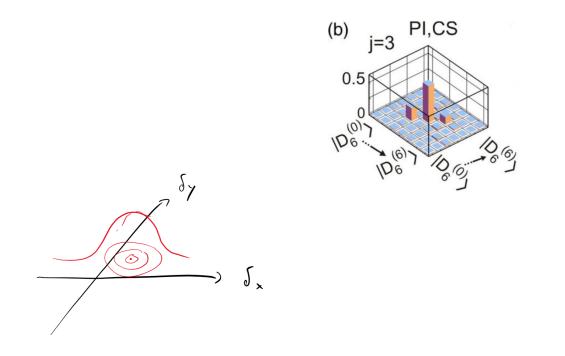
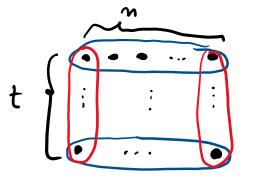
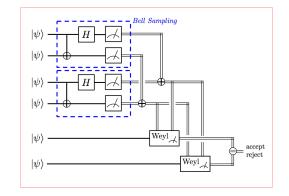
Intro to Quantum State Tomography



Testing under Clifford Symmetry



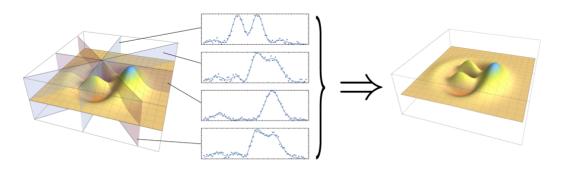


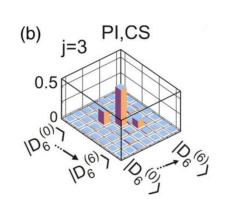
David Gross, University of Cologne

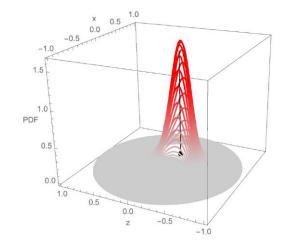
Testing & PCP Workshop, Simons Institute (kinda 🛛 💭

Intro to Tomography

- What's the point?
- What are the problems?
- Four technical approaches





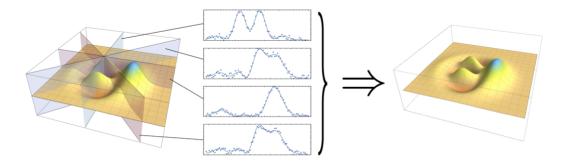


What's the point?

Quantum State Tomography: Estimate state ρ from measurements on n copies.

Reasons against:

- Doomed by exponential # of parameters
- Competes against efficient *certification* protocols [Blume-Kohout, Thursday]
- Surprisingly non-trivial



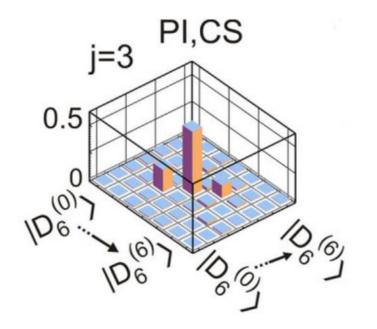
What's the point?

	PRL 113, 040503 (2014)	PHYSICAL REVIEW LETTERS	25 JULY 2014
Quantum State Tomography: R	Experimental Comparison of Efficient Tomography Schemes for a Six-Qubit State		
		istian Schwemmer, ^{1,2} Géza Tóth, ^{3,4,5} Alexander Niggebaum, ⁶ Moroder, ⁷ David Gross, ⁸ Otfried Gühne, ⁷ and Harald Weinfurte	r ^{1,2}

Reasons in favor:

Ο

- Tells you *in which way* a physical implementation deviates from its specification
- A fundamental primitive of quantum information



Symmetric Dicke state basis

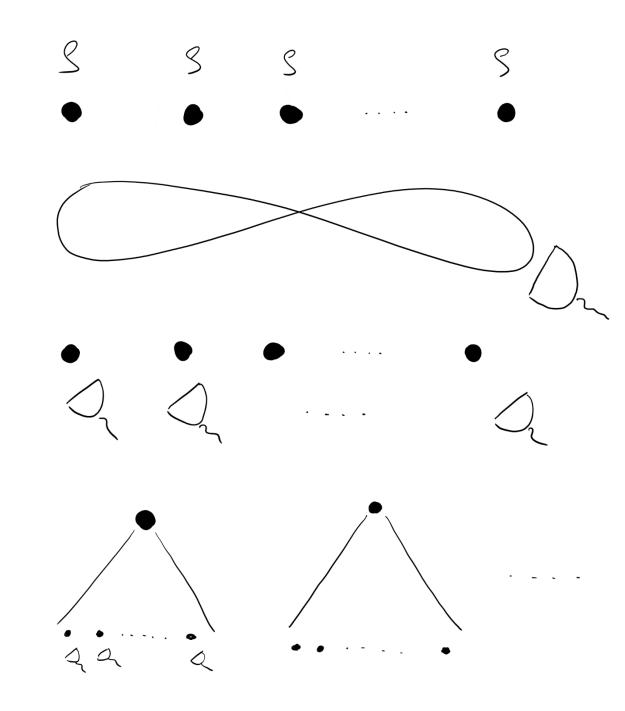
What are the problems?

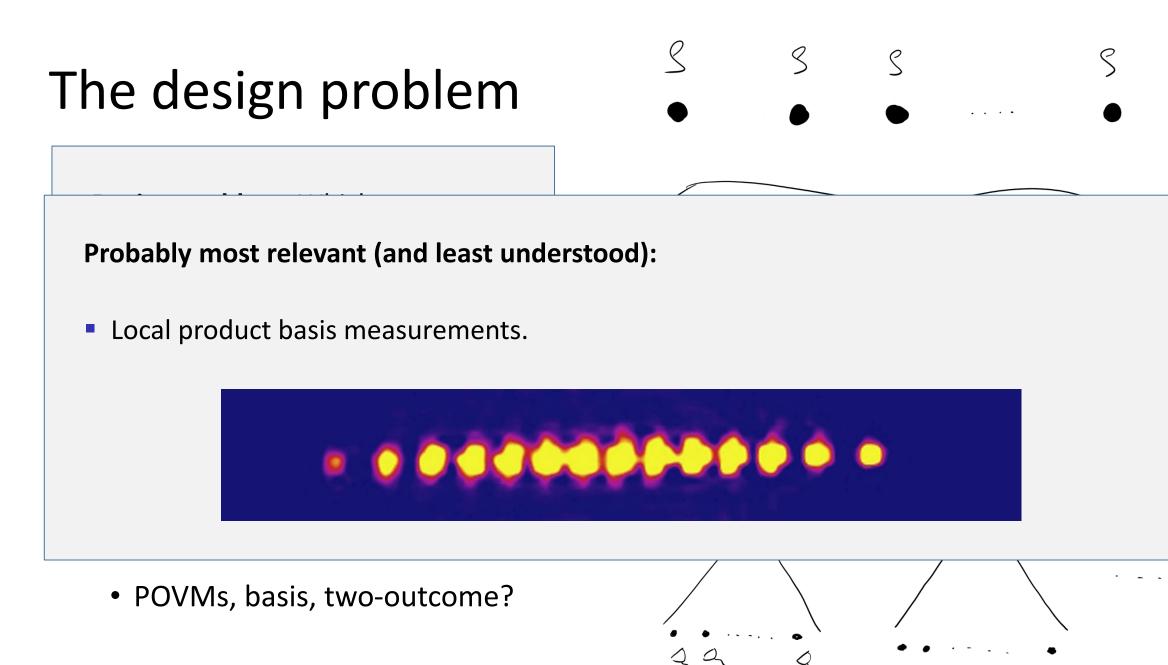
The design problem

Design problem: Which measurements should one perform?

Frameworks:

- Global
- Local
 - Adaptive vs identical
- "Local-local"
- POVMs, basis, two-outcome?





The estimation problem

Decide on goal:

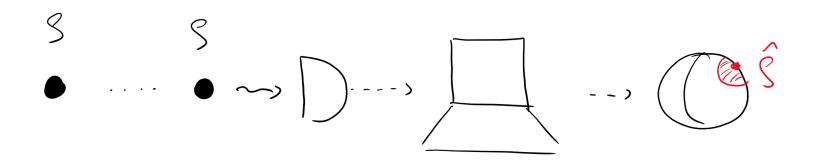
- Point estimate
- Region estimate
- Posterior distribution

Measure performance:

- Computational complexity
- Sample complexity
- In trace norm, 2-norm, fidelity...

Exploit structure:

- Low rank
- Symmetries
- MPS representation

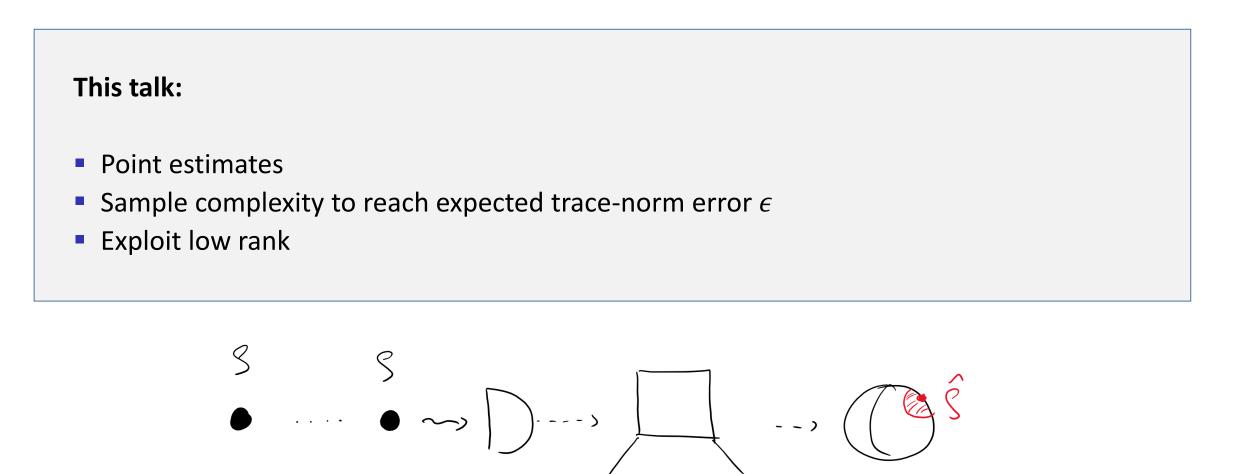


The estimation problem

Decide on goal:

Measure performance:

Exploit structure:



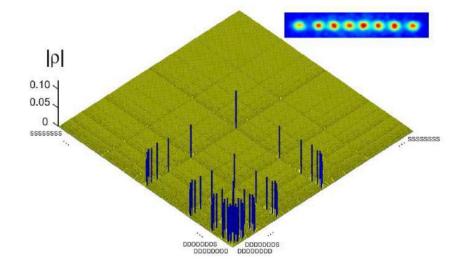
Likely?

Practitioners use

• Maximum Likelihood point estimates

 $\rho_{\text{MLE}} = \max_{\rho} p(\text{ data } | \rho)$

• *Bootstrap* for uncertainty quantification



Is this sound?

I hear MLE is optimal!!

Yup, it's OK.

Only asymptotically and away from the boundary (=full rank states). Not terribly relevant.

....

But it's the most likely state given the data!

Ronald Fisher settled this in the 1920s! He's a knight.

Stop wasting your time thinking of new estimators!

Wow. That escalated quickly.

Likelihood has no operational meaning. "Most likely" vacuous ≠ "most probable" or something

Bootstrap for uncertainty quantification

Look:

• MLE is OK

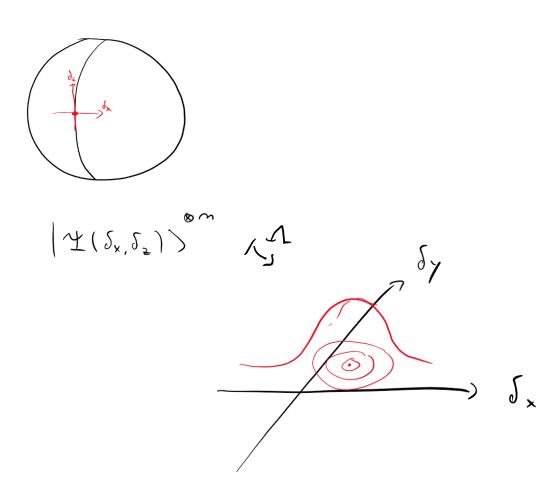
BS

- Not as optimal or canonic as some think
- Performance still needs to be analyzed

Four approaches

(very rough exposition)

1 / 4 Local asymptotic normality



Primakoff-Holstein:

- Consider states $\psi(\delta_x, \delta_z)$ close to reference state $\psi(0,0)$.
- There is channel Λ that sends $|\psi(\delta_x, \delta_z)\rangle^{\otimes n}$ to Gaussian state with first moments δ_x, δ_y .
- Tr-norm isometry for large *n*.

Idea:

- 1. Find rough estimate, use as $\psi(0,0)$
- 2. Implement Λ
- 3. Use heterodyning to find first moments

[Madalin Guta, Jonas Kahn]

1 / 4 Local asymptotic normality

Primakoff-Holstein:

LAN:

- Optimal sample complexity for fixed dimension
- Non-optimal scaling in dimension [Haah et al.]

- 1. Find rough estimate, use as $\psi(0,0)$
- 2. Implement Λ
- 3. Use heterodyning to find first moments

e

n

[Madalin Guta, Jonas Kahn]

• Write

 $\rho = U \operatorname{diag}(p) U^*$

• Estimate spectrum p and eigenbasis U separately.

Spectrum estimation problem: From $\rho^{\otimes n}$, estimate λ .

Ansatz:

- Problem invariant under U(d) and S_n
- \Rightarrow Try POVMs commuting with both symmetries.

Local basis changes commute with permutations of systems:

 $U(d) \ni U \mapsto U \otimes \cdots \otimes U,$ $S_n \ni \pi: |\psi_1\rangle \otimes \cdots \otimes |\psi_n\rangle \mapsto |\psi_{\pi_1}\rangle \otimes \cdots \otimes |\psi_{\pi_n}\rangle.$

• Operator A commutes with $U^{\otimes n}$ iff

$$A = \sum_{\pi \in S_n} c_\pi \, \pi$$

and vice versa.

• Under action of $S_n \times U(d)$:

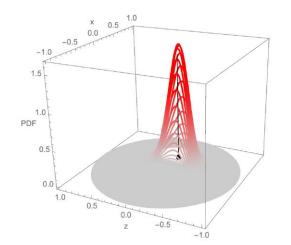
$$(\mathbb{C}^d)^{\otimes n} \simeq \bigoplus_{\lambda} S_{\lambda} \otimes U_{\lambda}$$

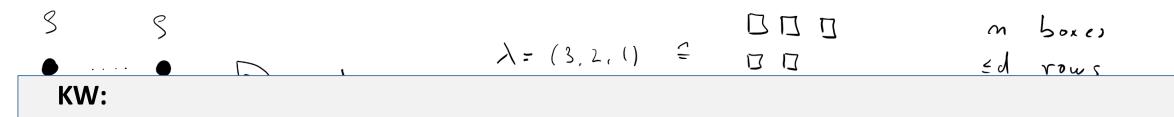
- S_{λ} irrep of S_t , U_{λ} irrep of U(d)
- Projections P_λ form POVM commuting with both!

$$S = (3, 2, 1) = \Box \Box$$
 mboxes
 $\lambda = (3, 2, 1) = \Box \Box$ ed rows
 $mom - increasing$

- 1. Perform collective measurement $\{P_{\lambda}\}$, obtain outcome λ
- 2. Representation spaces are labeled by partitions, visualized as *Young frames*
- 3. Renormalized λ/n is probability distribution \rightarrow guess for spectrum!

Turns out to be near-optimal estimator!

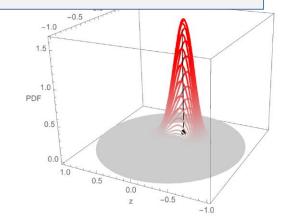




Haah *et al.*; O'Donnell, Wright 2015:

- Complexity of eigenbasis given spectrum ~ complexity of estimating spectrum
- $n = O(\frac{r d}{\epsilon^2})$, which is optimal
- Measurements non-local, but efficient circuits exists (quantum Schur transform)

Turns out to be near-optimal estimator!



3 / 4 Compressed Sensing

• Write

$$\rho = \sum_{i=1}^r \lambda_i \, |\psi_i\rangle \langle \psi_i|$$

• depends on $O(rd) \leq O(d^2)$ parameters.

Compressed sensing: Can one recover rank-*r* matrix from O(rd) expectation values

$$y_i = \operatorname{Tr}(\rho A_i)?$$

• Naïve:

 $\operatorname{arg\,min}_{\rho'}\operatorname{rank} \rho'$, s.t. $\operatorname{Tr}(\rho' A_i) = \operatorname{Tr}(\rho A_i)$

...numerically unstable, NP-hard in general. 🟵

• But SDP relaxation... $\arg\min_{\rho'} \|g'\|_{L^{r}}$ s.t. $\operatorname{Tr}(\rho' A_i) = \operatorname{Tr}(\rho A_i)$

...works efficiently for almost all measurements! $\textcircled{\odot}$

3 / 4 Compressed Sensing

• Write **Compressed sensing:** Can one recover r CS: • Can recover from O(rd) observables, which is optimal Works in local-local model • $n = O(\frac{r^2 d}{c^2})$, which is optimal in local model [DG, Flammia, Liu, Eisert; Kueng, Rauhut, Terstiege] But SDP relaxation... $\arg\min_{\rho'} \|g'\|_{L^{\infty}}$ s.t. $\operatorname{Tr}(\rho' A_i) = \operatorname{Tr}(\rho A_i)$

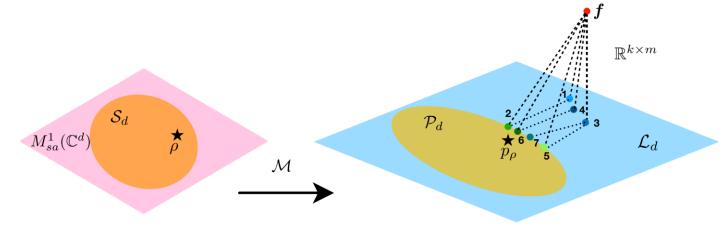
...works efficiently for almost all measurements! 🙂

4 / 4 Projected Least Squares

Dead simple:

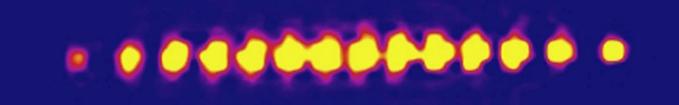
- 1. Take data $f_i = \operatorname{Tr}(\rho A_i) + \epsilon_i$
- 2. Find least-squares fit $ho_{
 m LS}$.

3. Modify eigenvalues to project onto state space.



4 / 4 Projected Least Squares

Dead simple:



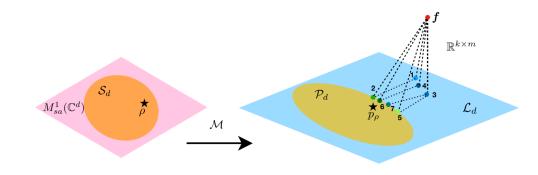
- PLS:
- Simple numerics, simple theory
- Optimal scaling for local and some local-local models
- Treats product basis measurements: $n = O(\frac{r^2 d^{1.6}}{\epsilon^2})$.
- Relevant open problem: Is this optimal?

[Guta, Kahn, Kueng, Tropp, Acharya, Kypraios]

 \mathcal{M}

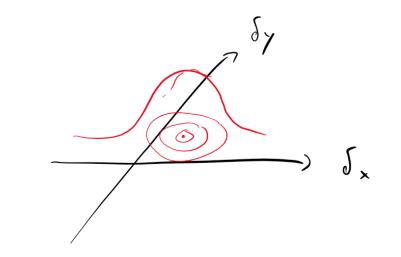
 $p_{
ho}$ 5

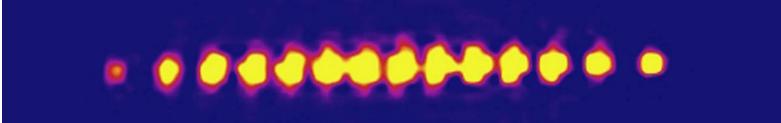
Summary



Quantum state tomography is:

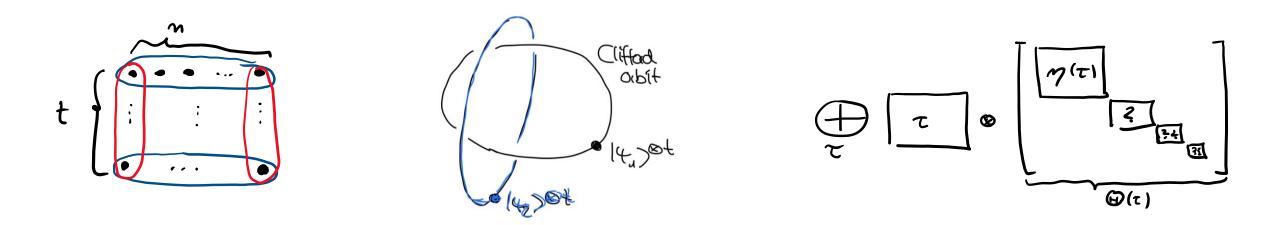
- ...relevant in practice, rich in theory
- Well. That's it.





Schur-Weyl duality for the Clifford group with applications to

Quantum Property Testing (among others)



David Gross, University of Cologne

With: Sepehr Nezami, Michael Walter, Felipe Montealegre, Huangjun Zhu

Introduction

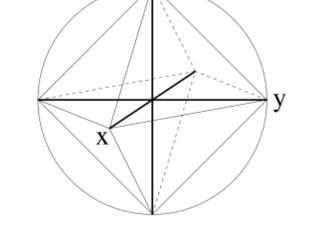
Testing under symmetry

- Recall spectrum estimation problem...
- ...solved by exploiting unitary and permutation symmetry.

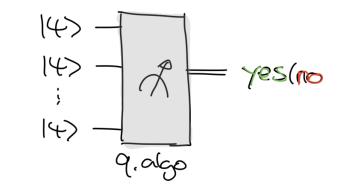
Q: What if we replace unitary by *Clifford invariance*?

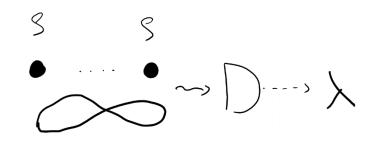
Problem [Montanaro, de Wolf]:

- Is there a dimension-independent t s.t. from t copies of a pure state $\psi^{\otimes t}$, can decide whether
 - ψ is a stabilizer state or
 - ψ is far away from the set of stabilizer states?



Z





Schur-Weyl duality 1

• On *t*-th tensor power $\mathcal{H}^{\otimes t}$ of a Hilbert space \mathcal{H} , commuting actions:

 $U(\mathcal{H}) \ni U \mapsto U \otimes \cdots \otimes U,$

$$S_t \ni \pi: |\psi_1\rangle \otimes \cdots \otimes |\psi_t\rangle \mapsto |\psi_{\pi_1}\rangle \otimes \cdots \otimes |\psi_{\pi_t}\rangle.$$

• Operator A commutes with $U^{\otimes t}$ iff

$$A = \sum_{\pi \in S_t} c_\pi \pi$$

and vice versa.

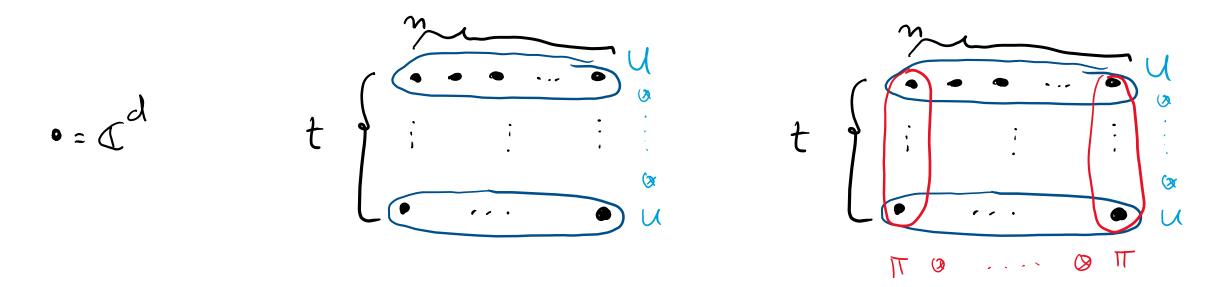
[Nezami, Walter, DG 18]

• Under action of $S_t \times U(\mathcal{H})$:

$$\mathcal{H}^{\otimes t} \simeq \bigoplus_{\lambda} S_{\lambda} \otimes U_{\lambda}$$

$$S_{\lambda} \text{ irrep of } S_{t}, U_{\lambda} \text{ irrep of } U(\mathcal{H}).$$

Schur-Weyl duality 2: Transversality



Assume that each copy is already a tensor product

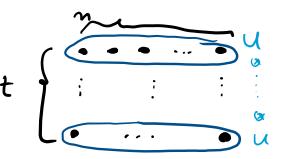
$$\mathcal{H} = \left(\mathbb{C}^d\right)^{\otimes n}$$

 \Rightarrow Permutations act *transversally*.

Both algebras:

- Have product basis
- Form groups!

Clifford group, prior results



Q: What if we replace unitary by *Clifford invariance*?

Commutant remains S_t for

- t=2
 [Dankert, Emerson 2005]
- t=3

[Zhu; Webb; Gross and Kueng 2015; implicit in Nebe, Rains, Sloane 2006]

Must be augmented by one stabilizer code projection for

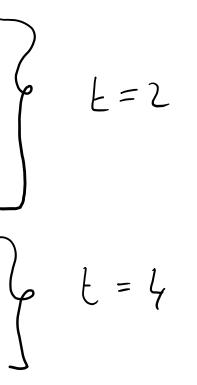
• t=4

[Zhu, Grassl, Kueng, Gross; Helsen, Wallman, Flammia, Wehner 2016]

Applications of prior results

Representation theory of t-th tensor powers used in, e.g.:

- Randomized benchmarking
- Decoupling technique
- Non-malleable quantum one-time pads
- Variance bounds for randomized benchmarking
- Stabilizer POVM optimal state-independent measurement for pure states



Algebraic Theory of the Clifford commutant

Statement of main result

Theorem [Nezami, Walter, DG 18]

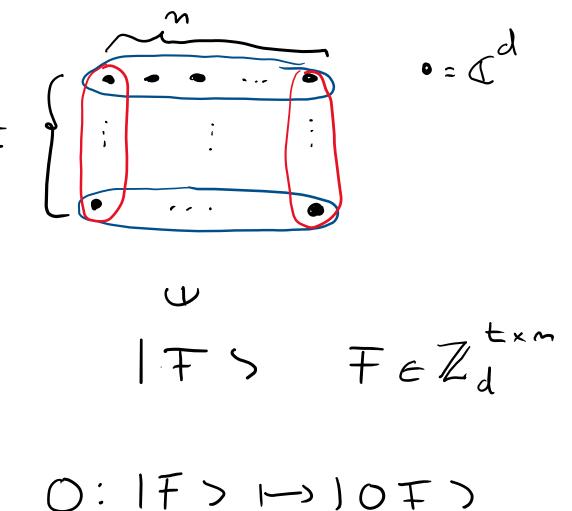
The commutant algebra of t-th tensor powers of the Clifford group over d^n is generated by t-th tensor powers of:

- Discrete orthogonal transformations
- Self-orthogonal CSS code projections

Stochastic orthogonal transformations

A $t \times t$ matrix O, entries in \mathbb{Z}_d , is orthogonal if

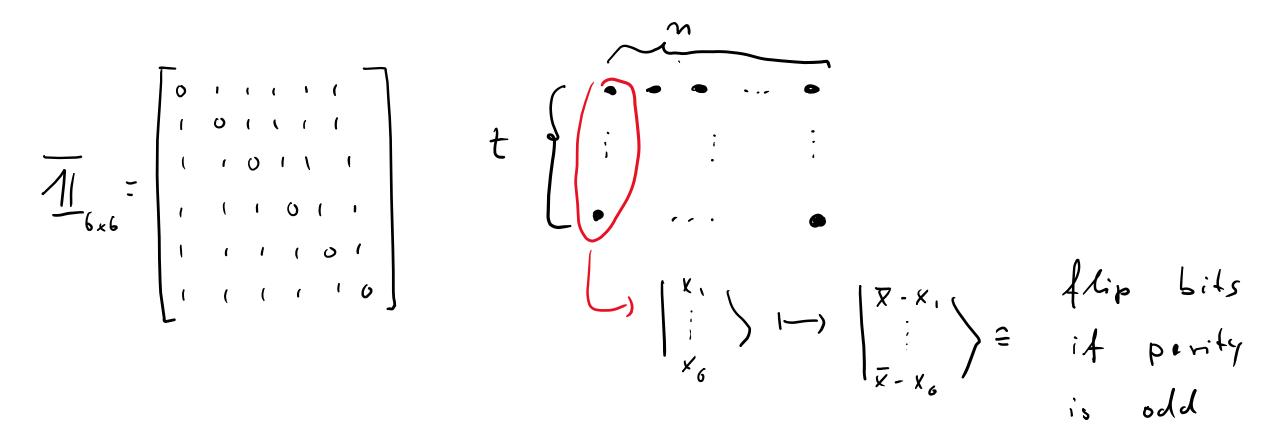
 $O^T O = \mathrm{Id} \mod \mathrm{d}$



Discrete orthogonal transformations

Example: Anti-permutations

Binary complement of permutation matrices



Calderbank-Shor-Steane codes

Let $N \subset \mathbb{Z}_d^t$ be *self-orthogonal*:

A self-orthogonal CSS code is the common eigenspace of these commuting Paulis.

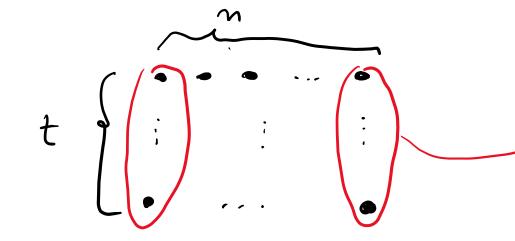
The commutant

Theorem [Nezami, Walter, DG 18]

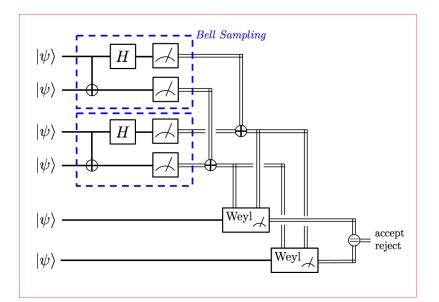
Commutant generated by tensor powers of:

- Finite orthogonal transformations
- Self-orthogonal CSS code projections

- Transversal! ③
- Not *quite* a group.
 rep-theoretic consequences → later.



Applications



Stabilizer states have additional symmetry

Consider stabilizer state $|s\rangle$ on n qudits...

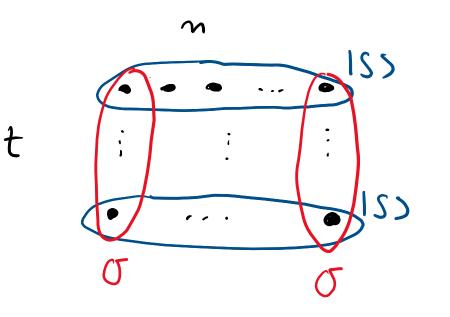
...and its *t*-th tensor power.

Tensor powers of stabilizer states are invariant under the stochastic orthogonal group.

Proof: True for
$$|SS=|0,...,0S:$$

 $\left[\sigma \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} \right] \ge = \left[\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} \right]$

$$\Rightarrow \sigma^{\otimes n} |SS^{\circ t} = \sigma^{\otimes n} u^{\otimes t} |QS^{\circ t} = |SS^{\circ t}$$



Application 1: Stabilizer testing

Thm. [Nezami, Walter, DG 18]

Let ψ be state on *n* qubits.

Measure projection on (+1)-eigenspace of anti-identity on $\psi^{\otimes 6}$.

If ψ is stabilizer, will accept with p = 1.

lf

 $\max_{S} |\langle \psi | S \rangle|^2 \le 1 - \epsilon,$

accepts with $p \leq 1 - 4\epsilon$.

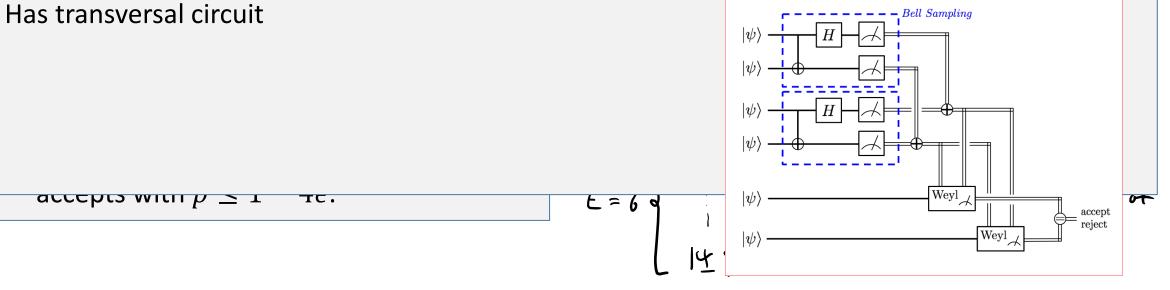
$$H_{int} = \begin{cases} 143 \\ 143$$

Application 1: Stabilizer testing

Thm. [Nezami, Walter, DG 18]

Stabilizer Testing:

- Solves previous open problem
- Optimal in terms of degree t = 6, and in terms of error probability
- Works also for testing Cliffordness
- Has transversal circuit



Application 2: Robust Hudson

Thm. [Nezami, Walter, DG 18] Pure ψ on n qudits, d odd.

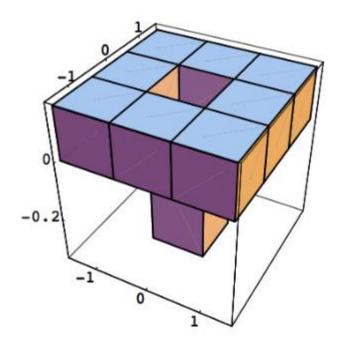
Wigner sum negativity for pure state:

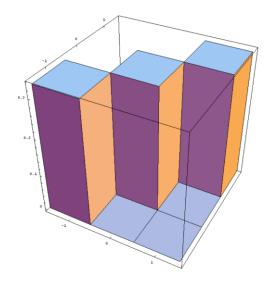
$$\operatorname{sn}(\psi) = \sum_{v, W_{\psi}(v) \le 0} |W_{\psi}(v)|.$$

Then

$$\max_{S} |\langle \psi | S \rangle|^2 \le 1 - d^2 \operatorname{sn}(\psi),$$

independent of n.





Application 3: exponential de Finetti

Thm.

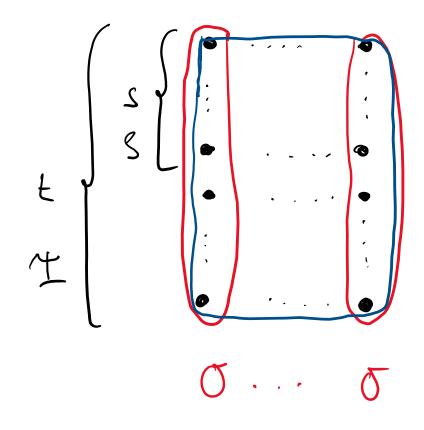
Let $\psi \in (\mathbb{C}^{2^n})^{\otimes t}$ be invariant under stochastic orthogonal group.

Let ρ be the reduction to the first s copies.

There is a distribution over stabs s.t.:

$$\|g - \sum_{s} |s > z s|^{\infty s} p(s)\|_{tr}$$

$$\leq lxp(m^2 - (t-s))$$



Finite analogue of [Leverrier 2017]

Application 4: Stabilizer rank

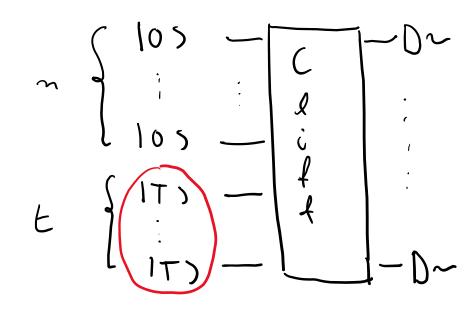
Theorem [Nezami, Walter, DG 18; Zhu, Grassl, Kueng, DG 16]

- For $t \leq 5$, the powers $|S\rangle^{\otimes t}$ of stabilizer states span symmetric space $\operatorname{Sym}^{t}(\mathbb{C}^{2^{n}})$.
- This fails for $t \ge 6$.

For powers of single qubit states:

stabrank($|\psi\rangle^{\otimes 5}$) $\leq \dim \operatorname{Sym}^5(\mathbb{C}^2) = 6 \ll 2^5 = 32.$

• \Rightarrow Best-known general bound on stabilizer rank.



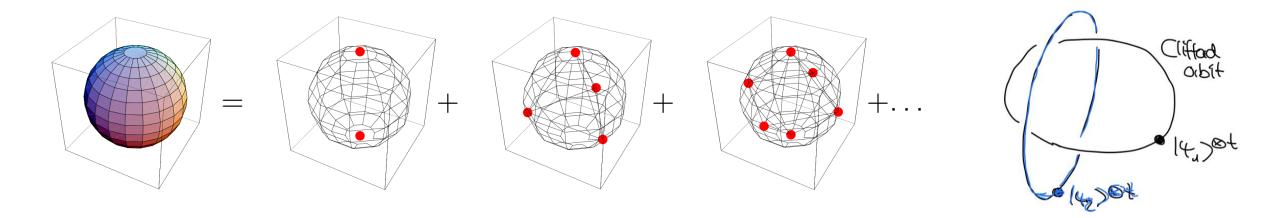
Application 5: Designs

Def.: t-designs

finite set of points on sphere / unitaries that reproduce *t*-th moments.

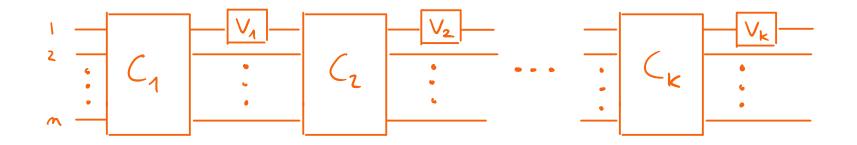
Theorem [Nezami, Walter, DG 18]

 Can construct exact *t*-designs from *n*-independent number of Clifford orbits



Application 6: Quantum Homeopathy

Cliffords form unitary 3-design. How many non-Cliffords have to be added to upgrade it to t-design?



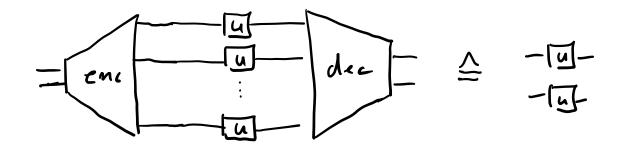
Theorem [HMHGER]: The family of circuits above is an *E*-approximate design if

$$k = O(t^4 \log^2 t \, \log 1/\varepsilon)$$

#non-Clifford gates independent of n!

Haferkamp, Montealegre-Mora, Heinrich, DG, Eisert, Roth. *Quantum homeopathy works: Efficient unitary designs with a system*size independent number of non-Clifford gates. arXiv:2002:09524 (2020)

Representation-theoretic version



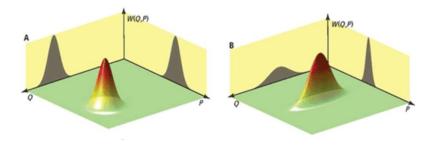
Use symplectic picture

Fact: In odd dimensions, Clifford group (up to Paulis) is *metaplectic representation*

 $\mu: \operatorname{Sp}(\mathbb{Z}_d^{2n}) \to U(\mathcal{H})$

of a finite symplectic group.

Close analogue to canonical maps on phase space.

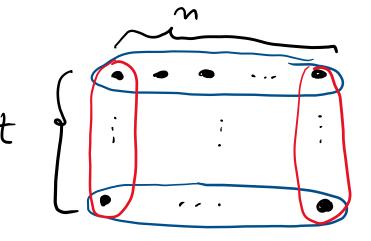


Howe-Kashiwara-Vergne Duality – CV

- Consider *metaplectic* representation
- $\mathcal{H} = L^2(\mathbb{R}^n), \ \mu: \operatorname{Sp}(\mathbb{R}^{2n}) \to U(\mathcal{H})$
- Tensor power $\mu^{\otimes t}$...
- ...commutes with $O(t) \supset S_t$.
- Under $O(t) \times \operatorname{Sp}(\mathbb{R}^{2n})$:

$$\mathcal{H}^{\otimes t}\simeq \bigoplus_\tau \tau\otimes \Theta(\tau)$$

• τ irrep of O(t), $\Theta(\tau)$ irrep of $\operatorname{Sp}(\mathbb{R}^{2n})$.



 $\bullet = L^2(IR)$

ITS FEIR

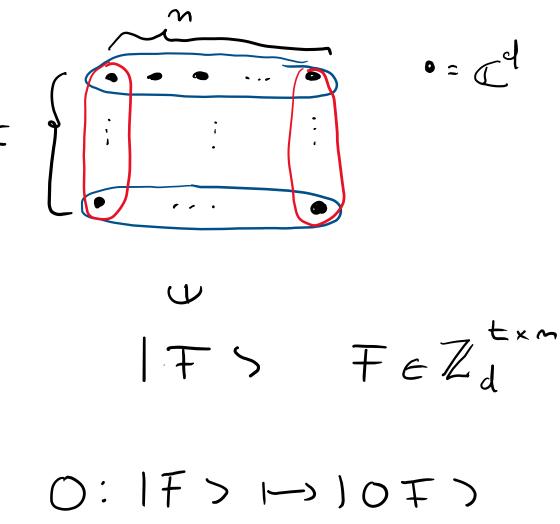
0: IF> ~) OF)

H-K-V Duality – finite, and odd, dimensions

- Consider *metaplectic* representation
- $\mathcal{H} = (\mathbb{C}^d)^{\otimes n}, \ \mu: \operatorname{Sp}(\mathbb{Z}_d^{2n}) \to U(\mathcal{H})$
- Tensor power $\mu^{\otimes t}$...
- ...commutes with $O(t) \supset S_t$.
- Under $O(t) \times \operatorname{Sp}(\mathbb{Z}_d^{2n})$:

$$\mathcal{H}^{\otimes t} \simeq \bigoplus_\tau \tau \otimes \Theta(\tau)$$

• τ irrep of O(t), $\Theta(\tau)$ reducible.



H-K-V Duality – finite, and odd, dimensions

$$\mathcal{H}^{\otimes t} \simeq \bigoplus_{\tau} \tau \otimes \Theta(\tau)$$

- τ irrep of O(t), $\Theta(\tau)$ reducible.
- Failure of Howe duality over finite fields known since 70s...
- ...building on Nezami-Walter-DG, Gurevich-Howe 2016...
- we can reduce out this space ③

Theorem [Montealegre, DG 2019]

$$\mathcal{H}^{\otimes t} \simeq \bigoplus_{r} \bigoplus_{\tau} \eta(\tau) \otimes \operatorname{Ind}(\eta(\tau))$$

Rank of Sp(V)-representations

Sp(V) contains a large Abelian subgroup

$$\begin{bmatrix} 1 & A_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & A_2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & A_1 + A_2 \\ 0 & 1 \end{bmatrix}$$

• \Rightarrow Restriction of any rep π to Abelian group decomposes Hilbert space into 1D irreps:

$$\pi \begin{pmatrix} 1 & A \\ 0 & 1 \end{pmatrix} | \overline{\Phi}_{B} \rangle = exp(i E A B) | \overline{\Phi}_{B} \rangle$$

Def.: rank $\pi = \max_{B}$ rank *B*

[Gurevich-Howe 2017]

The rank of Sp(V)-representations

Def.: rank $\pi = \max_{B} \operatorname{rank} B$

Fact.: The rank of
$$\mu^{\otimes t}$$
 is *t*.

$$\frac{f=1}{2a}$$

$$V\left(\begin{array}{c}1\\0\\1\end{array}\right)\left(\begin{array}{c}1\\0\end{array}\right)\left(\begin{array}{c}1\\0\end{array}\right)=\omega\right)\left(\begin{array}{c}1\\0\\0\end{array}\right)\left(\begin{array}{c}1\\0\end{array}\right)\left(\begin{array}{c}1\\0\end{array}\right)\left(\begin{array}{c}1\\0\end{array}\right)=\omega\right)\left(\begin{array}{c}1\\0\\0\end{array}\right)\left(\begin{array}{c}1\\0\end{array}\right)$$

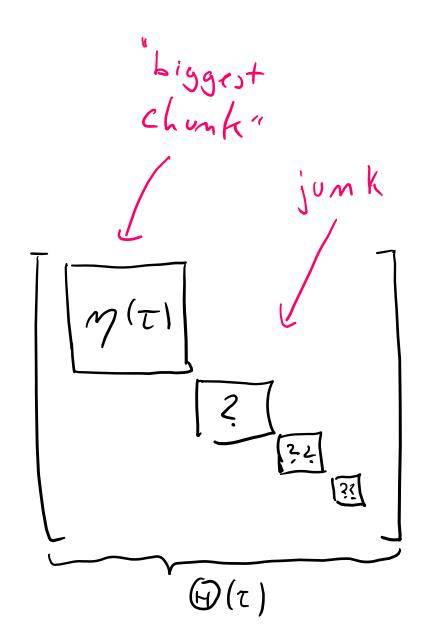
[Gurevich-Howe 2017]

The η -correspondence

Thm [Gurevich-Howe 2017]

- $\Theta(\tau)$ contains exactly one rank-*t* irrep $\eta(\tau)$.
- The map $\tau \mapsto \eta(\tau)$ is injective.

$$\mathcal{H}^{\otimes t} \simeq \bigoplus_{\tau} \tau \otimes \Theta(\tau)$$



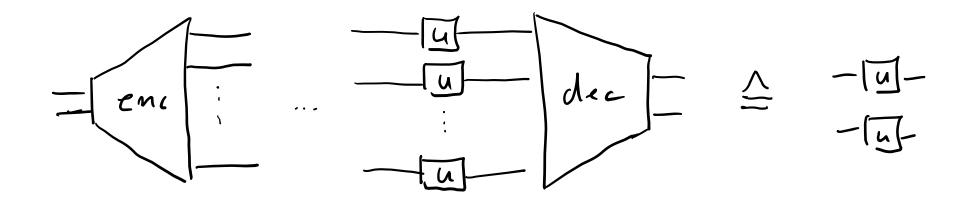
 \bigotimes

 \mathcal{T}

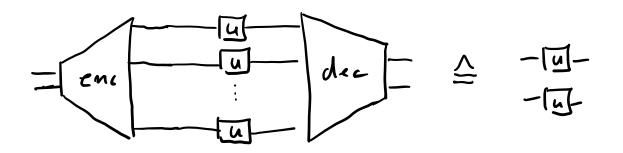
Where do the rank-deficient reps come from?

Idea: Can one "imbed lower tensor powers into *t*-th tensor power"?

...that's what transversal gates on quantum codes do!



...from CSS codes!



Thm [Montealegre-Mora, DG]

Let $N \subset \mathbb{Z}_d^t$ be isotropic, let C_N be the associated CSS code.

• Then $C_N^{\otimes t}$ is isomorphic to $\mu^{\otimes s}$, $s = t - 2 \dim N$.

All rank-deficient subreps arise this way! ;-)

$$\mathcal{X}^{\otimes t} = \left[\begin{array}{c} \bigoplus \\ \tau \in \mathbb{N}^{r} \\ \mathcal{O}_{t} \end{array} \right] \mathcal{D} \left[\begin{array}{c} \bigoplus \\ \tau \in \mathbb{N}^{r} \\ \mathcal{O}_{t-2} \end{array} \right] \mathcal{O}_{t-2} \left[\begin{array}{c} \bigoplus \\ \mathcal{O}_{t-2} \end{array} \right] \mathcal{O}_{t-2} \\ \text{irred, and inequ.} \end{array} \right]$$

For the future:

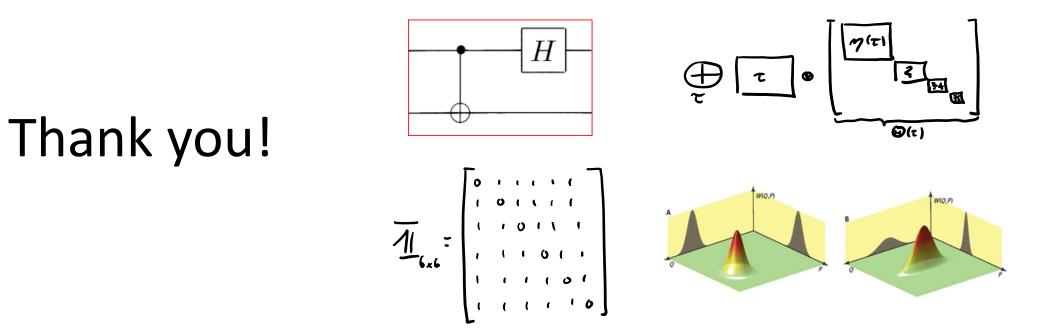
- Treat the representation spaces also for qubits (not just in odd dimensions)
- Results assume $n \ge t$ (the *stable range*). Work on that.
- Quantum info applications of duality?

$$\mathcal{X}^{\otimes t} = \left[\begin{array}{c} \bigoplus & \tau \otimes \eta(\tau) \\ \tau \in \mathbb{I}_{r} \cdot \mathbb{O}_{t} \end{array} \right] \begin{array}{c} \bigoplus & \left[\begin{array}{c} \bigoplus & \tau \otimes \eta(\tau) \\ \tau \in \mathbb{I}_{r} \cdot \mathbb{O}_{t-2} \end{array} \right] \begin{array}{c} \bigoplus & \left[\begin{array}{c} \bigoplus & \tau \otimes \eta(\tau) \\ \tau \in \mathbb{I}_{r} \cdot \mathbb{O}_{t-2} \end{array} \right] \begin{array}{c} \bigoplus & \left[\begin{array}{c} \bigoplus & \mathcal{N}' \cdot \mathbf{s} \\ \vdots \\ \tau \in \mathbb{I}_{r} \cdot \mathbb{O}_{t-2} \end{array} \right] \begin{array}{c} \bigoplus & \left[\begin{array}{c} \bigoplus & \mathcal{N}' \cdot \mathbf{s} \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \right]$$

Summary

We have

- ...worked out the commutant algebra of powers of the Clifford group
- ...have found, and continue to find, many applications
- ...made progress on the failure of Howe-Kashiwara-Vergne Duality for finite dimensions



David Gross, University of Cologne

With: Sepehr Nezami, Michael Walter, Felipe Montealegre, Huangjun Zhu