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Bac'(jrouncl and Dedinitions



Muljr i-Prove,r Injf emc* Ve Proowfs

e MIP: What can two provers prove to a verifier? . ’
m Completeness and Soundness
= Known: MIP = NEXP [Babai, Fortnow and Lund 90] v
e The power of an extra prover %) (B
e Example: game G | | |
Nine variables and six constraints AR <
= Randomly sample a constraintand avariablein . |
the constraint
= Alice's view: the variable, xg Val(GHH) — % <1
= Bob's view: the constraint, Question distribution

33‘3@336@%9:1



Quanjrum Muljri-Frover Injre,racjrive, Promfs

e [ntanglement among provers

MIP*: Entanglement vs. shared randomness |
[Cleve, Hayer, Toner and Watrous 04] RN

. multi-prover interactive proofs to Bell
Inequalities!

<AoBO -+ AOBl -+ AlBO — A1B1> S 2
e Soundness problem of entanglement

e The development and applications of the quantum
analogues of many powerful ideas in interactive proofs

m | ow-degree tests, , PCPs



Norloeal Games

e Definition of nonlocal games

= Finite question sets A and ) and answer sets

A and B Rty
= Question distribution w over X X Y
= DeciderD: X x Y x Ax B — {0,1}
e Family of games defined by verifier V = (S, D) (LA(z), LB(z))

= Turing machine S takes input (7, . . . )
= Turing machine D takes input (n, x, y, a, b)
= The n-th game V,, defined by S,, and D,,



Elogd Sl and Ve

Entangled strategy . = (|), A, B) @_:\Uf‘.f".ﬂ"
= Share quantum state [¢) inH 4 @ Hp

»
W) n N
ANV
“4“-’ VVvuyvr
»
*
5
*
5
*
N
5
N

= Measure A = { A%} and B = {B; } for

questions x, y respectively

Entangled value

val* =sup E Z (Y| A% ® By )

7 (zgy)~p a,b accepted by D
Entangled value of the Square game val* (Gg) = 1

MIP* corresponds to the approximation of val®



Commujr inj OFe,rajr or Sjrrajr eﬂ'j an& Value,

 Commuting operator strategy % = (|¢)), A, B) ’_:x‘_,ﬁ.‘,f‘.‘,faﬁ.,fau,n.u,ﬁ.,,.
= Single Hilbert space H,, state |¢) € H ..,::-..\ ,-"”'i"'

. AT commutes with B:g foralla, b, x,y

0
-
&£
0
|‘0

e Commuting operator value

val®® =sup K Z <¢\A£B§i\¢>

7 (@y)~p a,b accepted by D

e Tsirelson's problem: Is val™ equal to val®® for all games?

e Two values coincide for finite-dimensional Hilbert spaces



Two Aljorijr l\ms

Algorithm 1: Exhaustively search for better tensor-product strategies of
increasing Hilbert space dimensions and approximation precision

A sequence of values approaching val®™ from below

Algorithm 2: The non-commutative sum-of-squares SDP hierarchy
[Navascués, Pironio, and Acin '08], [ Doherty, Liang, Toner, and Wehner ‘08]

A sequence of values approaching val®® from above

Algorithm1 — wval® < val®® < Algorithm 2

Algorithm 1 establishes that MIP* € RE

If Tsirelson's problem has a positive answer, we have an algorithm to
approximate val® (MIP*isin R = RE N coRE)



Main Resu”

e MIP*=RE: no algorithm that can approximate val*
because it is as hard as the Halting problem

e A complete characterization of MIP* REACY

m "Spooky action at a distance — Einstein"
m Spooky complexity at a distance
e Optimal violations to Bell inequalities are not computable

A computability-theoretic Bell inequality




Conse,que,nce,s In Pl\Jsics ancl Majr l\emajr Ics

e Anegative answer to Tsirelson's problem

Infinite quantum systems cannot be approximated
by finite ones

B co

B Tensor
B Classical

e Arefutation of Connes' embedding conjecture, a
44-year-old problem in operator algebra, via its
known equivalence to Tsirelson's problem

[Connes '76]
[Fritz '12], [Junge, Navascués, and Palazuelos et al. '11], [Ozawa '13]




Re,vie,w o{ Ke,J Ue,as ancl ].e,cl\nique,s



Disjrance, Mwsure,s
e State-dependent distance: MF ~5 NF

Two collections of POVMs { M7 } and { N } acting on the m
same space are d-close on state |t)) under distribution s if @ A ,

E > NI(Mz = NO) < 6.

v}
e Consistency: AT @ Ig ~5 Iy @ BY
Two collections of POVMs { A7 } and { B3 } are §-consistent
on |1)) under distribution g if @’L',’
E ) (|42 ® By |y) < Y
T~ T v 1

e Cauchy-Schwarz



Enjranﬂleme,njr Resisjranjr Te,clmique,s

The soundness problem of entanglement

Confusion check: query Alice for the assignments to
variables {x, ¥}, query Bob for x to ensure

R'RY ~5 R'R"

A third player (using monogamy of entanglement)

Entangled games are NP-hard
[Kempe, Kobayashi, Matsumoto, Toner and Vidick 08]
[Ito, Kobayashi and Matsumoto 09] [J. 13]

Juantum soundness of the linearity test, multilinearity test, and low-
degree test

MIP = NEXP < M|P* [Ito and Vidick 12]



lelCllJf\j an& Se,ljr‘-er,st inj

 The players have to measure the honest measurement .

] . 1 X2 X3
to achieve a near-optimal value
[Summers and Werner 85], [Mayers and Yao ‘98] y Xs e
[Reichardt, Unger and Vazirani '12]
e Magic Square game: all about commutativity and oy —— iy ——|bey
anticommutativity [Wu, Bancal, McKague and Scarani 6]
e Where is the qubit? Find an anticommuting pair! ®_:x‘.,::‘,,ﬁ.“,q',"‘,,.a,,n.u,ﬁ.,,.
Let Ry, R be two reflections, if VT

RoR1 =5 —R1 Ry, thenthereisalocal
isomorphism ¢ such that up to the isomorphism

Ry~50°Q®I, Ri~50?2xI.



(70 B&JOHJ NP Harclne,ss

Classical verification of OMA
[Fitzsimons and Vidick '15] [J. '15]

Encode each qubit in the QMA witness state with a
quantum error detecting code

Use rigidity to ensure that the provers measure
Pauli X//'s and use measurement
to check the energy of the encoded state

The initial idea emerged from discussions at a
Simons Institute workshop in 2014

o
O
o
o
o
o
o

P, P, P, P,
Q000
OXOXOX©.
Q000
= 0000
Q000
Q000
Q000



Pauli Basis (mme,

e A wrapper around the quantum low-degree test
[Natarajan and Vidick 18], [ Natarajan and Wright '19]

R ~Pauli,iW
Rigidity Theorem. For any strategy that uses measurement A

for the question (Pauli, W) and has value at least 1 — ¢, thereis a
local isomorphism ¢ = ¢4 ® ¢p such that

AW @ Ip ~5( o ® I,

: ~Pauli,iW
where A;2"W = ¢, A ¢ .

o An efficient self-test for Pauli X/Z measurements on EPRs
For self-testing of 2 EPRs, the questions have length polylog(n)
o (Pauli, W) primitive



Que,sjr lon Disjfri&)ujf lon mf Jr l\e, Pauli Basis (aame,

e Random seed z = (uX,uZ,vl,vz,'rX,rZ) - (IF'm)4 x 2

Type ux Uz V1 V2 TX Tz
Point, X  wux 0 0 0 0 O
Plane, X Lfllm (ux) O vi v 0 O
Point, Z 0 Uz 0 0 0 0
Plane, Z 0 qu,)llm (uz) 0 wv; wg O
Pair ux Uz 0 0 rx rz
Pair, W ux Uz 0 0 rx 7z
Constraint, ux uz 0 0 rx 7y
Variable, Ux Uz 0 0 7rx 7z
Pauli, W 0 0 0 0 0 0

Plane, X Pauli, X

Point, X

G Pair, X
C, Pair

C, @ Pair, Z
c, & Point, Z

o All questions have the form (type, content) for type from a discrete set

of labels and content from

F4m+2



Com[)re,ssion

Why compression?
Go beyond OMA hardness

= More sophisticated relations from rigidity: beyond
[Slofstra '17]

anticommutativity

Conjugacy relation xyx = z

m (JIP=0MAM is not that far from OMA  /Marriott and Watrou 05]

Propagation checking (circuit-to-Hamiltonian
construction) for MIP*

Compression of MIP*
[J. '16] [Fitzsimons, J., Vidick and Yuen 18]

|
|
|
|
|
|
|
|
|
|
|
|
|
0

|
|
1
|
|
|
1
|
|
|
1
|
|
T

T+1

27+1



AAA
\Jf ‘\,‘ Y
\ ’ 4 ‘ /

e A comparison between quantum and classical

i NAAR i '\ |
v\ / I§ . [ V4
__J I‘JI 1 ";' ‘\‘,l ll',' I!." i‘, l |\l, \y ’ 1 "A"l l|'
” “
. ax/ )
* *
* *
* *
* *

Pl PZ P3 P4
wp  Classical yp+  Entangled ®@ 0000
Games Games @ 0000
Msgsize poly log poly  log ,® 0000
Hardness NEXP NP MIP*  MIP* t0mn o660
~1 @ 0000

poly ~ or 1
Gap const const poly 0 0000
@ 0000

e Gap amplification (or social distancing for the
completeness and soundness)?

e Throw in some PCPs?



Injrrosr)e,cjr lon

Let the players sample from the guestion distribution themselves!
[Natarajan and Wright '19]

Utilize the Heisenberg Uncertainty Principle to R
design what to reveal and what to

Let L* and LB be functions such that (L (2), LB (z)) is the
desired question distribution p for uniformly random 2z

The Intro primitive

The player receiving (Intro, v) replies (v, @) where forv € {A, B}
1. the introspectively sampled question g is supposedly L (z) and,

2. a is the answer in the original game of player v for question y.



Fujr Jr inj Eve,vzjjr l\inﬂ Tojejr l\e,r



Four SJrer mf C/omFre,ssion
1. Introspection Q ,»

Question reduction

* V P ‘H 'l":“.,’l,"u’},'
2. Oracularisation A ’/’
: |: \ i ,,q,l“,”: Nv |
Preprocessing for PCP @ A ’ '

3. PCP

Answer reduction

/ 0

\

4. Parallel repetition

Gap recovery



(JaF FY&SQI\IIYH COMFY&SSIOH 0{: Normal {‘OTN (:iame,s

What is missing from Compress™ "’ ?

i AAAD — AAA ﬁ
. l",' l‘v” I“l" l‘s” l‘\" “v" =\" I" "' ‘ “" V’ II'
., ..
¢ o
* S
A N AR
““
% 4 v

What normal form?

Two problems are important (L*(2), LB (2))

1. What kind of distributions/functions can be
introspectively sampled

2. What is the distribution of the compressed game
Match the two?



Conclijr iona"\j Line,ar \juncjf lons

e Choose a register subspace V7 of F"
o Applya Ilnearfunction Lq : Vi — V7 and get '

=L (") e, -ii
. Condltloned on Y1, choose another subspace
V3, 4, that has trivial intersection with V7 o

e Apply linear function Ly _,, (22 4) to get

Y2 € Vo y,
 Repeat the above £ times (levels) to get Y1, Y2, - - . , Yy
e Define the output of the functiontobey = y1 +yo + - -+ + yy

e Sucha function L : z —> yis call conditionally linear



\/\“\J C\. \?uncjr jons{
e Linear functions R

Revealing and linear information is easy

e [inear functions aren't enough

Type ux uz vy V2 Tx Tz
Plane, X Lﬁll,vz (ux) O vi v 0 O
Plane, Z 0 L},Dllm (uz) 0 v wy O

e CL functions work as they can model all question distributions we use
and have nice closure properties

= Most importantly, the question distribution of Pauli Basis game is
CL for fixed types



Injfrost)ecjrion {or C\. Disjrri‘)ujr lons (Z-le,ve,h

Ry H; R, H, aux answerformat

Intro,A 7 | Z | yes (y,a)
Sample,A Z Z Z 7 yes (2,0) I—‘
Read,A Z X Z X vyes (y,9",a) i,
Hide, Z X | X n (yy-,=z

Hide; X X X no (yyt,z)

Pauli, X X X X X no x

Pauli, Z Z Z Z Z no =z

1. Use Sample and Read types to perform data hiding for Intro
2. Cross check between Sample and Pauli, Z to ensure honest Z measurements

3. Cross check between Read, Hide;, and Pauli, X to ensure honest X measurements



Injrrost)e,cjr jon {or C\. Disjrri\)ujr lons (Z-le,ve,h

Ry H; R, H, aux answerformat

Intro, A 4 I /A | yes (y,a)
LA(2) =y

Sample,A Zz Z 7 7 yes (20)

Read,A Z X Z X vyes (y,y",a)

Hide, Z X 1 X no  (yy-,2)

Hide, X X X no (y,y-,z)

Pauli, X X X X X no x

Pauli, Z Z Z Z Z no =z

1. Use Sample and Read types to perform data hiding for Intro
2. Cross check between Sample and Pauli, Z to ensure honest Z measurements

3. Cross check between Read, Hide;, and Pauli, X to ensure honest X measurements



Injrrost)e,cjr jon {or C\. Disjrri\)ujr lons (Z-le,ve,h

Ry H; R, H, aux answerformat

Intro,A 7 | Z | yes (y,a)
Sample,A Z 72 7 7 yes (z,a)
Read,A Z X Z X vyes (y,9",a)
Hide, Z X | X n (yy-,=z
Hide; X X X no (yyt,z)
Pauli, X X X X X no x
Pauli, Z Z Z Z Z no =z

1. Use Sample and Read types to perform data hiding for Intro
2. Cross check between Sample and Pauli, Z to ensure honest Z measurements

3. Cross check between Read, Hide;, and Pauli, X to ensure honest X measurements



Injrrost)e,cjr jon {or C\. Disjrri\)ujr lons (Z-le,ve,h

Ry H; Ry H, aux answerformat

Intro, A Z Z yes (y,a)
Sample,A Z Z Z 7 yes (2,0)
Read, A Z X 7 X yes (y,yT,a)
Hide, Z X | X n (yy-,=z
Hide; X X X no (yyt,T)
Pauli, X X X X X no x
Pauli, Z Z Z Z Z no =z

1. Use Sample and Read types to perform data hiding for Intro
2. Cross check between Sample and Pauli, Z to ensure honest Z measurements

3. Cross check between Read, Hide;, and Pauli, X to ensure honest X measurements



Injrrost)e,cjr jon {or C\. Disjnri\mjr lons (Z-le,ve,h

Ry H; R, H, aux answerformat

Intro,A 7 | Z | yes (y,a)
Sample,A Z Z Z 7 yes (2,0)
Read,A 7 Z yes  (y,yt,a)
Hides Z | no (y,y", )
Hide; X X no  (y,y-,x)

X
Pauli, X X X X X no x
Pauli, Z Z Z Z z

/ no

1. Use Sample and Read types to perform data hiding for Intro
2. Cross check between Sample and Pauli, Z to ensure honest Z measurements

3. Cross check between Read, Hide;, and Pauli, X to ensure honest X measurements



Injrrost)e,cjr jon {or C\. Disjnri\mjr lons (Z-le,ve,h

Ry H; Ry H, aux answerformat

Intro,A 7 | Z | yes (y,a)
Sample,A Z Z Z 7 yes (2,0)
Read,A z X zZ X yes (y,y",a)
Hides Z | no  (y,y",z)
Hide; I no (y,y", )

Pauli, X X X X X no x
Pauli, Z Z Z Z Z no =z

1. Use Sample and Read types to perform data hiding for Intro
2. Cross check between Sample and Pauli, Z to ensure honest Z measurements

3. Cross check between Read, Hide;, and Pauli, X to ensure honest X measurements



Injrrost)e,cjr jon {or C\. Disjnri\mjr lons (Z-le,ve,h

Ry H; R, H, aux answerformat

Intro,A 7 | Z | yes (y,a)
Sample,A Z Z Z 7 yes (2,0)
Read,A Z X Z X vyes (y,9",a)
Hide, Z X | X n (yy-,=z
Hide; I no (y,y", )
Pauli, X no
Pauli, Z Z Z Z Z no =z

1. Use Sample and Read types to perform data hiding for Intro
2. Cross check between Sample and Pauli, Z to ensure honest Z measurements

3. Cross check between Read, Hide;, and Pauli, X to ensure honest X measurements



Injrrost)e,cjrion (mme, Re,vie,w
e The standard way a normal-form game }/,, is played

A "\: :"'.‘ J” nl' "’1‘\ 'f‘u'l‘ll ""l: I~

1. The verifier samples z € [F", calls S, to compute @ VALY .

o _ A . B .Q
questionsz = L™ (2) andy = L°(2), v g

. . . .’ ..
2. Receives answers a, b and decides using D,, .

e Theintrospective way a normal-form game V/,, is played

ifi ET ARAAAAAR
1. The verifier runs Pauli Basis game over EPRs of @ AARAAE ’
0 g n

dimension |F|", or, 8 Ry

2. Runs the remaining parts of the Introspection game to
ensure provers respect the Intro primitives, or,

3. Sends (Intro, A) to Alice and (Intro, B) to Bob,
receives (z, a), (y, b), and decides using D,,.




Que,sjrion Disjrri\mjr lon of { l\e, InjrrosFe,chion (Jame,

e Random seed z = (uX,uZ,vl,vz,rX,rZ) - (IF"'”)4 x [F?

Plane, X Pauli, X Hy, A H,, A H,, A

Type Ux Uz Vi1 V2 TXx Tz R

Pauli Basis Types O--—--O

Intro, v 0 0 0 0 0 0 G, Q Pair, X Hy, B Hy B H,, B
Y
C, ©
Sample, v 0 0 0 0 0 © ) N
Read, v 0 0 0 0 O 0 5 “‘
Hide;, v 0 0 0 0 0 O c.o

e Foreach type, the functions are CL

e (CL distributions can simulate
constant-size

e Constant(eight)levels of conditioning suffice for our purpose



Que,sjfion Disjrri\mjr lon 01f Jr l\e, InjrrosFe,chion (:lame,

e Random seed z = (uX,uZ,vl,vz,rX,rZ) - (IF‘m)4 x [F?

Uz vy V2
ux
Type ux uz v vy rx Tz | P 0 00
. . Po'mt,X e v1 V2
Pauli Basis Types - - - - - - S iano.X TR wa)t, 0 >
Intro, v 0 0 0 0 0 O Point, Z 0 7;’_;1 gy 0w
Sample, v 0 0 0 0 0 O Plane, %o VP ol [0
uz
Read, v 0 0 0 0 0 O Pair ux Ay o O
. U
Hide; , v 0 0 0 0 0 O Pair, W 2 g 0 0
Constraintc UX " 0o O
e Foreachtype, the functionsare CL [ variable, YX B

0
Pauli, W 0

e (CL distributions can simulate
constant-size

e Constant(eight)levels of conditioning suffice for our purpose



Que,sjrion Disjrri\mjr lon of { l\e, InjrrosFe,chion (Jame,

e Random seed z = (uX,uZ,vl,vz,rX,rZ) - (IF"'”)4 x [F?

Plane, X Pauli, X Hy, A H,, A H,, A

Type Ux Uz Vi1 V2 TXx Tz R

Pauli Basis Types O--—--O

Intro, v 0 0 0 0 0 0 G, Q Pair, X Hy, B Hy B H,, B
Y
C, ©
Sample, v 0 0 0 0 0 © ) N
Read, v 0 0 0 0 O 0 5 “‘
Hide;, v 0 0 0 0 0 O c.o

e Foreach type, the functions are CL

e (CL distributions can simulate
constant-size

e Constant(eight)levels of conditioning suffice for our purpose



OraCuIariSanion an& Commujrinﬂ SJfYaneﬂj

e Forthe PCP techniques to work in answer reduction, one of the provers
must compute a PCP proof that dependson x, vy, a, b

e Thisis achieved by the oracularization and
requires that, in the completeness strategies,
Alice and Bob always measure commuting
observables (as operators on the same space)

e Special care required in the design of the game

Multiple Hide types in the Introspection game



OraCularisanion an& Commujrinﬂ SJfYaneﬂj

e For the PCP techniques to work in answer rediiction—e=a of the provers

swer format
must com

nLito—-o Rl 1_—_1—1 R2 H2 aqux an
MENed By the oratulaf | yes ((y’ a)>
ntro, zZ,

S ) “
‘ 7 7 ye T
a)
yes (@Y Y
X Z —L v v
no y

Do

e Thisisac
requires t
Alice and
observabl

[ Read, A L




PCPS and Para“e,l Re,[)ejfijrions

The use of PCPs for answer Q ,
reduction is similar to Natarajan- n -
Wright A WA

@"®

N S

The distribution remains CL

\ 1'\1"\/" 'I'\"“ 'IU
Anchored parallel repetition for @ ’
better entanglement bound
[Bavarian, Vidick, and Yuen '17]

Gap-preserving compression of
normal-form games i



(LomFre,ssion “\e,ore,m

Compression Theorem. There is an algorithm Compress that on input V
outputs V¥ = (Sﬁ,Dﬁ) such that for allm > nyg

1. (Completeness). If val* (Vyn ) = 1 thenval* (V)
2.(Soundness). If val* (Van ) < + thenval*(V}) <
3. (Entanglement). E(V}) > max{&(Va), 2" }.

1
5 -



leene's Recursion Th
eene 5 \ecursion | heorem
e For all Turing machine M, consider verifier Y221

Turing machine DH3!

1. Simulate M for n steps. If M halts, accept.
2. Compute (S, D) = Compress(S*, DHalt). S* is universal
3. Accept iff D (n, , y, a, b) accepts.

DHalt

e Kleene's recursion theorem: above is well-defined

e For all Turing machine M
1. If M halts, val* (V) = 1

If the Turing machine M haltsin T stepsandn < T' < 2", then
val* (Vialt) = val*(V}) = val* (V5!) = 1.

2. 1f M does not halt, val* (V%alt) < %



Exrlicijr S&Farajrion Be,wae,e,n val® anA val®

e Consider verifier V> = (Su Dsep)

Turing machine D>¢P:

1. Compute a description of game ngp.

2. Run NPA on VS:P for n steps. If NPA halts, then
accept.

3. Compute (S*, D*) = Compress(S*, D5P).
4. Accept iff D (n, , y, a, b) accepts.

e Claim: val*(V,P) < + and val®®(V,P) = 1

o If val®®(V,P) < 1, thenval*(V;P) = 1,a



Conclusions

Recursive gap-preserving compression of normal-form two-prover one-
round protocols

Compression Lemma + Kleene's recursion theorem proves RE € MIP*
MIP* = RE follows as MIP* € RE

to both Tsirelson's problem and CEP
Open problems:

1. Simpler proofs?

2. Does MIPC0 = coRE?

3. Explicit counter-examples to CEP



ﬂ\\ljsics

e 1935 EPR paradox,
entanglement

e 1964 Bell inequality

e 1990's Tsirelson's problem

ComFqu er Scie,nce,

e 1936 Turing's Halting
problem

e 1970's Complexity theory
e 1990's PCP theorem

~ 1 -
MIP* = RE

MaH\emajfics

e 1930 von Neumann
algebra

e 1976 Connes
e 1993 Kirchberg



ok

Magic Square

Rigidity

Compression

Introspection

pCP CL Functions

Kleene's Recursion Theorem





