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Background and DefinitionsBackground and Definitions



Question distribution

Multi-prover Interactive ProofsMulti-prover Interactive Proofs
MIP: What can two provers prove to a veri�er?

Completeness and Soundness
Known: MIP = NEXP [Babai, Fortnow and Lund '90]

The power of an extra prover
Example: Magic Square game 
Nine variables and six constraints

Randomly sample a constraint and a variable in
the constraint
Alice's view: the variable, 
Bob's view: the constraint, 

G⊞

val( ) = < 1G⊞
17
18x6

⊕ ⊕ = 1x3 x6 x9



Quantum Multi-prover Interactive ProofsQuantum Multi-prover Interactive Proofs
Entanglement among provers
MIP*: Entanglement vs. shared randomness

[Cleve, Høyer, Toner and Watrous '04]

Connects multi-prover interactive proofs to Bell
inequalities!

Soundness problem of entanglement
The development and applications of the quantum
analogues of many powerful ideas in interactive proofs

Low-degree tests, parallel repetitions, PCPs

⟨ + + − ⟩ ≤ 2A0B0 A0B1 A1B0 A1B1



Nonlocal GamesNonlocal Games
De�nition of nonlocal games

Finite question sets  and  and answer sets 
 and 

Question distribution  over 
Decider 

Family of games de�ned by veri�er 

Turing machine  takes input 

Turing machine  takes input 

The -th game  de�ned by  and 

X Y

A B

μ X × Y

D : X × Y × A × B → {0, 1}

( (z), (z))LA LBV = (S, D)

S (n, . . . )

D (n, x, y, a, b)

n Vn Sn Dn



Entangled Strategy and ValueEntangled Strategy and Value
Entangled strategy 

Share quantum state  in 

Measure  and  for
questions  respectively

Entangled value

Entangled value of the Magic Square game 

MIP* corresponds to the approximation of 

S = (|ψ⟩, A, B)

|ψ⟩ ⊗HA HB

A = { }Ax
a B = { }B

y
b

x, y

va = ⟨ψ| ⊗ |ψ⟩l∗ sup
S

E
(x,y)∼μ

∑
a,b accepted by D

Ax
a B

y
b

va ( ) = 1l∗ G⊞

val∗



Commuting Operator Strategy and ValueCommuting Operator Strategy and Value
Commuting operator strategy 

Single Hilbert space , state 

 commutes with  for all 

Commuting operator value

Tsirelson's problem: Is  equal to  for all games?
Two values coincide for �nite-dimensional Hilbert spaces

S = (|ψ⟩, A, B)

H |ψ⟩ ∈ H

Ax
a B

y
b a, b, x, y

va = ⟨ψ| |ψ⟩lco sup
S

E
(x,y)∼μ

∑
a,b accepted by D

Ax
a B

y
b

val∗ valco



Two AlgorithmsTwo Algorithms
Algorithm 1: Exhaustively search for better tensor-product strategies of
increasing Hilbert space dimensions and approximation precision
A sequence of values approaching  from below
Algorithm 2: The non-commutative sum-of-squares SDP hierarchy

[Navascués, Pironio, and Acín '08], [Doherty, Liang, Toner, and Wehner '08]

A sequence of values approaching  from above

Algorithm 1  Algorithm 2

Algorithm 1 establishes that MIP* ⊆ RE
If Tsirelson's problem has a positive answer, we have an algorithm to
approximate  (MIP* is in R = RE ∩ coRE)

val∗

valco

→ va ≤ va ←l∗ lco

val∗



Main ResultMain Result
MIP* = RE: no algorithm that can approximate 
because it is as hard as the Halting problem
A complete characterization of MIP*

"Spooky action at a distance — Einstein"
Spooky complexity at a distance

Optimal violations to Bell inequalities are not computable
A computability-theoretic Bell inequality

val
∗



Consequences in Physics and MathematicsConsequences in Physics and Mathematics
A negative answer to Tsirelson's problem
In�nite quantum systems cannot be approximated
by �nite ones
A refutation of Connes' embedding conjecture, a
44-year-old problem in operator algebra, via its
known equivalence to Tsirelson's problem

[Connes '76]

[Fritz '12], [Junge, Navascués, and Palazuelos et al. '11], [Ozawa '13]



Review of Key Ideas and TechniquesReview of Key Ideas and Techniques



Distance MeasuresDistance Measures
State-dependent distance:

Two collections of POVMs  and  acting on the
same space are -close on state  under distribution  if

Consistency:

Two collections of POVMs  and  are -consistent
on  under distribution  if

Cauchy-Schwarz

M x
a ≈δ N x

a

{ }M x
a { }N x

a

δ |ψ⟩ μ

≤ δ.E
x∼μ
∑

a

∥( − )|ψ⟩∥M x
a N x

a
2

⊗ ⊗Ax
a IB ≃δ IA Bx

a

{ }Ax
a { }Bx

a δ

|ψ⟩ μ

⟨ψ| ⊗ |ψ⟩ ≤ δ.E
x∼μ
∑
a≠b

Ax
a Bx

b



Entanglement Resistant TechniquesEntanglement Resistant Techniques
The soundness problem of entanglement
Confusion check: query Alice for the assignments to
variables , query Bob for  to ensure

A third player (using monogamy of entanglement)
Entangled games are NP-hard

[Kempe, Kobayashi, Matsumoto, Toner and Vidick '08]

[Ito, Kobayashi and Matsumoto '09], [J. '13]

Quantum soundness of the linearity test, multilinearity test, and low-
degree test
MIP = NEXP ⊆ MIP* [Ito and Vidick '12]

{x, y} x

RxRy ≈δ RyRx



Rigidity and Self-testingRigidity and Self-testing
The players have to measure the honest measurement
to achieve a near-optimal value

[Summers and Werner '85], [Mayers and Yao '98], 
[Reichardt, Unger and Vazirani '12]

Magic Square game: all about commutativity and
anticommutativity [Wu, Bancal, McKague and Scarani '16]

Where is the qubit? Find an anticommuting pair!

Let ,  be two re�ections, if 
, then there is a local

isomorphism  such that up to the isomorphism

R0 R1

−R0R1 ≈δ R1R0

ϕ

⊗ I, ⊗ I.R0 ≈δ σX R1 ≈δ σZ



Go Beyond NP HardnessGo Beyond NP Hardness
Classical veri�cation of QMA

[Fitzsimons and Vidick '15], [J. '15]

Encode each qubit in the QMA witness state with a
quantum error detecting code
Use rigidity to ensure that the provers measure
Pauli X/Z's and use logical operator measurement
to check the energy of the encoded state
The initial idea emerged from discussions at a
Simons Institute workshop in 2014



Pauli Basis GamePauli Basis Game
A wrapper around the quantum low-degree test

[Natarajan and Vidick '18], [Natarajan and Wright '19]

Rigidity Theorem. For any strategy that uses measurement 
for the question  and has value at least , there is a
local isomorphism  such that

where .

An e�cient self-test for Pauli X/Z measurements on EPRs
For self-testing of  EPRs, the questions have length 

 primitive

Â
Pauli,W

(Pauli, W) 1 − ε

ϕ = ⊗ϕA ϕB

⊗ ⊗ ,A
Pauli,W
z IB ≈δ(ε) σW

z IB

=A
Pauli,W
z ϕAÂ

Pauli,W
ϕ∗

A

n polylog(n)

(Pauli, W)



Question Distribution of the Pauli Basis GameQuestion Distribution of the Pauli Basis Game
Random seed 

Type

0 0 0 0 0

0 0 0

0 0 0 0 0

0 0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0

All questions have the form (type, content) for type from a discrete set
of labels and content from 

z = ( , , , , , ) ∈ ( ×uX uZ v1 v2 rX rZ F
m)4

F
2

uX uZ v1 v2 rX rZ

Point, X uX

Plane, X ( )L
Pl

,v1 v2 uX v1 v2

Point, Z uZ

Plane, Z ( )L
Pl

,v1 v2 uZ v1 v2

Pair uX uZ rX rZ

Pair, W uX uZ rX rZ

Constraintc uX uZ rX rZ

Variablev uX uZ rX rZ

Pauli, W

F
4m+2



CompressionCompression
Why compression?
Go beyond QMA hardness

More sophisticated relations from rigidity: beyond
anticommutativity [Slofstra '17]

Conjugacy relation  = 

QIP = QMAM is not that far from QMA [Marriott and Watrou '05]

Propagation checking (circuit-to-Hamiltonian
construction) for MIP*
Compression of MIP*

[J. '16], [Fitzsimons, J., Vidick and Yuen '18]

xyx z



A comparison between quantum and classical

  MIP Classical
Games

MIP* Entangled
Games

Msg size poly log poly log

Hardness NEXP NP MIP* MIP*

Gap const poly  or
const

const poly

Gap ampli�cation (or social distancing for the
completeness and soundness)?
Throw in some PCPs?

−1
−1



IntrospectionIntrospection
Let the players sample from the question distribution themselves!

[Natarajan and Wright '19]

Utilize the Heisenberg Uncertainty Principle to
design what to reveal and what to hide

Let  and  be functions such that  is the
desired question distribution  for uniformly random 

The  primitive

The player receiving  replies  where for 

1. the introspectively sampled question  is supposedly  and,

2.  is the answer in the original game of player  for question .

LA LB ( (z), (z))LA LB

μ z

Intro

(Intro, v) (y, a) v ∈ {A, B}

y (z)Lv

a v y



Putting Everything TogetherPutting Everything Together



Four Steps of CompressionFour Steps of Compression
1. Introspection

Question reduction
2. Oracularisation

Preprocessing for PCP
3. PCP

Answer reduction
4. Parallel repetition

Gap recovery



RecursiveRecursive  Gap-preservingGap-preserving Compression of  Compression of Normal-formNormal-form Games Games
What is missing from ?

What normal form?
Two problems are important

1. What kind of distributions/functions can be
introspectively sampled

2. What is the distribution of the compressed game
Match the two?

CompressNW

( (z), (z))L
A

L
B



Conditionally Linear FunctionsConditionally Linear Functions
Choose a register subspace  of 
Apply a linear function  and get

Conditioned on , choose another subspace 
 that has trivial intersection with 

Apply linear function  to get 

Repeat the above  times (levels) to get 

De�ne the output of the function to be 

Such a function  is call conditionally linear

V1 F
n

: →L1 V1 V1

= ( ) ∈y1 L1 zV1 V1

y1

V2, y1
V1

( )L2, y1
zV2, y1

∈y2 V2, y1

ℓ , , … ,y1 y2 yℓ

y = + + ⋯ +y1 y2 yℓ

L : z ↦ y



Why CL Functions?Why CL Functions?
Linear functions
Revealing and hiding linear information is easy
Linear functions aren't enough

Type

0 0 0

0 0 0

CL functions work as they can model all question distributions we use
and have nice closure properties

Most importantly, the question distribution of Pauli Basis game is
CL for �xed types

uX uZ v1 v2 rX rZ

Plane, X ( )L
Pl

,v1 v2 uX v1 v2

Plane, Z ( )L
Pl

,v1 v2 uZ v1 v2



Introspection for CL Distributions (2-level)Introspection for CL Distributions (2-level)
  answer format

Z I Z I yes

Z Z Z Z yes

Z X Z X yes

Z X I X no

I X X X no

X X X X no

Z Z Z Z no

1. Use  and  types to perform data hiding for 

2. Cross check between  and  to ensure honest  measurements

3. Cross check between , , and  to ensure honest  measurements

R1 H1 R2 H2 aux

Intro, A (y, a)

Sample, A (z, a)

Read, A (y, , a)y⊥

Hide2 (y, , x)y⊥

Hide1 (y, , x)y⊥

Pauli, X x

Pauli, Z z

Sample Read Intro

Sample Pauli, Z Z

Read Hidei Pauli, X X



Introspection for CL Distributions (2-level)Introspection for CL Distributions (2-level)
  answer format

Z I Z I yes

Z Z Z Z yes

Z X Z X yes

Z X I X no

I X X X no

X X X X no

Z Z Z Z no

1. Use  and  types to perform data hiding for 

2. Cross check between  and  to ensure honest  measurements

3. Cross check between , , and  to ensure honest  measurements

(z) = yLA

R1 H1 R2 H2 aux

Intro, A (y, a)

Sample, A (z, a)

Read, A (y, , a)y⊥

Hide2 (y, , x)y⊥

Hide1 (y, , x)y⊥

Pauli, X x

Pauli, Z z

Sample Read Intro

Sample Pauli, Z Z

Read Hidei Pauli, X X



Introspection for CL Distributions (2-level)Introspection for CL Distributions (2-level)
  answer format

Z I Z I yes

Z Z Z Z yes

Z X Z X yes

Z X I X no

I X X X no

X X X X no

Z Z Z Z no

1. Use  and  types to perform data hiding for 

2. Cross check between  and  to ensure honest  measurements

3. Cross check between , , and  to ensure honest  measurements

R1 H1 R2 H2 aux

Intro, A (y, a)

Sample, A (z, a)

Read, A (y, , a)y⊥

Hide2 (y, , x)y⊥

Hide1 (y, , x)y⊥

Pauli, X x

Pauli, Z z

Sample Read Intro

Sample Pauli, Z Z

Read Hidei Pauli, X X



Introspection for CL Distributions (2-level)Introspection for CL Distributions (2-level)
  answer format

Z I Z I yes

Z Z Z Z yes

Z X Z X yes

Z X I X no

I X X X no

X X X X no

Z Z Z Z no

1. Use  and  types to perform data hiding for 

2. Cross check between  and  to ensure honest  measurements

3. Cross check between , , and  to ensure honest  measurements

R1 H1 R2 H2 aux

Intro, A (y, a)

Sample, A (z, a)

Read, A (y, , a)y⊥

Hide2 (y, , x)y⊥

Hide1 (y, , x)y⊥

Pauli, X x

Pauli, Z z

Sample Read Intro

Sample Pauli, Z Z

Read Hidei Pauli, X X



Introspection for CL Distributions (2-level)Introspection for CL Distributions (2-level)
  answer format

Z I Z I yes

Z Z Z Z yes

Z X Z X yes

Z X I X no

I X X X no

X X X X no

Z Z Z Z no

1. Use  and  types to perform data hiding for 

2. Cross check between  and  to ensure honest  measurements

3. Cross check between , , and  to ensure honest  measurements

R1 H1 R2 H2 aux

Intro, A (y, a)

Sample, A (z, a)

Read, A (y, , a)y⊥

Hide2 (y, , x)y⊥

Hide1 (y, , x)y⊥

Pauli, X x

Pauli, Z z

Sample Read Intro

Sample Pauli, Z Z

Read Hidei Pauli, X X



Introspection for CL Distributions (2-level)Introspection for CL Distributions (2-level)
  answer format

Z I Z I yes

Z Z Z Z yes

Z X Z X yes

Z X I X no

I X X X no

X X X X no

Z Z Z Z no

1. Use  and  types to perform data hiding for 

2. Cross check between  and  to ensure honest  measurements

3. Cross check between , , and  to ensure honest  measurements

R1 H1 R2 H2 aux

Intro, A (y, a)

Sample, A (z, a)

Read, A (y, , a)y⊥

Hide2 (y, , x)y⊥

Hide1 (y, , x)y⊥

Pauli, X x

Pauli, Z z

Sample Read Intro

Sample Pauli, Z Z

Read Hidei Pauli, X X



Introspection for CL Distributions (2-level)Introspection for CL Distributions (2-level)
  answer format

Z I Z I yes

Z Z Z Z yes

Z X Z X yes

Z X I X no

I X X X no

X X X X no

Z Z Z Z no

1. Use  and  types to perform data hiding for 

2. Cross check between  and  to ensure honest  measurements

3. Cross check between , , and  to ensure honest  measurements

R1 H1 R2 H2 aux

Intro, A (y, a)

Sample, A (z, a)

Read, A (y, , a)y⊥

Hide2 (y, , x)y⊥

Hide1 (y, , x)y⊥

Pauli, X x

Pauli, Z z

Sample Read Intro

Sample Pauli, Z Z

Read Hidei Pauli, X X



Introspection Game ReviewIntrospection Game Review
The standard way a normal-form game  is played

1. The veri�er samples , calls  to compute
questions  and ,

2. Receives answers  and decides using .

The introspective way a normal-form game  is played

1. The veri�er runs Pauli Basis game over EPRs of
dimension , or,

2. Runs the remaining parts of the Introspection game to
ensure provers respect the  primitives, or,

3. Sends  to Alice and  to Bob,
receives , , and decides using .

Vn

z ∈ F
n

Sn

x = (z)LA y = (z)LB

a, b Dn

Vn

|F|n

Intro

(Intro, A) (Intro, B)
(x, a) (y, b) Dn



Question Distribution of the Introspection GameQuestion Distribution of the Introspection Game
Random seed 

Type

Pauli Basis Types - - - - - -

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

For each type, the functions are CL
CL distributions can simulate
constant-size type distributions
Constant (eight) levels of conditioning su�ce for our purpose

z = ( , , , , , ) ∈ ( ×uX uZ v1 v2 rX rZ F
m)4

F
2

uX uZ v1 v2 rX rZ

Intro, v

Sample, v

Read, v

, vHidei



Question Distribution of the Introspection GameQuestion Distribution of the Introspection Game
Random seed 

Type

Pauli Basis Types - - - - - -

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

For each type, the functions are CL
CL distributions can simulate
constant-size type distributions
Constant (eight) levels of conditioning su�ce for our purpose

z = ( , , , , , ) ∈ ( ×uX uZ v1 v2 rX rZ F
m)4

F
2

uX uZ v1 v2 rX rZ

Intro, v

Sample, v

Read, v

, vHidei

Type 0 0 0

0

0
0 0

0
0

0 0

0 0

0 0

0 0

0 0 0 0

uX
uZ

v1 v2

Point, X uX

Plane, X
( )L

Pl
,v1 v2

uX

v1 v2

Point, Z
uZ

Plane, Z

( )L
Pl

,v1 v2
uZ

v1

Pair uX
uZ

Pair, W uX
uZ

Constraintc uX
uZ

Variablev
uX

uZ

Pauli, W



Question Distribution of the Introspection GameQuestion Distribution of the Introspection Game
Random seed 

Type

Pauli Basis Types - - - - - -

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

For each type, the functions are CL
CL distributions can simulate
constant-size type distributions
Constant (eight) levels of conditioning su�ce for our purpose

z = ( , , , , , ) ∈ ( ×uX uZ v1 v2 rX rZ F
m)4

F
2

uX uZ v1 v2 rX rZ

Intro, v

Sample, v

Read, v

, vHidei



Oracularisation and Commuting StrategyOracularisation and Commuting Strategy
For the PCP techniques to work in answer reduction, one of the provers
must compute a PCP proof that depends on 
This is achieved by the oracularization and
requires that, in the completeness strategies,
Alice and Bob always measure commuting
observables (as operators on the same space)
Special care required in the design of the game
Multiple  types in the Introspection game

x, y, a, b

Hide



Oracularisation and Commuting StrategyOracularisation and Commuting Strategy
For the PCP techniques to work in answer reduction, one of the provers
must compute a PCP proof that depends on 
This is achieved by the oracularization and
requires that, in the completeness strategies,
Alice and Bob always measure commuting
observables (as operators on the same space)
Special care required in the design of the game
Multiple  types in the Introspection game

x, y, a, b

Hide

 

answer format

Z I Z I yes

Z Z Z Z yes

Z X Z X yes

Z X I X no

I X X X no

X X X X no

Z Z Z Z no

R1 H1 R2 H2 aux

Intro, A
(y, a)

Sample, A
(z, a)

Read, A
(y, , a)y⊥

Hide2

(y, , x)y⊥

Hide1

(y, , x)y⊥

Pauli, X

x

Pauli, Z

z



PCPs and Parallel RepetitionsPCPs and Parallel Repetitions
The use of PCPs for answer
reduction is similar to Natarajan-
Wright
The distribution remains CL
Anchored parallel repetition for
better entanglement bound

[Bavarian, Vidick, and Yuen '17]

Gap-preserving compression of
normal-form games



CompressionCompression Theorem Theorem

Compression Theorem. There is an algorithm  that on input 
outputs  such that for all 

1. (Completeness). If  then .

2. (Soundness). If  then .

3. (Entanglement). .

Compress V

= ( , )V
♯

S
♯

D
♯

n ≥ n0

va ( ) = 1l∗ V2n va ( ) = 1l∗ V
♯
n

va ( ) ≤l∗ V2n
1
2 va ( ) ≤l∗ V

♯
n

1
2

E( ) ≥ max{E( ), }V
♯
n

V2n 2n



 is universal

Kleene's Recursion TheoremKleene's Recursion Theorem
For all Turing machine , consider veri�er 

Turing machine :

1. Simulate  for  steps. If  halts, accept.

2. Compute .

3. Accept iff  accepts.

Kleene's recursion theorem:  above is well-de�ned
For all Turing machine 

1. If  halts, 
If the Turing machine  halts in  steps and , then 

.

2. If  does not halt, 

M V
Halt

S
♯

D
Halt

M n M

( , ) = Compress( , )S
♯

D♯ S
♯

DHalt

(n, x, y, a, b)D
♯

D
Halt

M

M va ( ) = 1l∗ V
Halt
n0

M T n < T ≤ 2n

va ( ) = va ( ) = va ( ) = 1l∗ V
Halt
n l∗ V

♯
n l∗ V

Halt
2n

M va ( ) ≤l∗ V
Halt
n0

1
2



Explicit Separation Between Explicit Separation Between  and  and 
Consider veri�er 

Turing machine :

1. Compute a description of game .

2. Run NPA on  for  steps. If NPA halts, then
accept.

3. Compute .

4. Accept iff  accepts.

Claim:  and 

If , then , a contradiction

vvaall∗∗ vvaallccoo

= ( , )V
Sep

S
♯

D
Sep

D
Sep

V
Sep
n0

V
Sep
n0

n

( , ) = Compress( , )S
♯

D
♯

S
♯

D
Sep

(n, x, y, a, b)D
♯

va ( ) ≤l∗ V
Sep
n0

1
2 va ( ) = 1lco V

Sep
n0

va ( ) < 1lco V
Sep
n0

va ( ) = 1l∗ V
Sep
n0



ConclusionsConclusions
Recursive gap-preserving compression of normal-form two-prover one-
round protocols
Compression Lemma + Kleene's recursion theorem proves RE ⊆ MIP*
MIP* = RE follows as MIP* ⊆ RE
Negative answers to both Tsirelson's problem and CEP
Open problems:

1. Simpler proofs?

2. Does MIPco = coRE?
3. Explicit counter-examples to CEP



Physics
1935 EPR paradox,
entanglement

1964 Bell inequality

1990's Tsirelson's problem

Computer Science
1936 Turing's Halting
problem

1970's Complexity theory

1990's PCP theorem

Mathematics
1930 von Neumann
algebra

1976 Connes

1993 Kirchberg

MIP* = RE



Thank you!Thank you!




