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Abstract
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Testbed-class quantum computers -- fully programmable 5-50 qubit systems -- have burst 
onto the scene in the past few years. The associated surge in funding, hype, and 
commercial activity has spurred interest in “benchmarks” for assessing their performance.

Unsurprisingly, this has generated both a number of scientifically interesting ideas and a 
lot of confusion and kerfuffle. I will try to explain the state of play in this field -- known 
historically as “quantum characterization, verification, and validation (QCVV)” and more 
recently and generally as “quantum performance assessment” -- by:
• briefly reviewing its history, 
• explaining the different categories of benchmarks and characterization protocols, and
• identifying what they're good for. 

The overarching message of my talk is that these are distinct tools in a diverse toolbox -- 
almost every known protocol and benchmark really measures a distinct and particular 
thing, and we probably need more of them, not fewer.



I made a Bibliography
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Early this year, I set out to collect every paper every written about 
assessing performance of digital quantum computing components, 
which is my best attempt to describe my scientific briar patch. 

As of March 18, I collected 1535 sources from 1957 - 2020. 
• 1170 journal articles 
• 276 arxiv preprints 
• 37 PhD and masters theses 
• 29 conference papers 
• 13 book chapters 
• 7 books 
• 1 NASA report, 1 set of lecture notes, and 1 poster.
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Does this define what’s important?
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Taken at face value, this seems to suggest that we should spend the 
next hour talking about state tomography and optical CV systems. 

But this is just a historical artifact. 
Scientists spent 20 years writing about  
tomography of Wigner functions because  
they didn’t have anything better to do. 

But now we have actual 
quantum computers  
(tiny ones with 5-50 qubits). 

What’s important now?
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“Metrics & Benchmarks” are very exciting
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Quantum computing has gained a lot of funding, hype, and engineering. 

Now many people want metrics and benchmarks, in order to: 

 - Quantify how good quantum computers are, 
 - Determine which of two quantum computers is better, 
 - Measure progress (toward betterness) over time, 
 - ???  
 - Profit! 

Maybe these are not the best questions to ask. 
Let’s consider some questions that “benchmarks” could address. 



Some questions we’d like answered
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Does this thing work?

How well does this thing work?

What does this thing do?

What could I do with this thing?

Which of these things is better? What can this thing do?

What’s wrong with this thing?

How can I make this thing better?Does this thing do  
what you said it does?

What will happen when I use this thing?
Is this thing good enough?

How many of these things would I need?
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Protocols est omnis divisa in partes tres 
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Tests Characterization
Protocols

Benchmarks

• Certify or verify a property
• Report “yes” or “no”.
• Are conceptually simplest
• Can be fraught in practice

• Measure all aspects of a thing’s function
• Provide rich detail about faults/behavior
• Intended to predict all possible uses
• Generally require the most effort & data

• Quantify how good something is, or how well it performs its function.
• Report one or more quantitative numbers.
• Are well-suited for comparing different things that do the same task.
• Are usually task-specific and don’t generally predict other tasks.



How {T / B / C} protocols work 
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Broadly speaking, all these protocols 
follow the same pattern: 

1.  Run a test suite of circuits. 
2.  Repeat each circuit many times 
     and record statistics  
3.  Analyze the results. 
4.  Estimate vectors/matrices/scalars 
    or perform hypothesis testing. 
5.  Draw some conclusion about error performance. 

In contrast to much CS literature, we are usually not worried about 
cryptographic security or “Mechanical Turk” problems — we assume the data 
is honest and faithful.  But we do worry about systematic errors!

“Layer rule” dictates how to compose a circuit layer error

prepare

apply'gates

measure

outcome



What “things” are we talking about?
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Quantum computers, obviously.  Little ones now, bigger ones later. 

But also components of quantum computers.  
   - qubits, subsets of qubits, or qudits 
   - individual logic operations 
   - important subroutines  
   - and (in a slightly different sense), entire algorithms 

And also (throughout the literature) other things with no relation to 
quantum computing, like cavity modes and communication channels.

Does this thing work?
How well does this thing work?

What does this thing do?



Examples of “fully integrated” devices
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Testbed-class digital quantum computers  
 - 5-50 qubits (2?) 
 - Integrated programmable systems: 
   qubits + control + environment 
 - Designed to run general circuits 

Future digital quantum computers  
 - NISQ platforms (50+ qubits) 
 - Extrapolation into the future… 

Analogue simulators 

Quantum annealers (D-Wave)
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Testbed-class digital quantum computers  
 - 5-50 qubits (2?) 
 - integrated programmable systems: 
   qubits + control + environment 
 - designed to run general circuits 

Future digital quantum computers  
 - NISQ platforms (50+ qubits) 
 - extrapolation into the future… 

Analogue simulators 

Quantum annealers (D-Wave)

There are
almost no

good reasons
to compare these

devices to each other. 



We test, benchmark, characterize at 3 scales
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Small (2-10) 

Medium (10-50) 

Large (50+)

Integrated
Quantum 

Processors

Elementary
Operations

Composite
Components

1-qubit gates 
2-qubit gates 
Initialization/reset 
Measurements 
 
Non-computational 
operations (shuttle, 
hide, cool, etc).

Gate set (1-2 qubits) 

Subroutine 

Parity check 
(stabilizer meas.) 

QEC cycle (LogiQ)



Which methods for which components?
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Integrated 
Processors

Composite 
Components/
Subroutines

Elementary 
Operations

Testing ? ✔ ✘

Benchmarking ✔ ✔ ✔

Characterization ✘ ? ✔too 
big

what would  
you test?

feasible?  
necessary?

not
useful

never
perfect

usually
need

more detail

usually
need

more detail



Characterizing > Benchmarking > Testing
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Benchmark metrics can usually be computed from full characterization. 

Binary property tests can usually be inferred from metrics. 

This is usually wasteful and expensive: 
 - More detailed characterization requires measuring more things.  
 - Statistical uncertainty increases with more detail. 

But some metrics/properties are only known as complicated functions of a 
detailed characterization, e.g.: 
 - entanglement  
 - diamond norm 
 - logical error rate

F≈0.99
good!
bad



What does it mean for an  
operation, component, or processor to  “work”?

20
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Process tomography 
Detector tomography 
Gate set tomography 
Compressed sensing 
Hamiltonian estimation 
Robust phase estimation 
Direct fidelity estimation 
[Ad hoc methods] 
Randomized benchmarking 
Machine learning



Focus: 
                   Characterizing Operations
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Integrated 
Processors

Composite 
Components/
Subroutines

Elementary 
Operations

Testing

Benchmarking

Characterization

Note:  There is significant overlap and ambiguity in experiments and the 
literature between characterizing operations and benchmarking operations. 

Tomography is often reduced to a benchmarking procedure, by ignoring the 
detailed results and just extracting a fidelity. 

Randomized benchmarking is often promoted to a de facto characterization 
procedure by using RB error rates in predictive models.
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                   Benchmarking Subroutines
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State tomography (!)  
 - compressed sensing 
 - MPS tomography  
 - pure state tomography 
Randomized benchmarking 
Direct fidelity estimation 
Cycle benchmarking 
X-entropy benchmarking 
[Ad hoc QEC stuff ]



Focus: 
                   Benchmarking entire Processors
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State tomography 

Randomized benchmarking  
 - efficient variants 

RCS + XEB 
Quantum volume 
Algorithms  
Volumetric benchmarks



Let’s talk about some benchmarks
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In the rest of this talk, I’d like to examine the ideas that have been 
proposed (so far) for “benchmarking” the holistic performance of 
quantum processors. 

I’m not going to try and explain them all in detail! 

Mostly, I want to point out why they’re all different. 
And why we need to explore an even more diverse array of benchmarks.



Let’s talk about some benchmarks
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• State tomography 
• Randomized benchmarking 
• Random circuit sampling (RCS) + cross-entropy benchmarking (XEB) 
• Quantum volume 
• Algorithms 
• Volumetric benchmarks



State Tomography as a Benchmark
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I’m surprised how often state tomography 
is still used in Nature/Science papers. 

Idea: demonstrate processor’s capability 
by programming it to produce a particular 
“interesting” quantum state, and then use 
state tomography to show that it did so. 

This is a weak demo even in theory, since it only demonstrates one circuit.  
But, in principle, “seeing the state” ought to provide great debugging info. 

In practice, neither the state nor the tomography are perfect, so authors end 
up reporting fidelity “F = 0.73(4)”  ➠  the entire exercise is almost pointless.

© 2005 Nature Publishing Group 

 

These data have been generated assuming ideal measurements on the
reconstructed density matrix and using the measurement settings of
the real experiment. For each of the artificial measurement sets a new
density matrix was reconstructed via the maximum-likelihood
method, and the spread of the expectation values of the observables
was extracted.
For an investigation of the entanglement properties, we associate

each particle k of a state r with a (possibly spatially separated) party
Ak. We shall be interested in different aspects of entanglement
between parties Ak, that is, the non-locality of the state r. A detailed
entanglement analysis is achieved by investigating (1) the presence of
genuinemultipartite entanglement, (2) the distillability ofmultipartite
entanglement and (3) entanglement in reduced states of two qubits.
First, we consider whether the production of a single copy of the

state requires non-local interactions of all parties. This leads to the
notion of multipartite entanglement and biseparability. A pure
multipartite state jwl is called biseparable if two groups G1 and G2

within the parties Ak can be found such that jwl is a product state
with respect to the partition

jwl¼ jxlG1
^jhlG2

ð2Þ
otherwise it is multipartite entangled. A mixed state r is called
biseparable if it can be produced by mixing pure biseparable
states jwbs

i l—which may be biseparable with respect to different
bipartitions—with some probabilities pi, that is, the state can be
written as r¼P

ipijwbs
i lkw

bs
i j: If this is not the case, r is multipartite

entangled. The generation of such a genuine multipartite entangled
state requires interaction between all parties. In particular, a mixture
of bipartite entangled states is not considered to be multipartite
entangled. In order to show the presence of multipartite entangle-
ment, we use the method of entanglement witnesses21–23.
An entanglement witness for multipartite entanglement is an obser-
vable with a positive expectation value on all biseparable states. Thus
a negative expectation value proves the presence of multipartite
entanglement. A typical witness for the states jWNl would be23:

WN ¼N2 1

N
l2 jWN l kWN j ð3Þ

This witness detects a state as entangled if the fidelity of the W state
exceeds (N 2 1)/N. However, more sophisticated witnesses can be
constructed, if there is more information available on the state under

investigation than only the fidelity. To do so, we add other operators
to the witness in equation (3) (see Methods) which take into account
that certain biseparable states can be excluded on the grounds of the
measured density matrix. Table 2 lists the expectation values for
these advanced witnesses. The negative expectation values prove
that in our experiment four-, five-, six-, seven- and eight-qubit
entanglement has been produced.
Second, we consider the question of whether one can use many

copies of the state r to distil one puremultipartite entangled state jwl
by local means; that is, whether entanglement contained in r is
qualitatively equivalent to multiparty pure state entanglement. For
this aim one determines whether there exists a number M such that
the transformation

M copies

r^r^· · ·^r|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
$$$$$$$$!LOCC jwl ð4 Þ

is possible. Here, jwl is a multipartite entangled pure state (for

Table 1 | Creation of a jWNl-state (N 5 {6,7,8})

Initialization Entanglement

j0;SSS· · ·Sl (1)
RþN ð2arccosð1=

ffiffiffi
N

p
Þ$$$$$$$$$$$$!

(i1)
RCNðpÞRCN21ðpÞ· · ·RC1 ðpÞ$$$$$$$$$$$$$$! 1ffiffiffi

N
p j0;SDD· · ·Dlþ

ffiffiffiffiffiffiffi
N21

p
ffiffiffi
N

p j1;DDD· · ·Dl

j0;DDD· · ·Dl (2)
RþN21ð2arcsinð1=

ffiffiffiffiffiffiffi
N21

p
Þ$$$$$$$$$$$$$$$$!

Check state via fluorescence 1ffiffiffi
N

p j0;SDD· · ·Dlþ 1ffiffiffi
N

p j0;DSD· · ·Dlþ
ffiffiffiffiffiffiffi
N22

p
ffiffiffi
N

p j1;DDD· · ·Dl

(i2)
Rþ1 ðpÞ$$! ..

. ..
.

j0;DDD· · ·Dl 1ffiffiffi
N

p j0;SDD· · ·Dlþ 1ffiffiffi
N

p j0;DSD· · ·Dlþ · · ·þ 1ffiffiffi
N

p j1;DDD· · ·Dl

Check state via fluorescence (N)
Rþ1 ð2arcsinð1=

ffiffi
1

p
Þ$$$$$$$$$$$$!

(i3)
RCNðpÞ$$! 1ffiffiffi

N
p j0;SDD· · ·Dlþ 1ffiffiffi

N
p j0;DSD· · ·Dlþ · · ·þ 1ffiffiffi

N
p j0;DDD· · ·Sl

j0;SDD· · ·Dl

(i1)–(i3) are initialization steps; (1)–(N) are entanglement steps. First we initialize the ions via sideband cooling and optical pumping in the j0, SS· · ·Sl state, where we use the notation
jn ;xNxN21 · · ·x1l: n describes the vibrational quantum number of the ion motion and x i their electronic state. We then prepare the j0;DDD· · ·Dl state with N p–pulses on the carrier transition
applied to ions 1 to N, denoted by RCn ðv¼ pÞ (the notation is detailed in ref. 29; we do not specify the phase of the pulses because their particular value is irrelevant in this context). Then this
state is checked for vanishing fluorescence with a photomultiplier tube. The same is done after trying to drive a p pulse on the blue sideband on ion 1 to ensure that the ion crystal is in the
motional ground state. After this initialization, we transform the state to j0;SDD· · ·Dl with a carrier p pulse and start the entanglement procedure in step (1). This is carried out by moving most
of the population to j1;DDD· · ·Dl with a blue sideband pulse of length vn ¼ arccosð1= ffiffiffi

n
p Þ leaving the desired part back in j0;SDD· · ·Dl: Finally, we use N 2 1 blue sideband pulses ðRþn ðvn ÞÞ of

pulse length vn ¼ arcsinð1= ffiffiffi
n

p Þ such that at each step we split off a certain fraction of the wave packet. Note that for an ion string in the ground state, blue-sideband pulses acting on an ion in
the D state have no effect. For N ¼ {4,5} we do not check the fluorescence, combine steps (i1) and (i3) and omit step (i2).

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Figure 1 | Absolute values, jrj, of the reconstructed density matrix of a
jW8l state as obtained from quantum state tomography.
DDDDDDDD…SSSSSSSS label the entries of the density matrix r. Ideally,
the blue coloured entries all have the same height of 0.125; the yellow
coloured bars indicate noise. Numerical values of the density matrices for
4 # N # 8 can be found in Supplementary Information. In the upper right
corner a string of eight trapped ions is shown.

LETTERS NATURE|Vol 438|1 December 2005

644

Häffner et al, Nature 438, 643 (2005)
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• State tomography 
• Randomized benchmarking 
• Random circuit sampling (RCS) + cross-entropy benchmarking (XEB) 
• Quantum volume 
• Algorithms 
• Volumetric benchmarks



Randomized Benchmarking
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Standard RB runs many random 
sequences of Clifford operations, 
followed by a single inversion. 

The problem with doing this on  
N qubits is that each N-qubit 
Clifford has to be compiled into a lot of elementary gates [O(N2)]. 

For N>3, basically every Clifford RB circuit has p≈0 of succeeding. 

Direct RB is more scalable, but only to about N=10 qubits on current 
state-of-the-art testbeds.
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Timothy J. Proctor,1 Arnaud Carignan-Dugas,2 Kenneth Rudinger,3

Erik Nielsen,3 Robin Blume-Kohout,3 and Kevin Young1

1
Quantum Performance Laboratory, Sandia National Laboratories, Livermore, CA 94550, USA

2
Institute for Quantum Computing and the Department of Applied Mathematics,

University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
3
Quantum Performance Laboratory, Sandia National Laboratories, Albuquerque, NM 87185, USA

(Dated: March 25, 2019)

Benchmarking methods that can be adapted to multi-qubit systems are essential for assessing the
overall or “holistic” performance of nascent quantum processors. The current industry standard is
Cli↵ord randomized benchmarking (RB), which measures a single error rate that quantifies overall
performance. But scaling Cli↵ord RB to many qubits is surprisingly hard. It has only been per-
formed on 1, 2, and 3 qubits as of this writing. This reflects a fundamental ine�ciency in Cli↵ord
RB: the n-qubit Cli↵ord gates at its core have to be compiled into large circuits over the 1- and
2-qubit gates native to a device. As n grows, the quality of these Cli↵ord gates quickly degrades,
making Cli↵ord RB impractical at relatively low n. In this Letter, we propose a direct RB protocol
that mostly avoids compiling. Instead, it uses random circuits over the native gates in a device,
seeded by an initial layer of Cli↵ord-like randomization. We demonstrate this protocol experimen-
tally on 2 – 5 qubits, using the publicly available IBMQX5. We believe this to be the greatest
number of qubits holistically benchmarked, and this was achieved on a freely available device with-
out any special tuning up. Our protocol retains the simplicity and convenient properties of Cli↵ord
RB: it estimates an error rate from an exponential decay. But it can be extended to processors with
more qubits – we present simulations on 10+ qubits – and it reports a more directly informative
and flexible error rate than the one reported by Cli↵ord RB. We show how to use this flexibility to
measure separate error rates for distinct sets of gates, which includes tasks such as measuring an
average cnot error rate.

With quantum processors incorporating 5 – 20 qubits
now commonplace [1–12], and 50+ qubits expected soon
[13–15], e�cient, holistic benchmarks are becoming in-
creasingly important. Isolated qubits or coupled pairs
can be studied in detail with tomographic methods [16–
20], but the required resources scale exponentially with
qubit number n, making these techniques infeasible for
n � 2 qubits. And while an entire device could be
characterized two qubits at a time, this often results in
over-optimistic estimates of device performance that ig-
nore crosstalk and collective dephasing e↵ects. What is
needed instead is a family of holistic benchmarks that
quantify the performance of a device as a whole. Ran-
domized benchmarking (RB) methods [21–29] avoid the
specific scaling problems that a✏ict tomography – in RB,
both the number of experiments [30] and the complexity
of the data analysis [25] are independent of n – but in-
troduce a new scaling problem in the form of gate com-
pilation.

Although a quantum processor’s native gates typically
include only a few one- and two-qubit operations, the
“gates” benchmarked by RB are elements of an expo-
nentially large n-qubit group 2-design (e.g., the Cli↵ord
group). These gates must be compiled into the native
gate set [31, 32]. As the number of qubits increases, the
circuit depth and infidelity of these compiled group ele-
ments grow rapidly, rendering current RB protocols im-
practical for relatively small n, even with state-of-the-art
gates. The industry-standard protocol laid out by Mage-

san et al. [24, 25] – which we will refer to as Cli↵ord
randomized benchmarking (CRB) – has been widely used
to benchmark [33–44] and calibrate [45, 46] both individ-
ual qubits and pairs of qubits, but we are aware of just
one reported application to three qubits [47], and none
to four or more.

Another consequence of compilation is that, instead
of quantifying native gate performance, CRB measures
the error per compiled group element. Although this is
sometimes translated into a native gate error rate, e.g.,
by dividing it by the average circuit size of a compiled
Cli↵ord [42–44], this is ad hoc and not always reliable
[48]. Moreover, error rates obtained this way are hard

FIG. 1. A cartoon illustrating the circuits used in Cli↵ord
RB and the streamlined direct RB protocol that we propose.
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So what does it measure? 

RB (or DRB) measures 
the effective error rate per 
circuit layer in random, 
unstructured Clifford circuits. 

This is a meaningful, well-motivated quantity. 
But it’s inextricably linked to the particular ensemble of circuits: 
 - random, unstructured Clifford-only circuits on all N qubits.  
 - depends on how each Clifford is compiled (or relative density of gates) 
 - only describes average behavior — specific circuits can be different.
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FIG. 2. Experimental 2 – 5 qubit DRB on IBMQX5. A.
Success probability decays. The points are average success
probabilities Pm, and the violin plots show the distributions of
the success probabilities at each length over circuits (there are
28 circuits per length). The curves are obtained from fitting
to Pm = A+Bpm, and r = (4n − 1)(1− p)�4n. B. A schematic
of IBMQX5. The colors match those in A and correspond
to the additional qubits/cnots added from n → n + 1 qubit
DRB (see also D). C. Observed r versus n, and predictions
from 1- and 2-qubit CRB calibration data. D. Estimates of
the average cnot error rate in n-qubit circuits, obtained by
comparing the data in A with additional DRB data that used
circuits with fewer cnots per layer.

native gates comprise cnots and arbitrary 1-qubit gates
[2, 54]; we benchmarked a set of n-qubit gates consisting
of parallel applications of all directly available cnots and
all 1-qubit Cli↵ord gates.

Fig. 2 summarizes our results. Fig. 2 A demonstrates
that DRB was successful on 2 – 5 qubits: an exponen-
tial decay is observed and r is estimated with reasonable
precision (bootstrapped 2� uncertainties are shown). To
our knowledge, this is the largest number of qubits holis-
tically benchmarked to date, which was made possible
by the streamlined nature of DRB (see Fig. 1). To in-
terpret these results it is necessary to specify the circuit
sampling. Each layer was sampled as follows: with prob-
ability pcnot we uniformly choose one of the cnots and
add it to the sampled layer; for all n or n − 2 remaining
qubits we independently and uniformly sample a 1-qubit
gate and add it to the layer. For the data in Fig. 2 A,
pcnot = 0.75. We also implemented experiments with
pcnot = 0.25; see the Supplemental Material for this data
and further experimental details.

Using this sampling, the average number of cnots
per layer is pcnot, independent of n. Therefore r would
vary little with n if cnot errors dominate, the error
rates are reasonably uniform over the cnots, and n-qubit
benchmarks are predictive of benchmarks on more than n
qubits. Instead, the observed r increases quickly with n.
This is quantified in Fig. 2 C, where we compare each ob-

served r to a prediction rcal obtained from the IBMQX5
CRB calibration data (1-qubit error rates from simulta-
neous 1-qubit CRB [2, 55, 56] and cnot error rates from
CRB on isolated pairs [55]). These predictions are calcu-
lated both using r ≈ ✏⌦ and via a DRB simulation using a
crosstalk-free error model that is consistent with the cal-
ibration data. Both methods agree, confirming that the
increase in r with n is not due to a failure of DRB. For
n = 2, rcal and r are similar, demonstrating that n-qubit
DRB and CRB are consistent. But, as n increases, r di-
verges from rcal. This shows that the e↵ective error rates
of the 1-qubit and/or 2-qubit gates in the device change
as we implement circuits over more qubits, demonstrat-
ing that n > 2-qubit DRB can detect errors that are not
predicted by 1- and 2-qubit CRB (calibration data) or
2-qubit DRB (our data). This highlights the value of
holistic benchmarking for multi-qubit devices.

Using the data from Fig. 2 A (pcnot = 0.75) alongside
additional data with pcnot = 0.25 sampling [57], we can
estimate the average cnot error rate in n-qubit circuits.
For each n and using r ≈ ∑i⌦(Gi)✏i, we have �r ≈ M�✏
where: �r = (r0.75, r0.25) with r0.75 (resp., r0.25) the r ob-
tained with pcnot = 0.75 (resp., pcnot = 0.25) sampling;�✏ = (✏A, ✏B) with ✏A (resp., ✏B) the average error rate
of those n-qubit gates containing one cnot in parallel
with 1-qubit gates on the other qubits (resp., n parallel
1-qubit gates); M = 1

4( 3 1
1 3 ). Therefore, ✏A and ✏B can

be estimated using �✏ =M−1�r, and so – by estimating the
average 1-qubit gate error rate from ✏B and removing
this contribution from ✏A – we can estimate the mean
cnot error rate versus n. Estimates are given in Fig. 2
D. For two qubits, our estimate of the cnot error rate
is similar to the prediction from the calibration data, so
our methodology seems consistent with CRB techniques.
In contrast, our results show that cnots perform sub-
stantially worse in n > 2 qubit circuits than in 2-qubit
circuits. This is likely due to cnot crosstalk, i.e., cnots
a↵ect “spectator” qubits.

FIG. 3. Simulation of DRB and CRB for 2 – 14 qubits with
a simple error model. The n-qubit DRB error rate is r ≈
n × 0.15%, consistent with the simulated sampling-averaged
native gate error rate ✏⌦.
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This is what Google used last year 
to demonstrate quantum supremacy. 

Circuits are similar to DRB, but use 
non-Clifford gates, and alternate layers 
of 1-qubit and 2-qubit gates. 

These circuits scramble local errors, 
and (ideally) produce states that look 
very much like Haar-random ones 
(unlike RB, there’s no inversion step!) 

Famously, these are hard to predict.
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single-qubit gates chosen randomly from X Y W{ , , } on all qubits, 
followed by two-qubit gates on pairs of qubits. The sequences of gates 
which form the ‘supremacy circuits’ are designed to minimize the circuit 
depth required to create a highly entangled state, which is needed for 
computational complexity and classical hardness.

Although we cannot compute FXEB in the supremacy regime, we can 
estimate it using three variations to reduce the complexity of the circuits. 
In ‘patch circuits’, we remove a slice of two-qubit gates (a small fraction 
of the total number of two-qubit gates), splitting the circuit into two 
spatially isolated, non-interacting patches of qubits. We then compute 
the total fidelity as the product of the patch fidelities, each of which can 
be easily calculated. In ‘elided circuits’, we remove only a fraction of the 
initial two-qubit gates along the slice, allowing for entanglement 
between patches, which more closely mimics the full experiment while 
still maintaining simulation feasibility. Finally, we can also run full 
‘verification circuits’, with the same gate counts as our supremacy cir-
cuits, but with a different pattern for the sequence of two-qubit gates, 
which is much easier to simulate classically (see also Supplementary 
Information). Comparison between these three variations allows us to 
track the system fidelity as we approach the supremacy regime.

We first check that the patch and elided versions of the verification 
circuits produce the same fidelity as the full verification circuits up to 
53 qubits, as shown in Fig. 4a. For each data point, we typically collect 
Ns = 5 × 106 total samples over ten circuit instances, where instances 
differ only in the choices of single-qubit gates in each cycle. We also 
show predicted FXEB values, computed by multiplying the no-error prob-
abilities of single- and two-qubit gates and measurement (see also Sup-
plementary Information). The predicted, patch and elided fidelities all 
show good agreement with the fidelities of the corresponding full cir-
cuits, despite the vast differences in computational complexity and 
entanglement. This gives us confidence that elided circuits can be used 
to accurately estimate the fidelity of more-complex circuits.

The largest circuits for which the fidelity can still be directly verified 
have 53 qubits and a simplified gate arrangement. Performing random 
circuit sampling on these at 0.8% fidelity takes one million cores 130 
seconds, corresponding to a million-fold speedup of the quantum pro-
cessor relative to a single core.

We proceed now to benchmark our computationally most difficult 
circuits, which are simply a rearrangement of the two-qubit gates. In 
Fig. 4b, we show the measured FXEB for 53-qubit patch and elided ver-
sions of the full supremacy circuits with increasing depth. For the larg-
est circuit with 53 qubits and 20 cycles, we collected Ns = 30 × 106 samples 
over ten circuit instances, obtaining F = (2.24 ±0.21) × 10XEB

−3  for the 
elided circuits. With 5σ confidence, we assert that the average fidelity 

of running these circuits on the quantum processor is greater than at 
least 0.1%. We expect that the full data for Fig. 4b should have similar 
fidelities, but since the simulation times (red numbers) take too long to 
check, we have archived the data (see ‘Data availability’ section). The 
data is thus in the quantum supremacy regime.

The classical computational cost
We simulate the quantum circuits used in the experiment on classical 
computers for two purposes: (1) verifying our quantum processor and 
benchmarking methods by computing FXEB where possible using sim-
plifiable circuits (Fig. 4a), and (2) estimating FXEB as well as the classical 
cost of sampling our hardest circuits (Fig. 4b). Up to 43 qubits, we use 
a Schrödinger algorithm, which simulates the evolution of the full quan-
tum state; the Jülich supercomputer (with 100,000 cores, 250 terabytes) 
runs the largest cases. Above this size, there is not enough random access 
memory (RAM) to store the quantum state42. For larger qubit numbers, 
we use a hybrid Schrödinger–Feynman algorithm43 running on Google 
data centres to compute the amplitudes of individual bitstrings. This 
algorithm breaks the circuit up into two patches of qubits and efficiently 
simulates each patch using a Schrödinger method, before connecting 
them using an approach reminiscent of the Feynman path-integral. 
Although it is more memory-efficient, the Schrödinger–Feynman algo-
rithm becomes exponentially more computationally expensive with 
increasing circuit depth owing to the exponential growth of paths with 
the number of gates connecting the patches.

To estimate the classical computational cost of the supremacy circuits 
(grey numbers in Fig. 4b), we ran portions of the quantum circuit simu-
lation on both the Summit supercomputer as well as on Google clusters 
and extrapolated to the full cost. In this extrapolation, we account for 
the computation cost of sampling by scaling the verification cost with 
FXEB, for example43,44, a 0.1% fidelity decreases the cost by about 1,000. 
On the Summit supercomputer, which is currently the most powerful 
in the world, we used a method inspired by Feynman path-integrals that 
is most efficient at low depth44–47. At m = 20 the tensors do not reason-
ably fit into node memory, so we can only measure runtimes up to m = 14, 
for which we estimate that sampling three million bitstrings with 1% 
fidelity would require a year.

On Google Cloud servers, we estimate that performing the same task 
for m = 20 with 0.1% fidelity using the Schrödinger–Feynman algorithm 
would cost 50 trillion core-hours and consume one petawatt hour of 
energy. To put this in perspective, it took 600 seconds to sample the 
circuit on the quantum processor three million times, where sampling 
time is limited by control hardware communications; in fact, the net 
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Fig. 3 | Control operations for the quantum supremacy circuits. a, Example 
quantum circuit instance used in our experiment. Every cycle includes a layer 
each of single- and two-qubit gates. The single-qubit gates are chosen randomly 
from X Y W{ , , }, where  W X Y= ( + )/ 2  and gates do not repeat sequentially. 
The sequence of two-qubit gates is chosen according to a tiling pattern, 
coupling each qubit sequentially to its four nearest-neighbour qubits. The 

couplers are divided into four subsets (ABCD), each of which is executed 
simultaneously across the entire array corresponding to shaded colours. Here 
we show an intractable sequence (repeat ABCDCDAB); we also use different 
coupler subsets along with a simplifiable sequence (repeat EFGHEFGH, not 
shown) that can be simulated on a classical computer. b, Waveform of control 
signals for single- and two-qubit gates.
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quantum processor time is only about 30 seconds. The bitstring samples 
from all circuits have been archived online (see ‘Data availability’ section) 
to encourage development and testing of more advanced verification 
algorithms.

One may wonder to what extent algorithmic innovation can enhance 
classical simulations. Our assumption, based on insights from complex-
ity theory11–13, is that the cost of this algorithmic task is exponential in 
circuit size. Indeed, simulation methods have improved steadily over the 
past few years42–50. We expect that lower simulation costs than reported 
here will eventually be achieved, but we also expect that they will be 
consistently outpaced by hardware improvements on larger quantum 
processors.

Verifying the digital error model
A key assumption underlying the theory of quantum error correction 
is that quantum state errors may be considered digitized and local-
ized38,51. Under such a digital model, all errors in the evolving quantum 
state may be characterized by a set of localized Pauli errors (bit-flips or 
phase-flips) interspersed into the circuit. Since continuous amplitudes 
are fundamental to quantum mechanics, it needs to be tested whether 
errors in a quantum system could be treated as discrete and probabil-
istic. Indeed, our experimental observations support the validity of 
this model for our processor. Our system fidelity is well predicted by a 
simple model in which the individually characterized fidelities of each 
gate are multiplied together (Fig. 4).

To be successfully described by a digitized error model, a system 
should be low in correlated errors. We achieve this in our experiment by 

choosing circuits that randomize and decorrelate errors, by optimizing 
control to minimize systematic errors and leakage, and by designing 
gates that operate much faster than correlated noise sources, such as 
1/f flux noise37. Demonstrating a predictive uncorrelated error model 
up to a Hilbert space of size 253 shows that we can build a system where 
quantum resources, such as entanglement, are not prohibitively fragile.

The future
Quantum processors based on superconducting qubits can now perform 
computations in a Hilbert space of dimension 253 ≈ 9 × 1015, beyond the 
reach of the fastest classical supercomputers available today. To our 
knowledge, this experiment marks the first computation that can be 
performed only on a quantum processor. Quantum processors have 
thus reached the regime of quantum supremacy. We expect that their 
computational power will continue to grow at a double-exponential 
rate: the classical cost of simulating a quantum circuit increases expo-
nentially with computational volume, and hardware improvements will 
probably follow a quantum-processor equivalent of Moore’s law52,53, 
doubling this computational volume every few years. To sustain the 
double-exponential growth rate and to eventually offer the computa-
tional volume needed to run well known quantum algorithms, such as 
the Shor or Grover algorithms25,54, the engineering of quantum error 
correction will need to become a focus of attention.

The extended Church–Turing thesis formulated by Bernstein and 
Vazirani55 asserts that any ‘reasonable’ model of computation can be 
efficiently simulated by a Turing machine. Our experiment suggests 
that a model of computation may now be available that violates this 
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Fig. 4 | Demonstrating quantum supremacy. a, Verification of benchmarking 
methods. FXEB values for patch, elided and full verification circuits are 
calculated from measured bitstrings and the corresponding probabilities 
predicted by classical simulation. Here, the two-qubit gates are applied in a 
simplifiable tiling and sequence such that the full circuits can be simulated out 
to n = 53, m = 14 in a reasonable amount of time. Each data point is an average over 
ten distinct quantum circuit instances that differ in their single-qubit gates (for n 
= 39, 42 and 43 only two instances were simulated). For each n, each instance is 
sampled with Ns of 0.5–2.5 million. The black line shows the predicted FXEB based 
on single- and two-qubit gate and measurement errors. The close 
correspondence between all four curves, despite their vast differences in 

complexity, justifies the use of elided circuits to estimate fidelity in the 
supremacy regime. b, Estimating FXEB in the quantum supremacy regime. Here, 
the two-qubit gates are applied in a non-simplifiable tiling and sequence for 
which it is much harder to simulate. For the largest elided data (n = 53, m = 20, 
total Ns = 30 million), we find an average FXEB > 0.1% with 5σ confidence, where σ 
includes both systematic and statistical uncertainties. The corresponding full 
circuit data, not simulated but archived, is expected to show similarly 
statistically significant fidelity. For m = 20, obtaining a million samples on the 
quantum processor takes 200 seconds, whereas an equal-fidelity classical 
sampling would take 10,000 years on a million cores, and verifying the fidelity 
would take millions of years.
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IBM proposed quantum volume as the 
first intentional holistic benchmark. 

One number: describes dimension of the 
Hilbert space that can be accessed uniformly. 
[V vs log(V) is confusing…] 

Specifies yet another class of  
minimally-structured “random” circuits: 
 - width and depth vary together as d, 
 - specified by logical operations, not physical gates 
 - physical depth can be quite a bit larger than logical!

Validating quantum computers using randomized model circuits

Andrew W. Cross,⇤ Lev S. Bishop,† Sarah Sheldon, Paul D. Nation, and Jay M. Gambetta
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598

We introduce a single-number metric, quantum volume, that can be measured using a concrete
protocol on near-term quantum computers of modest size (n <⇠ 50), and measure it on several state-
of-the-art transmon devices, finding values as high as 8. The quantum volume is linked to system
error rates, and is empirically reduced by uncontrolled interactions within the system. It quantifies
the largest random circuit of equal width and depth that the computer successfully implements.
Quantum computing systems with high-fidelity operations, high connectivity, large calibrated gate
sets, and circuit rewriting toolchains are expected to have higher quantum volumes. The quantum
volume is a pragmatic way to measure and compare progress toward improved system-wide gate
error rates for near-term quantum computation and error-correction experiments.

Recent quantum computing e↵orts have moved beyond
controlling a few qubits, and are now focused on con-
trolling systems with several tens of qubits [1–3]. In
these noisy intermediate-scale quantum (NISQ) systems
[4], performance of isolated gates may not predict the
behavior of the system. Methods such as randomized
benchmarking [5], state and process tomography [6], and
gateset tomography [7] are valued for measuring the per-
formance of operations on a few qubits, yet they fail to
account for errors arising from interactions with specta-
tor qubits [8, 9]. Given a system such as this, whose
individual gate operations have been independently cal-
ibrated and verified, how do we measure the degree to
which the system performs as a general purpose quan-
tum computer? We address this question by introducing
a single-number metric, the quantum volume, together
with a concrete protocol for measuring it on near-term
systems. Similar to how LINPACK is used for compar-
ing diverse classical computers [10], this metric is not tai-
lored to any particular system, requiring only the ability
to implement a universal set of quantum gates. With the
concept of this metric being discussed elsewhere [11, 12],
our focus here is on measuring this metric in near-term
quantum devices.

The quantum volume protocol we present is strongly
linked to gate error rates, and is influenced by un-
derlying qubit connectivity and gate parallelism. It
can thus be improved by moving toward the limit in
which large numbers of well-controlled, highly coher-
ent, connected, and generically programmable qubits are
manipulated within a state-of-the-art circuit rewriting
toolchain. High-fidelity state preparation and readout
are also necessary. In this work, we evaluate the quan-
tum volume of current IBM Q devices [1], and corrob-
orate the results with simulations of the same circuits
under a depolarizing error model. While we focus on
transmon devices, the protocol can be implemented with
any universal programmable quantum computing device.

The quantum volume is based on the performance of

⇤ awcross@us.ibm.com
† lsbishop@us.ibm.com
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FIG. 1. Model circuit. Amodel circuit consists of d layers of
random permutations of the qubit labels, followed by random
two-qubit gates. When the circuit width m is odd, one of
the qubits is idle in each layer. A final permutation can be
applied to the labels of the measurement outcomes.

random circuits with a fixed but generic form. It is
well-known that quantum algorithms can be expressed as
polynomial-sized quantum circuits built from two-qubit
unitary gates [13]. Quantum algorithms are generally not
random circuits. However, random circuits model generic
state preparations, and are used as the basis of proposals
for demonstrating quantum advantage [14]. In addition,
circuits with a similar form appear in near-term algo-
rithms like quantum adiabatic optimization algorithms
[15] and variational quantum eigensolvers [16].
A model circuit, shown in Fig. 1, with depth d and

width m, is a sequence U = U
(d)

. . . U
(2)

U
(1) of d layers

U
(t) = U

(t)
⇡t(m0�1),⇡t(m0) ⌦ · · ·⌦ U

(t)
⇡t(1),⇡t(2)

, (1)

each labeled by times t = 1, . . . , d and acting on m
0 =

2bn/2c qubits. Each layer is specified by choosing a uni-
formly random permutation ⇡t 2 Sm of the m qubit in-

dices and sampling each U
(t)
a,b

, acting on qubits a and b,
from the Haar measure on SU(4).

To define when a model circuit U has been success-
fully implemented in practice, we use the heavy output
generation problem [17]. The ideal output distribution is

pU (x) = |hx|U |0i|2 (2)
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Are Google’s and IBM’s benchmarks measuring the same thing? 

- Both produce random states, and use non-Clifford gates. 
- Success metrics (heavy-output probability and “linear cross-entropy”) are 
  nominally different, but actually closely related and roughly equivalent). 

QV circuits are highly compilation-dependent (RCS are not). 
QV circuits are much deeper (for given width) than you might expect. 
RCS allows independently varying width/depth.  
RCS is very good at scrambling errors; QV depends on compilation.
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• State tomography 
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• Random circuit sampling (RCS) + cross-entropy benchmarking (XEB) 
• Quantum volume 
• Algorithms 
• Volumetric benchmarks
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Classical benchmarks are usually a basket of real-world tasks. 
There’s a long history of running [tiny] algorithms on quantum processors. 

In principle, this is a great idea: 
 - We expect algorithm circuits to behave different from random ones.  
 - Algorithms would properly test the whole system including compiler. 
 - Running algorithms would allow benchmarking quantum vs classical! 

In practice, it’s premature: 
 - Testbed processors can’t run any meaningful algorithms yet.  
 - Algorithms and compilers are changing too fast for stable benchmarks. 
 - Most promising algorithms are hybrid and don’t just test the quantum processor.



Algorithms as a Benchmark
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Benchmarks based on algorithms / applications are clearly the future! 
But we need to develop a systematic framework for building them, starting 
by asking “What aspects of performance do we want to measure?” 

Quantum Volume is an nice early step toward this — it attempts to 
synthesize several distinct and important properties (error rate, error type, 
connectivity, programmability, compiler efficiency) in a single number. 

But we need to understand (and benchmark) these properties separately too, 
before we can intelligently mix them to simulate application performance. 

We need more study of what impacts algorithm performance.



Let’s talk about some benchmarks
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• State tomography 
• Randomized benchmarking 
• Random circuit sampling (RCS) + cross-entropy benchmarking (XEB) 
• Quantum volume 
• Algorithms 
• Volumetric benchmarks



Volumetric Benchmarks
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• In many circumstances, what we want to know about a quantum processor is: 
“What is its capability — what circuits can it run with high success probability?” 

• This is largely determined by three properties of the circuit:  
 - width (number of qubits) 
 - depth (number of clock cycles) 
 - structure (what kind of circuit is it?) 

• Quantum volume measures ability to run random square (width = depth) circuits. 

•  
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Validating quantum computers using randomized model circuits

Andrew W. Cross,⇤ Lev S. Bishop,† Sarah Sheldon, Paul D. Nation, and Jay M. Gambetta
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598

We introduce a single-number metric, quantum volume, that can be measured using a concrete
protocol on near-term quantum computers of modest size (n <⇠ 50), and measure it on several state-
of-the-art transmon devices, finding values as high as 8. The quantum volume is linked to system
error rates, and is empirically reduced by uncontrolled interactions within the system. It quantifies
the largest random circuit of equal width and depth that the computer successfully implements.
Quantum computing systems with high-fidelity operations, high connectivity, large calibrated gate
sets, and circuit rewriting toolchains are expected to have higher quantum volumes. The quantum
volume is a pragmatic way to measure and compare progress toward improved system-wide gate
error rates for near-term quantum computation and error-correction experiments.

Recent quantum computing e↵orts have moved beyond
controlling a few qubits, and are now focused on con-
trolling systems with several tens of qubits [1–3]. In
these noisy intermediate-scale quantum (NISQ) systems
[4], performance of isolated gates may not predict the
behavior of the system. Methods such as randomized
benchmarking [5], state and process tomography [6], and
gateset tomography [7] are valued for measuring the per-
formance of operations on a few qubits, yet they fail to
account for errors arising from interactions with specta-
tor qubits [8, 9]. Given a system such as this, whose
individual gate operations have been independently cal-
ibrated and verified, how do we measure the degree to
which the system performs as a general purpose quan-
tum computer? We address this question by introducing
a single-number metric, the quantum volume, together
with a concrete protocol for measuring it on near-term
systems. Similar to how LINPACK is used for compar-
ing diverse classical computers [10], this metric is not tai-
lored to any particular system, requiring only the ability
to implement a universal set of quantum gates. With the
concept of this metric being discussed elsewhere [11, 12],
our focus here is on measuring this metric in near-term
quantum devices.

The quantum volume protocol we present is strongly
linked to gate error rates, and is influenced by un-
derlying qubit connectivity and gate parallelism. It
can thus be improved by moving toward the limit in
which large numbers of well-controlled, highly coher-
ent, connected, and generically programmable qubits are
manipulated within a state-of-the-art circuit rewriting
toolchain. High-fidelity state preparation and readout
are also necessary. In this work, we evaluate the quan-
tum volume of current IBM Q devices [1], and corrob-
orate the results with simulations of the same circuits
under a depolarizing error model. While we focus on
transmon devices, the protocol can be implemented with
any universal programmable quantum computing device.

The quantum volume is based on the performance of

⇤ awcross@us.ibm.com
† lsbishop@us.ibm.com
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FIG. 1. Model circuit. Amodel circuit consists of d layers of
random permutations of the qubit labels, followed by random
two-qubit gates. When the circuit width m is odd, one of
the qubits is idle in each layer. A final permutation can be
applied to the labels of the measurement outcomes.

random circuits with a fixed but generic form. It is
well-known that quantum algorithms can be expressed as
polynomial-sized quantum circuits built from two-qubit
unitary gates [13]. Quantum algorithms are generally not
random circuits. However, random circuits model generic
state preparations, and are used as the basis of proposals
for demonstrating quantum advantage [14]. In addition,
circuits with a similar form appear in near-term algo-
rithms like quantum adiabatic optimization algorithms
[15] and variational quantum eigensolvers [16].
A model circuit, shown in Fig. 1, with depth d and

width m, is a sequence U = U
(d)

. . . U
(2)

U
(1) of d layers

U
(t) = U

(t)
⇡t(m0�1),⇡t(m0) ⌦ · · ·⌦ U

(t)
⇡t(1),⇡t(2)

, (1)

each labeled by times t = 1, . . . , d and acting on m
0 =

2bn/2c qubits. Each layer is specified by choosing a uni-
formly random permutation ⇡t 2 Sm of the m qubit in-

dices and sampling each U
(t)
a,b

, acting on qubits a and b,
from the Haar measure on SU(4).

To define when a model circuit U has been success-
fully implemented in practice, we use the heavy output
generation problem [17]. The ideal output distribution is

pU (x) = |hx|U |0i|2 (2)
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Volumetric Benchmarks
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• Quantum volume seeks a single-number answer 

• But volume usually doesn’t capture the full range of a  
processor’s capability — or limitations. 

• We introduced volumetric benchmarks to measure  
ability to run all circuit shapes, of any structure.Volumetric Benchmarking Plots
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FIG. 3. Empirical capability regions. Estimates of the circuit
widths and depths at which all circuits with a two-qubit gate
density bounded by 1/8 (or containing at most two two-qubit
gates) should succeed in at least 2/3 of runs. The estimates
upper-bound the true capability region. The predictions are
obtained from the manufacturer’s error rates for that device.
The large discrepancies between the predictions and obser-
vations show that the capabilities of current quantum com-
puters are often much lower than predicted from conventional
error rates. (Caption needs a complete update, as it doesn’t
describe what we’re plotting, along the lines of what Robin
said)

satisfy ⇠  1/8 or contain no more than two two-qubit
gates15 should succeed (P � 2/3), and contrasts it to
the region in which our experiments observed no failures
on such circuits. This succinctly summarizes the gap
between true and predicted performance, and note that
the empirical regions are an optimistic upper bound: we
couldn’t run every possible circuit of this type, but every-
where outside of this region we observed at least one fail-
ure (P < 2/3 at 5% statistical significance11). Moreover,
the discrepancy between observations and predictions is
not an artifact of inaccurate error rates. No per-gate
error rates can predict the data from any of our exper-
iments – we used statistical inference to find new error
rates that fit the data as well as possible, and they still
fail to predict it.11 Instead, these results reflect a fun-

damental challenge: circuit failures cannot be predicted
by per-gate error rates, because both errors and circuits
have structure.

(Do we want to ditch this bit, or at least rephrase
it a bit? It maybe sounds like we’re pleading that our
methods are useful.). As our experiments are designed
to probe overall capabilities, they reveal emergent errors
that are missed by reductionist methods (e.g., one/two-
qubit tomography? ). For example, the performance of
all tested devices drops o↵ faster with increasing cir-
cuit width than the error rates predict (see figs. 3 and
Sx). This is a signature of crosstalk, and with further
analysis11 it can be attributed to particular operations.
Similarly, in all but one processor, the worst-case success
rate decays much faster with depth for periodic circuits
(see figs. 3 and Sx). This is a signature of coherent errors,
which can be suppressed with careful gate calibrations.
Furthermore, by comparing data from two identical re-
peats of each experiment we can quantify stability: some
devices are stable, others much less so (see fig. Sx). Use-
ful quantum algorithms require wide and/or long circuits,
so it will be essential to suppress errors that only emerge
at scale. These examples illustrate that mirror circuits
can be a powerful tool for understanding these emergent
e↵ects.

(This should probably tie in more with our orginal
question). The errors that limit the performance of quan-
tum computers can exhibit complex structures. Ignoring
these structures — by summarizing performance with an
error rate per operation — can lead to grossly inaccu-
rate performance predictions. So, until all complex error
phenomena are suppressed, the capability of a quantum
computer to run any specific algorithm cannot be as-
sessed with generic tests. Instead, accurate assessment
of a device’s performance requires diverse and carefully
designed benchmarks that probe the complex landscape
of its capability set. The ongoing transition to 50+ qubit
hardware brings with it the potential for revolutionary
quantum speedups,1 but going beyond the reach of clas-
sical simulations also introduces fundamental challenges
for hardware testing. In this new regime, scalable, e�-
cient and flexible methods for measuring and summariz-
ing device capabilities — like those we have introduced
here — will become indispensable.
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Going forward: Measuring QC performance
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Benchmarking and characterization remain separate (and complementary) 

We are going to need them both:  characterization of low-level properties 
to predict performance on circuits, and benchmarks to measure it. 
                   (Eventually, these had better converge…) 

We are rapidly developing new ideas about how to measure and 
benchmark the overall performance of quantum processors!   
There have been major discrete advances just in the past few years. 

We need more creative benchmarks — and we need them with clear 
statements about “What, exactly, does this benchmark measure?”


