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Outline:

I Quantum Money: Motivation and History

I Background

I Lattice money (work in progress)



Motivation

One problem with money is that you can make copies.

Quantum states satisfy the no-cloning theorem, which says you
cannot make a copy of an unknown quantum state.

One might think this will immediately let us use quantum states
for money.
This was Wiesner’s idea [1983; original manuscript ca. 1969]
His scheme had some drawbacks.
It’s quite a bit harder to come up with a quantum money system
that doesn’t have severe drawbacks.

We give a new protocol for creating unforgeable quantum states.
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Proposals for Quantum Money

Farhi, Gosset, Hassidim, Lutomirski, Shor (based on knot
invariants, 2009)
Aaronson and Christiano (based on subspaces, 2012) broken
Mark Zhandry (complexity-theoretic, 2017) broken?
Daniel Kane (based on modular forms, 2018)
Shor (based on lattice cryptography, 2020)



History

One of the first
proposed quantum
computing ideas
was quantum money
(Stephen Wiesner,
1970, 1983).

In each bill, there is a sequence of quantum states in one of two
complementary bases (so one of | l〉 , |↔〉 | ↗↙ 〉 , | ↘↖ 〉). By the
quantum no-cloning theorem, anyone who does not know the
polarizations of these states cannot copy them.
(Wiesner proposed this before the no-cloning theorem had been
formally proven, although it’s clear that he knew it intuitively.)



Problems with Wiesner’s Money

How to check the money? The mint knows the polarizations, and
so can easily check it.

We want the merchant to be able to verify that the bill is legit
without sending it back to the mint.
If the merchant knows the quantization axis and eigenvalue of each
qubit, then the merchant can verify the money.

However, he could also make new bills exactly like the one he got.

We would like a verification procedure that does not allow the
merchant to make fresh bills.
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Cryptography Background and Motivation

For many years, cryptography was done with ad hoc
cryptosystems, many of which were eventually broken.
Over the last few decades, cryptography has become much more
mathematical, and theoretical computer scientists try to prove
security of cryptosystems.
There are two kinds of proofs of security in cryptography (both
classical and quantum): security through information and security
through complexity.



Definitions

Informationally Secure Computationally Secure

No matter how powerful a
computer an adversary has,
he will not be able to break
the cryptosystem, because
he doesn’t have access to
enough information.

The security of the crypto-
system relies on the difficulty
of solving some computa-
tionally hard problem



Definitions

Informationally Secure Computationally Secure

No matter how powerful a
computer an adversary has,
he will not be able to break
the cryptosystem, because
he doesn’t have access to
enough information.

The security of the crypto-
system relies on the difficulty
of solving some computa-
tionally hard problem



Definitions

Informationally Secure Computationally Secure

No matter how powerful a
computer an adversary has,
he will not be able to break
the cryptosystem, because
he doesn’t have access to
enough information.

The security of the crypto-
system relies on the difficulty
of solving some computa-
tionally hard problem



Quantum cryptography

The BB84 protocol for quantum key distribution can be proved
informationally secure, assuming the laws of quantum mechanics.

This solves a task which is impossible to perform with an
informationally secure protocol and classical computing.

This quantum money research started with us considering the
question of whether there were any cryptographic tasks that a
quantum computer might perform with computational security, but
which were impossible for a digital computer to perform.
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Task: Quantum Money

We would like one of the players in the protocol (we will call her
the mint) to be able to make a state | $i 〉, and a verification
protocol Pi , so that

a) | $i 〉 passes the test Pi ,

b) the test Pi does not destroy | $i 〉,
c) a possible counterfeiter holding both the state | $i 〉 and

knowing the protocol Pi cannot produce a state of two
quantum systems (possibly entangled) that both pass the
test Pi .
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One-of-a-Kind States

In fact, in our knot-invariant money protocol, in Kane’s protocol
based on modular forms, and in our lattice money protocol, we
believe that not even the mint can efficiently make another copy of
the state | $i 〉 that pases the test Pi .

Called public key quantum money by Aaronson.

Related to quantum lightning, defined by Mark Zhandry (lightning
never strikes twice in the same place.)
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How to Use Unforgeable States as Money

The mint makes quantum states, and gets pairs | $i 〉, Pi .

The mint publishes a list of valid pairs i , Pi somewhere secure (so
nobody can add an extra pair to the list).

It then hands out some | $i 〉, together with i , to a customer who
wants quantum money.

Then anybody with | $i 〉 who knows i (and has a quantum
computer) can check that it is a valid quantum money state; i.e.,
that i is on the list, and | $i 〉 passes the test Pi .
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Uses for Unforgeable States: Quantum ID Cards

You could put a unforgeable quantum state into an ID card.
These ID cards could be stolen, but they could not be forged.
Of course, for both money and quantum ID cards, you need to
have long-lived quantum states.



Uses for Unforgeable States: Quantum ID Cards

You could put a unforgeable quantum state into an ID card.

These ID cards could be stolen, but they could not be forged.

Of course, for both money and quantum ID cards, you need to
have long-lived quantum states.

Question: Could this property be of some use as a subroutine for
some other quantum cryptographic protocols? This use might not
require such long-lived quantum states.



Uses for Unforgeable States: Quantum ID Cards

You could put a unforgeable quantum state into an ID card.

These ID cards could be stolen, but they could not be forged.

Of course, for both money and quantum ID cards, you need to
have long-lived quantum states.

Question: Could this property be of some use as a subroutine for
some other quantum cryptographic protocols? This use might not
require such long-lived quantum states.



How does our quantum money protocol work?

Outline

We will

1. Sketch our first candidate for quantum lattice money,

2. Explain why it doesn’t work.

3. Sketch our next candidate for quantum lattice money.

4. Explain why it still doesn’t work.

5. Sketch our current candidate for quantum lattice money.

6. Sketch the proof that it works.
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Short vectors in a lattice

A lattice is the set of all integer combination of n vectors {vi} in n
dimensions.

L =

{
n∑

k=1

ikvk |i1, i2 . . . , in ∈ Z

}
.

Problem: Given a basis of long vectors for L, find a basis of short
vectors.

L3 algorithm: finds a basis ex-
ponentially longer (exponential
in n) than the shortest possible
basis.
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Bounded Distance Decoding

Suppose we have a vector x that is very close to a lattice point v .
Then we can find that lattice point in polynomial time.

What does very close mean?

It means exponentially closer than the shortest vector in the lattice.
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Gaussian Sampling

If we have a big enough ball around some point x , we can sample
lattice points v with probability proportional to

exp(
−(v − x)2

2σ2
)

What does ”big enough” mean?
It means σ should be exponentially larger than the shortest basis of
the lattice.
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Gaussian superposition

If σ is exponentially larger than the shortest basis, we can create
the superposition of lattice points in a Gaussian ball around x in
quantum polynomial time:

1

Q

∑
v∈L

exp

(
−(v − x)2

4σ2

)
| v〉

This is done with the same technique as Gaussian sampling, but
adapted to quantum algorithms.



Subclass of lattices

Consider lattices in n dimensions, on a Pn cube of integers (so
everything is done mod P), where there is one lattice point in
every hyper-column.

P

P

P

There are Pn−1 lattice vectors in the cube. Here, P isn’t
necessarily a prime (although you can assume it is for intuition).



Dual of these lattices

The dual lattice is the set of all vectors which are perpendicular to
all vectors in a lattice:

L⊥ = {x |x · v ∈ PZ ∀v ∈ L}.

P

P

P

The dual lattice that has one vector in each hyperplane. (So P
lattice vectors total.)
In these lattices, each lattice vector is a multiple of a generating
vector.



Hardness

P

P

P

If the short vector problem is hard in arbitrary lattices, it is still
hard in these lattices, even if P ≈ exp(poly(n)) (Eldar and Shor)



Quantum Fourier transform on Zn
P (Eldar and Shor)

We can define a quantum Fourier transform that takes vectors in
the lattice L to a superposition of vectors in L.
The equation for this transform is

| x〉 → 1

P(n−1)/2

∑
y∈L

exp
(
−2πi

x · y
P

)
| y〉



Properties of Quantum Fourier transform on Zn
P

The Quantum Fourier transform takes a Gaussian superposition of
lattice points of L around 0 to a Gaussian superposition of lattice
points of L around each of the points of the dual lattice L⊥.

If the original Gaussian superposition is large, the Gaussian
superpositions around each point of the dual lattice are small.



Properties of Quantum Fourier transform on Zn
P

The Quantum Fourier transform takes a Gaussian superposition of
lattice points of L around 0 to a Gaussian superposition of lattice
points of L around each of the points of the dual lattice L⊥.

If the original Gaussian superposition is large, the Gaussian
superpositions around each point of the dual lattice are small.



Properties of Quantum Fourier transform on Zn
P

The Quantum Fourier transform takes a Gaussian superposition of
lattice points of L around 0 to a Gaussian superposition of lattice
points of L around each of the points of the dual lattice L⊥.

If the original Gaussian superposition is large, the Gaussian
superpositions around each point of the dual lattice are small.



Properties of Quantum Fourier transform on Zn
P

The Quantum Fourier transform takes a Gaussian superposition of
lattice points of L around 0 to a Gaussian superposition of lattice
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Properties of Quantum Fourier transform on Zn
P

If you start with a Gaussian ball centered at a dual lattice vector
v 6= 0, you still get Gaussian balls around each dual lattice vector.

But now, the Gaussian ball around dual lattice vector w has phase

exp
(
−2πi

v · w
P

)
.



Simple Algorithm (does not work)

The quantum money state is a Gaussian superposition of lattice
points in a small ball around a dual latitce vector w .

To create the quantum money state:

Create large Gaussian ball at 0. Take the Fourier transform.
Measure nearest dual lattice vector to get small Gaussian ball
around one dual vector w . This is your quantum state.
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Simple Algorithm (does not work), continued

To verify the quantum money state:

Check that it is a superposition of all
points near dual lattice vector w .

Take Fourier transform to get big
Gaussian balls around all dual lattice
points.

Shift lattice balls and measure overlap
using SWAP test. (You can predict
the exact overlap.)



Possible Objection

Because we don’t pass the verification test with probability 1− ε,
verification destroys the quantum money state.

Solution: Use statistics to enhance the probability of the
verification test so it is close to 1.

This means that the money will be many copies of small Gaussian
balls (each centered at a different lattice point).



Why shouldn’t you be able to copy?

Suppose you could copy. You could sample from each of the
original and the copy, and get two lattice vectors which are both
close to w . Their difference is close to 0, thus a short vector.



Why doesn’t this protocol work?

We don’t know how to distinguish between having one lattice
vector near w and having a Gaussian superposition of lattice
vectors near w .

So somebody who wanted to counterfeit this money could simply
measure one lattice vector from the Gaussian ball and make
arbitrarily many copies of that.
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How to fix it?

Use a superposition of two copies of the Gaussian superposition
around dual lattice vectors w1 and w2. Let ` be the vector between
them: ` = w1 − w2.

When we take the Fourier
transform, we get interference;
the large Gaussian balls com-
ing from the small Gaussian
ball around w1 interfere with
those coming from those around
w2, because they have different
phases.



What happens after the Fourier transform?

Why does this work?
When we take the Fourier trans-
form, the big balls coming from
each of the small balls have differ-
ent phases on them. So some have
larger amplitudes and some have
smaller amplitudes. This makes
the probability that we see a point
with x in the ith coordinate propor-
tional to cos2(2πx/P). We can ob-
serve this interference because it’s
not washed out by the width of the
Gaussian balls.



How do we choose `?

We want a vector ` in the dual lattice such that

` · v = v(1) ∀v ∈ L⊥

where v(1) is the first coordinate of v .

Easy to find: choose any vector w ∈ L⊥ and let

` = w(1)(w · w)−1w .

Then
` · w = w(1)(w · w)−1(w · w) = w(1).
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Why doesn’t this algorithm work?

It doesn’t work for the same reason that the first algorithm doesn’t
work. We can find a vector `′ in L very close to `.

Easy to check that `′ = `− e1 is orthogonal to all vectors in L⊥.

Now, a counterfeiter can just choose two vectors u1 and u2 in L
which are close to w1 and w2, and use

1√
2

(
| u1〉+ | u2〉

)
as our counterfeit money.

Since we know u1 and u2, we can make as many copies as we like.
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How do we fix this?

We change `.

Let us choose ` so that

` · v = αv(1) ∀v ∈ L⊥.

When we find `′, we have that the vectors ` and `′ differ by an
amount comparable to the radius of a small Gaussian ball.

So now, the average of a sample of points cannot be at the center
of the Gaussian balls, w1 or w2, but will be significantly off-center.

We can test for this.
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What happens after the Fourier transform?

Now, there are α periods of the cosine function in the interference
pattern.

We choose ` so that the period of
the cosine function is comparable
to the width of the Gaussian balls.
Now, the interference isn’t washed
out completely (it would be if the
period was much small than the
width of the Gaussian balls), so the
verification still works.

There is a balance between the period of the cosine function and
how close `′ is to a dual lattice vector, but we can choose α so
that our quantum money protocol works.
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Challenges

I Improve this quantum money scheme (we haven’t worried
about the time and space needed, beyond making sure they
are polynomial).

I Come up with other quantum money schemes.

I Are there any other cryptographic protocols which are
impossible classically, but which can be done on a quantum
computer?
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