keep any remaining edge with probability 1/2, and double its weight

→ after 1 iteration: “intermediate” graph with $\approx m/2$ edges

? how to keep track in time $o(m)$?
Quantum Sparsification Algorithm

Iterative sparsification:
1. use quantum algorithm to construct $\tilde{O}(1/\epsilon^2)$ spanners, keep these edges
2. keep any remaining edge with probability $1/2$, and double its weight

→ after 1 iteration: “intermediate” graph with $\approx m/2$ edges

? how to keep track in time $o(m)$?
Query Access to Random String

- maintain (offline) random string $x \in \{0, 1\}^{n/2}$

```
1 0 0 1 1 0 1 1 1 0 1 0 0
```

edge (i, j) discarded edge (i', j') kept
Query Access to Random String

- maintain (offline) random string \(x \in \{0, 1\}^{n/2} \)

\[
100110110100
\]

- edge \((i, j)\) discarded
- edge \((i', j')\) kept

(oblivious to the graph!)
Query Access to Random String

- maintain (offline) random string $x \in \{0, 1\}^\binom{n}{2}$

 \[
 \begin{array}{cccccccccccc}
 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
 \end{array}
 \]

 edge (i, j) discarded edge (i', j') kept
 (oblivious to the graph!)

 query $(i, k) \rightarrow (j, x(i, j))$
Query Access to Random String

- maintain (offline) random string $x \in \{0, 1\}^{(n)}$

 1 0 0 1 1 0 1 1 1 0 1 0 0

 - edge (i, j) discarded
 - edge (i', j') kept
 - (oblivious to the graph!)

 query $(i, k) \rightarrow (j, x(i, j))$

adjacency list \[m \] \[\Rightarrow \] adj. list + random string \[m/2 \] \[\Rightarrow \] output \[\tilde{O}(n/\epsilon^2) \]
Query Access to Random String

problem:

time $\Omega(n^2)$ to generate random $x \in \{0, 1\}^\binom{n}{2}$
Query Access to Random String

Problem:

time $\Omega(n^2)$ to generate random $x \in \{0, 1\}^{n/2}$

- classical solution: “lazy sampling” (generate bits on demand)
Query Access to Random String

problem:

\[\text{time } \Omega(n^2) \text{ to generate random } x \in \{0, 1\}^\binom{n}{2} \]

- classical solution: “lazy sampling” (generate bits on demand)
- quantum this is not possible: can address all bits in superposition
luckily, we can outsmart this quantum demon:
luckily, we can outsmart this quantum demon:

Fact

$k/2$-query quantum algorithm cannot distinguish uniformly random string from k-wise independent string

= easy consequence of polynomial method

[Beals-Buhrman-Cleve-Mosca-de Wolf ’98]
Rid of Random String

luckily, we can outsmart this quantum demon:

Fact

\(k/2\)-query quantum algorithm cannot distinguish uniformly random string from \(k\)-wise independent string *

\[\] = easy consequence of *polynomial method*

[Beals-Buhrman-Cleve-Mosca-de Wolf ’98]

* \(k\)-wise independent string \(x \in \{0, 1\}^{n \choose 2}\)
behaves uniformly random on every subset of \(k\) bits
Rid of Random String

aim for quantum algorithm making $\sim \sqrt{mn}$ queries, so suffices to use k-wise independent $\binom{n}{2}$-bit string with $k \sim \sqrt{mn}$
Rid of Random String

aim for quantum algorithm making $\sim \sqrt{mn}$ queries, so suffices to use k-wise independent $\binom{n}{2}$-bit string with $k \sim \sqrt{mn}$

? can we efficiently query such a string ?
(without explicitly generating it!)
Rid of Random String

aim for quantum algorithm making $\sim \sqrt{mn}$ queries, so suffices to use k-wise independent $\binom{n}{2}$-bit string with $k \sim \sqrt{mn}$

? can we efficiently query such a string?

(without explicitly generating it!)

→ use recent results on “efficient k-independent hash functions”
Rid of Random String

aim for quantum algorithm making $\sim \sqrt{mn}$ queries, so suffices to use k-wise independent \(\binom{n}{2} \)-bit string with $k \sim \sqrt{mn}$

? can we efficiently query such a string? (without explicitly generating it!)

→ use recent results on “efficient k-independent hash functions”

Theorem (Christiani-Pagh-Thorup ’15)

Can construct in preprocessing time $\tilde{O}(k)$ a k-independent oracle that simulates queries to k-wise independent string in time $\tilde{O}(1)$ per query.
Rid of Random String

aim for quantum algorithm making \(\sim \sqrt{mn} \) queries, so suffices to use \(k \)-wise independent \(\left(\begin{array}{c} n \\ 2 \end{array} \right) \)-bit string with \(k \sim \sqrt{mn} \)

? can we efficiently query such a string? (without explicitly generating it!)

\(\rightarrow \) use recent results on “efficient \(k \)-independent hash functions”

Theorem (Christiani-Pagh-Thorup ’15)

Can construct in preprocessing time \(\tilde{O}(k) \) a \(k \)-independent oracle that simulates queries to \(k \)-wise independent string in time \(\tilde{O}(1) \) per query.

Corollary

Any \(k \)-query quantum algorithm that queries a uniformly random string can be simulated in time \(\tilde{O}(k) \) without random string.
Quantum Sparsification Algorithm

Quantum iterative sparsification:
1. Use quantum algorithm to construct $\tilde{O}(1/\epsilon^2)$ spanners, keep these edges.
2. Construct k-independent oracle that marks remaining edges with probability $1/2$, and double weights per iteration: complexity $\tilde{O}(\sqrt{mn}/\epsilon^2)$.

Theorem: There is a quantum algorithm that constructs an ϵ-spectral sparsifier with $\tilde{O}(n/\epsilon^2)$ edges in time $\tilde{O}(\sqrt{mn}/\epsilon^2)$.
Quantum Sparsification Algorithm

Quantum iterative sparsification:

1. use quantum algorithm to construct $\tilde{O}(1/\epsilon^2)$ spanners, keep these edges
2. construct k-independent oracle that marks remaining edges with probability $1/2$, and double weights
Quantum Sparsification Algorithm

Quantum iterative sparsification:

1. use quantum algorithm to construct $\tilde{O}(1/\epsilon^2)$ spanners, keep these edges
2. construct k-independent oracle that marks remaining edges with probability 1/2, and double weights

→ per iteration: complexity $\tilde{O}(\sqrt{mn}/\epsilon^2)$
Quantum Sparsification Algorithm

Quantum iterative sparsification:
1. use quantum algorithm to construct $\tilde{O}(1/\epsilon^2)$ spanners, keep these edges
2. construct k-independent oracle that marks remaining edges with probability $1/2$, and double weights

\rightarrow per iteration: complexity $\tilde{O}(\sqrt{mn}/\epsilon^2)$

Theorem

There is a quantum algorithm that constructs an ϵ-spectral sparsifier with $\tilde{O}(n/\epsilon^2)$ edges in time

$\tilde{O}(\sqrt{mn}/\epsilon^2)$
A Magic Trick
A Magic Trick

to improve \(\epsilon \)-dependency:
A Magic Trick

to improve ϵ-dependency:

1. create rough ϵ-spectral sparsifier H for $\epsilon = 1/10$
 $\rightarrow \tilde{O}(\sqrt{mn})$ using our quantum algorithm
A Magic Trick

to improve ϵ-dependency:

1. create rough ϵ-spectral sparsifier H for $\epsilon = 1/10$
 \[
 \rightarrow \tilde{O}(\sqrt{mn}) \text{ using our quantum algorithm}
 \]

2. estimate effective resistances for H
 \[
 \rightarrow \tilde{O}(n) \text{ using classical Laplacian solving}
 \]
A Magic Trick

to improve ϵ-dependency:

1. create rough ϵ-spectral sparsifier H for $\epsilon = 1/10$
 $\rightarrow \tilde{O}(\sqrt{mn})$ using our quantum algorithm

2. estimate effective resistances for H
 $\rightarrow \tilde{O}(n)$ using classical Laplacian solving
 $= \text{approximation of effective resistances of } G$!
A Magic Trick

to improve ϵ-dependency:

1. create rough ϵ-spectral sparsifier H for $\epsilon = 1/10$
 $\rightarrow \tilde{O}(\sqrt{mn})$ using our quantum algorithm

2. estimate effective resistances for H
 $\rightarrow \tilde{O}(n)$ using classical Laplacian solving
 = approximation of effective resistances of G!

3. sample $\tilde{O}(n/\epsilon^2)$ edges from G using these estimates
 \rightarrow in time $\tilde{O}(\sqrt{mn/\epsilon^2})$ using Grover search
A Magic Trick

to improve ϵ-dependency:

1. create rough ϵ-spectral sparsifier H for $\epsilon = 1/10$
 \[\rightarrow \tilde{O}(\sqrt{mn}) \] using our quantum algorithm

2. estimate effective resistances for H
 \[\rightarrow \tilde{O}(n) \] using classical Laplacian solving
 $= \text{approximation of effective resistances of } G$

3. sample $\tilde{O}(n/\epsilon^2)$ edges from G using these estimates
 \[\rightarrow \text{in time } \tilde{O}(\sqrt{mn/\epsilon^2}) \] using Grover search

Theorem (our main result)

There is a quantum algorithm that constructs an ϵ-spectral sparsifier with $\tilde{O}(n/\epsilon^2)$ edges in time

$\tilde{O}(\sqrt{mn/\epsilon})$
A Magic Trick

to improve ϵ-dependency:

1. create rough ϵ-spectral sparsifier H for $\epsilon = \frac{1}{10}$
 \[\rightarrow \tilde{O}(\sqrt{mn}) \text{ using our quantum algorithm} \]

2. estimate effective resistances for H
 \[\rightarrow \tilde{O}(n) \text{ using classical Laplacian solving} \]
 \[= \text{approximation of effective resistances of } G ! \]

3. sample $\tilde{O}(n/\epsilon^2)$ edges from G using these estimates
 \[\rightarrow \text{in time } \tilde{O}(\sqrt{mn/\epsilon^2}) \text{ using Grover search} \]

Theorem (our main result)

assuming $\epsilon \geq \sqrt{n/m}$, it holds that $\tilde{O}(\sqrt{mn/\epsilon}) \in \tilde{O}(m)$
this work:

1. quantum algorithm to find ϵ-spectral sparsifier H in time
 \[\tilde{O}(\sqrt{mn}/\epsilon) \]

2. matching $\tilde{\Omega}(\sqrt{mn}/\epsilon)$ lower bound

3. applications: quantum speedup for
 - max cut, min cut, min st-cut, sparsest cut, . . .
 - Laplacian solving, approximating resistances and random walk properties, spectral clustering, . . .
Matching Quantum Lower Bound

intuition:

finding k marked elements among M elements takes

$$\Omega(\sqrt{Mk})$$ quantum queries
Matching Quantum Lower Bound

intuition:

finding k marked elements among M elements takes

$$\Omega(\sqrt{Mk})$$ quantum queries

“hence”

finding $\tilde{O}(n/\epsilon^2)$ edges of sparsifier among m edges takes time

$$\tilde{\Omega}(\sqrt{mn}/\epsilon)$$
Unsparsifiable Graph
Unsparsifiable Graph

random bipartite graph on $1/\epsilon^2$ nodes
Unsparsifiable Graph

$\epsilon^2 n$ copies

= random graph $H(n, \epsilon)$ with n nodes and $O(n/\epsilon^2)$ edges
Unsparsifiable Graph

\[\epsilon^2 n \text{ copies} \]

= random graph \(H(n, \epsilon) \) with \(n \) nodes and \(O(n/\epsilon^2) \) edges

Theorem (Andoni-Chen-Krauthgamer-Qin-Woodruff-Zhang ’16)

Any \(\epsilon \)-spectral sparsifier of \(H(n, \epsilon) \) must contain a constant fraction of its edges.
Hiding a Sparsifier

given n, m, ϵ:
we "hide" $H(n, \epsilon)$ in larger $G(n, m, \epsilon)$ with n nodes and m edges
\rightarrow ϵ-spectral sparsifier of $G(n, m, \epsilon)$ must find constant fraction of $H(n, \epsilon)$
Hiding a Sparsifier

given \(n, m, \epsilon \):

we “hide” \(H(n, \epsilon) \) in larger \(G(n, m, \epsilon) \) with \(n \) nodes and \(m \) edges.
Hiding a Sparsifier

given n, m, ϵ:
we “hide” $H(n, \epsilon)$ in larger $G(n, m, \epsilon)$ with n nodes and m edges

→ ϵ-spectral sparsifier of $G(n, m, \epsilon)$ must find constant fraction of $H(n, \epsilon)$
Proving a Lower Bound

[Matrix and text content]
Proving a Lower Bound

“hidden” copy of random graph:
every edge of sparsifier is hidden among $N = m/(n\varepsilon^2)$ entries
Proving a Lower Bound

“hidden” copy of random graph:
every edge of sparsifier is \textbf{hidden} among \(N = \frac{m}{n\epsilon^2} \) entries

original graph:

\[
\begin{bmatrix}
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{bmatrix}
\]
“hidden” copy of random graph:
every edge of sparsifier is hidden among $N = m/(n\epsilon^2)$ entries

original graph:

hidden graph:
Proving a Lower Bound

forgetting about graphs:

\[
\begin{bmatrix}
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
\end{bmatrix} \in \{0, 1\}^{n \times n}
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \in \{0, 1\}^{N \times N}
\]

task:

output constant fraction of 1-bits of \(A\), each described by \(\text{OR}\) \(N\)-function

= relational problem composed with \(\text{OR}\) \(N\)-function
Proving a Lower Bound

forgetting about graphs:

\[
A = \begin{bmatrix}
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
\end{bmatrix} \in \{0, 1\}^{n \times n}
\]
Proving a Lower Bound

forgetting about graphs:

\[A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \in \{0, 1\}^{n \times n} \]

\[= OR_{N, \text{blockwise}} \left(\begin{bmatrix} 000001000 & 000000000 & 000000000 & 010000000 \\ 001000000 & 0000000000 & 000000000 & 000000000 \\ 0000000000 & 0000000000 & 0000000000 & 0000000000 \\ 00000000000 & 00000000000 & 00000000000 & 00000000000 \end{bmatrix} \right) \in \{0, 1\}^{Nn \times Nn} \]
Proving a Lower Bound

forgetting about graphs:

\[A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \in \{0, 1\}^{n \times n} \]

\[= OR_{N, \text{blockwise}} \left(\begin{bmatrix} 000001000 & 000000000 & 000000000 & 001000000 \\ 000000000 & 000000000 & 000000000 & 000000000 \\ 000000000 & 000000000 & 000000000 & 000000000 \\ 000000000 & 000000000 & 000000000 & 000000000 \end{bmatrix} \right) \in \{0, 1\}^{Nn \times Nn} \]

task:

output constant fraction of 1-bits of \(A \), each described by \(OR_N \)-function
Proving a Lower Bound

forgetting about graphs:

\[
A = \begin{bmatrix}
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
\end{bmatrix} \in \{0, 1\}^{n \times n}
\]

\[
= OR_{N, \text{blockwise}} \left(\begin{bmatrix}
000001000 & 000000000 & 000000000 & 001000000 \\
001000000 & 000000000 & 000000000 & 000000000 \\
000000000 & 000000100 & 000000000 & 000000000 \\
000000000 & 000000000 & 000001000 & 000001000 \\
\end{bmatrix} \right) \in \{0, 1\}^{Nn \times Nn}
\]

task:
output constant fraction of 1-bits of \(A\), each described by \(OR_N\)-function

= relational problem composed with \(OR_N\)
Proving a Lower Bound

? quantum lower bound for composition of relational problem and OR_N-function ?

Theorem (proof by A. Belov and T. Lee, to be published)
The quantum query complexity of an efficiently verifiable relational problem, with lower bound L, composed with the OR_N-function, is $\Omega(L\sqrt{N})$.

for $L = \tilde{\Omega}(n)$ and $N = m / (n\epsilon^2)$.

Corollary
The quantum query complexity of explicitly outputting an ϵ-spectral sparsifier of a graph with n nodes and m edges is $\tilde{\Omega}(\sqrt{mn}/\epsilon)$.

41
Proving a Lower Bound

? quantum lower bound for composition of relational problem and OR_N-function ?

Theorem (proof by A. Belov and T. Lee, to be published)

The quantum query complexity of an efficiently verifiable relational problem, with lower bound L, composed with the OR_N-function, is

$$\Omega(L\sqrt{N}).$$
Proving a Lower Bound

? quantum lower bound for composition of relational problem and OR_N-function?

Theorem (proof by A. Belov and T. Lee, to be published)

The quantum query complexity of an efficiently verifiable relational problem, with lower bound L, composed with the OR_N-function, is

$$\Omega(L\sqrt{N}).$$

for $L = \tilde{\Omega}(n)$ and $N = m/(n\epsilon^2)$:

Corollary

The quantum query complexity of explicity outputting an ϵ-spectral sparsifier of a graph with n nodes and m edges is

$$\tilde{\Omega}(\sqrt{mn}/\epsilon).$$
this work:

1. quantum algorithm to find ϵ-spectral sparsifier H in time $\tilde{O}(\sqrt{mn}/\epsilon)$

2. matching $\tilde{\Omega}(\sqrt{mn}/\epsilon)$ lower bound

3. applications: quantum speedup for
 - max cut, min cut, min st-cut, sparsest cut, . . .
 - Laplacian solving, approximating resistances and random walk properties, spectral clustering, . . .
Quantum Speedups by Quantum Sparsification
Quantum Speedups by Quantum Sparsification

graph quantity P, approximately preserved under sparsification
Quantum Speedups by Quantum Sparsification

...graph quantity P, approximately preserved under sparsification...

...classical $\tilde{O}(m)$ algorithm for P...
Quantum Speedups by Quantum Sparsification

graph quantity P, approximately preserved under sparsification

+ classical $\tilde{O}(m)$ algorithm for P

↓

quantum sparsify G to H in $\tilde{O}(\sqrt{mn}/\epsilon)$
+ classical algorithm on H in $\tilde{O}(n/\epsilon^2)$
Quantum Speedups by Quantum Sparsification

graph quantity P, approximately preserved under sparsification

+ classical $\tilde{O}(m)$ algorithm for P

\downarrow

quantum sparsify G to H in $\tilde{O}(\sqrt{mn}/\epsilon)$

+ classical algorithm on H in $\tilde{O}(n/\epsilon^2)$

= approximate $\tilde{O}(\sqrt{mn}/\epsilon)$ quantum algorithm for P
Cut Approximation

MIN CUT:

find cut \((S, S^c)\) that minimizes cut value \(\text{cut}_G(S)\)
Cut Approximation

MIN CUT:

find cut \((S, S^c)\) that minimizes cut value \(\text{cut}_G(S)\)

classically: can find MIN CUT in time \(\tilde{O}(m)\) (Karger ’00)
MIN CUT of ϵ-spectral sparsifier H
gives ϵ-approximation of MIN CUT of G
MIN CUT of \(\epsilon\)-spectral sparsifier \(H\) gives \(\epsilon\)-approximation of MIN CUT of \(G\)

quantum sparsify \(G\) to \(H\) in \(\tilde{O}(\sqrt{mn}/\epsilon)\)
+ classical MIN CUT on \(H\) in \(\tilde{O}(n/\epsilon^2)\) (Karger ’00)

\[= \tilde{O}(\sqrt{mn}/\epsilon)\] quantum algorithm for \(\epsilon\)-MIN CUT
Cut Approximation

<table>
<thead>
<tr>
<th></th>
<th>Classical</th>
<th>Quantum (this work)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ-MIN CUT</td>
<td>$\tilde{O}(m)$ (Karger’00)</td>
<td>$\tilde{O}(\sqrt{mn}/\epsilon)$</td>
</tr>
<tr>
<td>ϵ-MIN st-CUT</td>
<td>$\tilde{O}(m + n/\epsilon^5)$ (Peng’16)</td>
<td>$\tilde{O}(\sqrt{mn}/\epsilon + n/\epsilon^5)$</td>
</tr>
<tr>
<td>$\sqrt{\log n}$-SPARSEST CUT/BAL. SEPARATOR</td>
<td>$\tilde{O}(m + n^{1+\delta})$ (Sherman’09)</td>
<td>$\tilde{O}(\sqrt{mn} + n^{1+\delta})$</td>
</tr>
<tr>
<td>.878-MAX CUT</td>
<td>$\tilde{O}(m)$ (Arora-Kale’07)</td>
<td>$\tilde{O}(\sqrt{mn})$</td>
</tr>
</tbody>
</table>
Laplacian Solving
general linear system $Ax = b$
Laplacian Solving

general linear system \(Ax = b \)

given \(A \) and \(b \), with \(\text{nnz}(A) = m \),

complexity of approximating \(x \) is \(\tilde{O}(\min\{mn, n^\omega\}) \) \((\omega < 2.373) \)
Laplacian Solving

Laplacian system $Lx = b$
Laplacian Solving

Laplacian system \(Lx = b \)

given \(L \) and \(b \), with \(\text{nnz}(L) = m \),

complexity of approximating \(x \) is \(\tilde{O}(m) \) [Spielman-Teng ’04]
Laplacian Solving

Laplacian system \(Lx = b \)

given \(L \) and \(b \), with \(\text{nnz}(L) = m \),

complexity of approximating \(x \) is \(\tilde{O}(m) \) [Spielman-Teng '04]

+

if \(H \) sparsifier of \(G \) then \(L_H^+b \approx L_G^+b \)
Laplacian Solving

Laplacian system \(Lx = b \)

given \(L \) and \(b \), with \(\text{nnz}(L) = m \),

complexity of approximating \(x \) is \(\tilde{O}(m) \) [Spielman-Teng '04]

\[
\text{quantum algorithm to sparsify } G \text{ to } H \text{ in } \tilde{O}(\sqrt{mn}/\epsilon)
\]

+ solve \(L_Hx = b \) \textit{classically} in \(\tilde{O}(n/\epsilon^2) \)
Laplacian Solving

Laplacian system $Lx = b$

given L and b, with $\text{nnz}(L) = m$,

complexity of approximating x is $\tilde{O}(m)$ [Spielman-Teng ’04]

+

if H sparsifier of G then $L^+_H b \approx L^+_G b$

↓

quantum algorithm to sparsify G to H in $\tilde{O}(\sqrt{mn}/\epsilon)$

+ solve $L^+_H x = b$ classically in $\tilde{O}(n/\epsilon^2)$

=

quantum algorithm for Laplacian solving in $\tilde{O}(\sqrt{mn}/\epsilon)$
Laplacian Solving

Laplacian system \(Lx = b \)

given \(L \) and \(b \), with \(\text{nnz}(L) = m \),

complexity of approximating \(x \) is \(\tilde{O}(m) \) [Spielman-Teng ’04]

+

if \(H \) sparsifier of \(G \) then \(L_H^+b \approx L_G^+b \)

\[\downarrow \]

quantum algorithm to sparsify \(G \) to \(H \) in \(\tilde{O}(\sqrt{mn}/\epsilon) \)

+ solve \(L_Hx = b \) classically in \(\tilde{O}(n/\epsilon^2) \)

=

quantum algorithm for Laplacian solving in \(\tilde{O}(\sqrt{mn}/\epsilon) \)

(+ quantum reduction for symmetric, diagonally dominant systems)
Laplacian Solving and Friends

<table>
<thead>
<tr>
<th></th>
<th>Classical</th>
<th>Quantum (this work)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\epsilon)-SDD Solving</td>
<td>(\tilde{O}(m)) (ST'04)</td>
<td>(\tilde{O}(\sqrt{mn}/\epsilon))</td>
</tr>
<tr>
<td>(\epsilon)-Effective Resistance (single)</td>
<td>(\tilde{O}(m))</td>
<td>(\tilde{O}(\sqrt{mn}/\epsilon)) prior: (\tilde{O}(\sqrt{mn}/\epsilon^2))</td>
</tr>
<tr>
<td>(\epsilon)-Effective Resistance (all)</td>
<td>(\tilde{O}(m + n/\epsilon^4)) (Spielman-Srivastava’08)</td>
<td>(\tilde{O}(\sqrt{mn}/\epsilon + n/\epsilon^4))</td>
</tr>
<tr>
<td>(O(1))-Cover Time</td>
<td>(\tilde{O}(m))</td>
<td>(\tilde{O}(\sqrt{mn}))</td>
</tr>
<tr>
<td>(Ding-Lee-Peres’10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k) bottom eigenvalues</td>
<td>(\tilde{O}(m + kn/\epsilon^2))</td>
<td>(\tilde{O}(\sqrt{mn}/\epsilon + kn/\epsilon^2)) prior, (k = 1): (\tilde{O}(n^2/\epsilon))</td>
</tr>
<tr>
<td>Spectral (k)-means clustering</td>
<td>(\tilde{O}(m + n \text{ poly}(k)))</td>
<td>(\tilde{O}(\sqrt{mn} + n \text{ poly}(k)))</td>
</tr>
</tbody>
</table>
summary:

quantum algorithm for spectral sparsification in time $\tilde{O}(\sqrt{mn}/\epsilon)$ matching $\tilde{\Omega}(\sqrt{mn}/\epsilon)$ lower bound speedup for cut approximation, Laplacian solving, etc.

open questions: matching lower bounds for applications? e.g., $\Omega(\sqrt{mn}/\epsilon)$ for approximate min cut or Laplacian solving? our $\tilde{O}(\sqrt{mn}/\epsilon)$ sparsification algorithm is tight for weighted graphs. can we do better for unweighted graphs?

thank you! stay safe!
summary:

- quantum algorithm for spectral sparsification in time $\tilde{O}(\sqrt{mn}/\epsilon)$
summary:

- quantum algorithm for spectral sparsification in time $\tilde{O}(\sqrt{m n}/\epsilon)$
- matching $\tilde{\Omega}(\sqrt{m n}/\epsilon)$ lower bound
summary:

- quantum algorithm for spectral sparsification in time $\tilde{O}(\sqrt{mn}/\epsilon)$
- matching $\tilde{\Omega}(\sqrt{mn}/\epsilon)$ lower bound
- speedup for cut approximation, Laplacian solving, …
summary:
- quantum algorithm for spectral sparsification in time $\tilde{O}(\sqrt{mn}/\epsilon)$
- matching $\tilde{\Omega}(\sqrt{mn}/\epsilon)$ lower bound
- speedup for cut approximation, Laplacian solving, …

open questions:
- matching $\tilde{\Omega}(\sqrt{mn}/\epsilon)$ lower bounds for applications?
 - e.g., $\Omega(\sqrt{mn}/\epsilon)$ for approximate min cut or Laplacian solving?
- our $\tilde{O}(\sqrt{mn}/\epsilon)$ sparsification algorithm is tight for weighted graphs.
 - can we do better for unweighted graphs?

thank you! stay safe!
summary:

- Quantum algorithm for spectral sparsification in time \(\tilde{O}(\sqrt{mn}/\epsilon)\)
- Matching \(\tilde{\Omega}(\sqrt{mn}/\epsilon)\) lower bound
- Speedup for cut approximation, Laplacian solving, ...

open questions:

- Matching lower bounds for applications? E.g., \(\Omega(\sqrt{mn}/\epsilon)\) for approximate min cut or Laplacian solving?
summary:
- quantum algorithm for spectral sparsification in time $\tilde{O}(\sqrt{mn}/\epsilon)$
- matching $\tilde{\Omega}(\sqrt{mn}/\epsilon)$ lower bound
- speedup for cut approximation, Laplacian solving, …

open questions:
- matching lower bounds for applications? e.g., $\Omega(\sqrt{mn}/\epsilon)$ for approximate min cut or Laplacian solving?
- our $\tilde{O}(\sqrt{mn}/\epsilon)$ sparsification algorithm is tight for weighted graphs. can we do better for unweighted graphs?
summary:
- quantum algorithm for spectral sparsification in time $\tilde{O}(\sqrt{mn}/\epsilon)$
- matching $\tilde{\Omega}(\sqrt{mn}/\epsilon)$ lower bound
- speedup for cut approximation, Laplacian solving, …

open questions:
- matching lower bounds for applications? e.g., $\Omega(\sqrt{mn}/\epsilon)$ for approximate min cut or Laplacian solving?
- our $\tilde{O}(\sqrt{mn}/\epsilon)$ sparsification algorithm is tight for weighted graphs. can we do better for unweighted graphs?

thank you! stay safe!