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Intro to Tomography

 What’s the point?
 What are the problems?

* Four technical approaches
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Pictures: [Shahandeh, Ringauer; Schwemmer et al.; Haah et al.]



What's the point?

Quantum State Tomography: Estimate state p from measurements on n copies.

Reasons against:

 Doomed by exponential # of
parameters

 Competes against efficient

certification protocols
[Blume-Kohout, Thursday]

* Surprisingly non-trivial N e )




What's the point?

PRL 113, 040503 (2014) PHYSICAL REVIEW LETTERS 25 JULY 2014

Qua ntum State Tomography: R Experimental Comparison of Efficient Tomography Schemes for a Six-Qubit State

Christian Schwemmer,l'2 Géza Téth,g“i'5 Alexander Niggeba\um,6

Tobias Moroder,7 David Gross,8 Otfried Gl'.ihne,7 and Harald Weinfurter'*

Reasons in favor:

 Tells you in which way a physical
implementation deviates from its
specification

* A fundamental primitive of 06 -
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What are the problems?



The design problem

Design problem: Which
measurements should one perform?

Frameworks:
e Global

* Local
e Adaptive vs identical

* “Local-local”

* POVMs, basis, two-outcome?
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The design problem

Probably most relevant (and least understood):

= |ocal product basis measurements.
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* POVMs, basis, two-outcome? \ / \
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The estimation problem

Decide on goal: Measure performance: Exploit structure:
* Point estimate * Computational complexity * Low rank
* Region estimate * Sample complexity * Symmetries
e Posterior distribution * In trace norm, 2-norm, * MPS representation
fidelity...
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The estimation problem

Decide on goal: Measure performance: Exploit structure:

This talk:

= Point estimates
= Sample complexity to reach expected trace-norm error €
= Exploit low rank
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Likely?

Practitioners use

* Maximum Likelihood point estimates

PMLE = m;axp( data | p)

* Bootstrap for uncertainty quantification



Only asymptotically and away from the boundary

: s
| hear MLE is optimal!! (=full rank states). Not terribly relevant.

& DO =

But it’s the most likely state given the data! Wow. That escalated quickly.

Ronald Fisher settled this in the 1920s! He’s a knight.

Likelihood has no operational meaning.
“Most likely” vacuous # “most probable” or
something

Stop wasting your time thinking of new estimators!

bootstrap tor uncertainty quanti Icatio

Look:

* MLE is OK

* Not as optimal or canonic as some think
e Performance still needs to be analyzed



Four approaches

(very rough exposition)



1 / 4 Local asymptotic normality

Primakoff-Holstein:

* Consider states Y (6,, 6,) close to reference
state ¥ (0,0).

* There is channel A that sends [(8,, §,))®"
to Gaussian state with first moments 6,, Sy.

* Tr-norm isometry for large n.

ldea:
1. Find rough estimate, use as ¥ (0,0)

2. Implement A

3. Use heterodyning to find first moments

[Madalin Guta, Jonas Kahn]



1 / 4 Local asymptotic normality

Primakoff-Holstein:

—

LAN:

= Optimal sample complexity for fixed dimension
= Non-optimal scaling in dimension [Haah et al.]

@)\ 1. Find rough estimate, use as ¥ (0,0)
-, 2. Implement A
Completely ludicrous!

3. Use heterodyning to find first moments

[Madalin Guta, Jonas Kahn]



2 / 4 Keyl, Werner, Schur, and Wey!

* Write
p = U diag(p) U~
* Estimate spectrum p and eigenbasis U separately.

Spectrum estimation problem: From p®", estimate A.

Ansatz:
* Problem invariant under U(d) and S,,

* = Try POVMs commuting with both symmetries.




2 / 4 Keyl, Werner, Schur, and Weyl

= Local basis changes commute with permutations of systems:

Sp 37 Y1) ® - ® ) ~ [Yr,) ® - ® [¥r, ).

= Operator A commutes with U®™ iff = Under action of S, X U(d):
A= com e~ P s U,
TES, A
and vice versa. = Sy irrep of S¢, Uy irrep of U(d)
" Projections P; form POVM
commuting with both!




2 / 4 Keyl, Werner, Schur, and Wey!

g g BE U o L_)Dx()
A= (5 1. () < 0 d <d Yow §
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1. Perform collective measurement {P,}, obtain outcome A
2. Representation spaces are labeled by partitions, visualized as Young frames

3. Renormalized A/n is probability distribution — guess for spectrum!

Turns out to be near-optimal estimator! i ﬁ



2 / 4 Keyl, Werner, Schur, and Wey!

g g . BE u on L_)Dx()
° —~ ‘ A= (3. 0.0) = I ¢ ¢d  vows

KW:

Haah et al.; O’Donnell, Wright 2015:
= Complexity of eigenbasis given spectrum =~ complexity of estimating spectrum

"= 0(2—?), which is optimal

= Measurements non-local, but efficient circuits exists (quantum Schur transform)

Turns out to be near-optimal estimator! i @




3 /4 Compressed Sensing

* Write .
r Compressed sensing: Can one recover
o= Z A, )| rarllk—r matrix from O (rd) expectation
— values
= ?
e depends on 0(rd) < 0(d?) parameters. yi =Tr(p 4):
* Naive:
arg minrank p’, S. t. Tr(p' A;) = Tr(p 4;)
Jo,
...numerically unstable, NP-hard in general. ®
* But SDP relaxation... |
arg m’, llfl“u S. t. Tr(p' A;) = Tr(p A4;)

...works efficiently for almost all measurements! ©



3 /4 Compressed Sensing

e Write

r Compressed sensing: Can one recover

! 1 i L N L. I\ L a’

CS:

= Can recover from O(rd) observables, which is optimal
= Works in local-local model

2d
"= O(TE—Z), which is optimal in local model

[DG, Flammia, Liu, Eisert; Kueng, Rauhut, Terstiege]

e But SDP relaxation...

arg rr;i,n HE'HL, s. t. Tr(p" A;) = Tr(p 4;)

...works efficiently for almost all measurements! ©




4 / 4 Projected Least Squares

Dead simple:

1. Take data
fi=Tr(p A + €
2. Find least-squares fit pys.

3. Modify eigenvalues to project onto
state space.
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4 / 4 Projected Least Squares

Dead simple:

PLS:

= Simple numerics, simple theory
= Optimal scaling for local and some local-local models

2 41.6
= Treats product basis measurements: n = 0 (- ; ).
= Relevant open problem: Is this optimal?
[Guta, Kahn, Kueng, Tropp, Acharya, Kypraios]
- . s .




Summary

Quantum state tomography is:

= ..relevant in practice, rich in theory

Well. That’s it.
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Schur-Weyl duality for the Clifford group
with applications to
Quantum Property Testing (among others)

e
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David Gross, University of Cologne

With: Sepehr Nezami, Michael Walter, Felipe Montealegre, Huangjun Zhu

Cliftod. T
( O(b(l'F
/ €>) ‘ - |e
T




Introduction



Testing under symmetry

= Recall spectrum estimation problem...

= ...solved by exploiting unitary and permutation symmetry.

Q: What if we replace unitary by Clifford invariance?

Problem [Montanaro, de Wolf]:
= |s there a dimension-independent t s.t. from t
copies of a pure state l/)®t, can decide whether
= ) is a stabilizer state or
= ) is far away from the set of stabilizer states?
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Schur-Weyl duality 1

= On t-th tensor power H ®¢ of a Hilbert space H, commuting actions:

UH))25U»UQR QR U,

Se 31 Y1) @ @ |he) = [Yr,) @ - ® |Yr,)-

= Operator A commutes with U®? iff = Under action of S; X U(H):
A=chn 7—[®tz€95,1®U,1
TES; [ A
and vice versa. = 5 irrep of S¢, Uy irrep of U(
[Nezami, Walter, DG 18] [Montealegre-Mora, DG 19]




Schur-Weyl duality 2: Transversality
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Assume that each copy is already a tensor product = Permutations act transversally.
1 = ((Cd)@’” Both algebras:

= Have product basis
" Form groups!



Clifford group, prior results ¢ i -;

Q: What if we replace unitary by Clifford invariance?

Commutant remains S; for
= t=2
[Dankert, Emerson 2005]

= =3
[Zhu; Webb; Gross and Kueng 2015; implicit in Nebe, Rains, Sloane 2006]

Must be augmented by one stabilizer code projection for
= t=4
[Zhu, Grassl, Kueng, Gross; Helsen, Wallman, Flammia, Wehner 2016]




Applications of prior results

Representation theory of t-th tensor powers used in, e.g.:

Randomized benchmarking
= Decoupling technique
= Non-malleable quantum one-time pads

= Variance bounds for randomized benchmarking

Stabilizer POVM optimal state-independent measurement for pure states

L

1

9



Algebraic Theory of the
Clifford commutant



Statement of main result

Theorem [Nezami, Walter, DG 18]

The commutant algebra of t-th tensor powers of the Clifford group over d™ is generated by
t-th tensor powers of:

= Discrete orthogonal transformations
= Self-orthogonal CSS code projections




Stochastic orthogonal transformations

A
0 -~ d:
( t
At X t matrix O, entries in Zg,, is
orthogonal if
0T0=1d modd W
L
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Discrete orthogonal transformations

Example: Anti-permutations
= Binary complement of permutation matrices




Calderbank-Shor-Steane codes

Let N c Z} be self-orthogonal:

Zuivizo mod d, u,v € N.

[
v u
XUK - ,((2’"'@)((-,&

"4

2 D= X‘V‘@--'CE Z:e

A self-orthogonal CSS code is the common eigenspace of these commuting Paulis.



The commutant

Theorem [Nezami, Walter, DG 18]

Commutant generated by tensor powers of: = Transversal! ©

= Finite orthogonal transformations " Not quite a group.

= Self-orthogonal CSS code projections rep-theoretic consequences — later.

o'\r“‘é\osom O/( O®M
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CSS  cods pragrctor P



Applications

————————— . Bell Sampling
) = H A

) iho . :

o) I H A= =
v) = A==

__________

%) Weyui
’ | accept
reject
%) Wl




Stabilizer states have additional symmetry

Tensor powers of stabilizer states are
invariant under the stochastic
orthogonal group.

Consider stabilizer state |s) on n qudits...

...and its t-th tensor power.
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Application 1: Stabilizer testing

Thm. [Nezami, Walter, DG 18] *\s °

Let Y be state on n qubits. H

Measure projection on (+1)-eigenspace a

of anti-identity on y®°. -

If Y is stabilizer, will accept withp = 1. A -0
.t ' 0t

If ¢ e

max[(|S)|* <1 -,
S [ ‘\il_) — | GCLXP" \';L M

accepts withp < 1 — 4e. L=§ s : ﬂ< +(-a‘?ﬁ.sp.u oA
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Application 1: Stabilizer testing

Thm. [Nezami, Walter, DG 18] -

Stabilizer Testing:

Solves previous open problem
Optimal in terms of degree t = 6, and in terms of error probability
Works also for testing Cliffordness

= Has transversal circuit R S
H_ }
¥) :
) A=
)y —— A g —&
[) = A==

__________

Y
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Application 2: Robust Hudson

Thm. [Nezami, Walter, DG 18]
Pure Yy on n qudits, d odd.

Wigner sum negativity for pure state:

@)= ) W),

v,Wy(v)<0
Then

max|(¥[$)|* < 1 —d* sn(y),

independent of n.




Application 3: exponential de Finetti

Thm.

Rt
Lety € (C2")" " be invariant under
stochastic orthogonal group.

Let p be the reduction to the first s copies.

There is a distribution over stabs s.t.:

H g - Z; \stl@sP(S)“U

< XXP( . '(&—S))

,-‘-.
o

Finite analogue of [Leverrier 2017]



Application 4: Stabilizer rank

Theorem [Nezami, Walter, DG 18; Zhu, Grassl, Kueng, DG 16]

= Fort < 5, the powers |S)®? of stabilizer states span symmetric space Symt((CZn).

= This fails for t = 6.

= For powers of single qubit states:
stabrank(|y)®>) < dim Sym®(C?) = 6 « 2° = 32.
= = Best-known general bound on stabilizer rank.

[Bravyi, Browne, Calpin, Campbell, Gosset, Howard]
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Application 5: Designs

Def.: t-designs

finite set of points on sphere /
unitaries that reproduce t-th
moments.

Theorem [Nezami, Walter, DG 18]

= Can construct exact t-designs from
n-independent number of Clifford

orbits

Ciffad.
ol



Application 6: Quantum Homeopathy

Cliffords form unitary 3-design.  How many non-Cliffords have to be added to upgrade it to t-design?

| — —| V) [— Vo — — Vi |—

" C : o - G [

o ©

Theorem [HMHGER]: The family of circuits above is an €-approximate design if

k=0O(t* log2 t log1/¢€) #non-Clifford gates independent of n!

Haferkamp, Montealegre-Mora, Heinrich, DG, Eisert, Roth. Quantum homeopathy works: Efficient unitary designs with a system-
size independent number of non-Clifford gates. arXiv:2002:09524 (2020)



Representation-theoretic
version
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Use symplectic picture

Fact: In odd dimensions, Clifford group
(up to Paulis) is metaplectic
representation

u:Sp(Z3") - U(H)
of a finite symplectic group.

Close analogue to canonical maps on
phase space.



Howe-Kashiwara-Vergne Duality — CV

= Consider metaplectic representation

H = L2(R), p:Sp(RE™) - U(3H) t

= Tensor power u®t...
= ..commutes with O(t) D §;.

= Under 0(t) x Sp(R?"):

HO ~ 69 I ® (1)

T

€ x o
TS FeR

= Tirrep of O(t), O(7) irrep of Sp(R>™). O:1f>=—=)oT D



H-K-V Duality — finite, and odd, dimensions

= Consider metaplectic representation o - (:{
H = (CH®", u:Sp(Zg") - U(H) t
= Tensor power u®t...
= ..commutes with O(t) D ;.
.
= Under 0(¢t) x Sp(Z3"): £y m
| TS T e Zd

HO ~ 69 I ® 0(7)

T

= Tirrep of O(t), O(t) reducible. O : ' F>—=J0%F 5



H-K-V Duality — finite, and odd, dimensions

HO ~ C) r ® 0(1)
T
= 7irrep of O(t), O(7) reducible. Theorem [Montealegre, DG 2019]
= Failure of Howe duality over finite H Ot ~ 69 E n(t) ® Ind(n(r))
fields known since 70s... - pe

= _..building on Nezami-Walter-DG,
Gurevich-Howe 2016...

= we can reduce out this space ©



Rank of Sp(V)-representations

= Sp(V) contains a large Abelian subgroup

ERTERI O
o A 0 AL

= = Restriction of any rep  to Abelian group decomposes Hilbert space into 1D irreps:

T\'(/'/ \\(bb—uf,( L. AR) |1533

Def.: rank T = mBax rank B

[Gurevich-Howe 2017]



The rank of Sp(V)-representations

Def.: rank T = méax rank B
Fact.: The rank of u®t is t.
€=
/l// A v (25,/45) trA ),(>fT
’J 5 A \ X DWW L X5= ) (,).(_D
B

[Gurevich-Howe 2017]



The n-correspondence

Thm [Gurevich-Howe 2017]

= The map T = n(7) is injective.

= O(t) contains exactly one rank-t irrep n(7).

HO ~ 69 r ® (1) !

@
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Where do the rank-deficient reps come from?

Idea: Can one “imbed lower tensor powers into t-th tensor power”?

...that’s what transversal gates on quantum codes do!
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from CSS codes! = emc

L1
SU vy
@ —

Thm [Montealegre-Mora, DG]

Let N c Z be isotropic, let Cy be the associated CSS code.
= Then C,?t is isomorphic to u®5, s =t — 2dim N.

= All rank-deficient subreps arise this way! ;-)
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Outlook

For the future:

= Treat the representation spaces also for qubits (not just in odd dimensions)
= Results assume n = t (the stable range). Work on that.
= Quantum info applications of duality?
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Summary

We have
= ...worked out the commutant algebra of powers of the Clifford group
= ...have found, and continue to find, many applications

= ...made progress on the failure of Howe-Kashiwara-Vergne Duality for finite dimensions



Thank you!
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