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Abstract

Testbed-class quantum computers -- fully programmable 5-50 qubit systems -- have burst
onto the scene in the past few years. The associated surge in funding, hype, and
commercial activity has spurred interest in “benchmarks” for assessing their performance.

Unsurprisingly, this has generated both a number of scientifically interesting ideas and a
lot of confusion and kerfuffle. | will try to explain the state of play in this field -- known
historically as “guantum characterization, verification, and validation (QCVV)” and more
recently and generally as “quantum performance assessment” -- by:

» briefly reviewing its history,

» explaining the different categories of benchmarks and characterization protocols, and
» identifying what they're good for.

The overarching message of my talk is that these are distinct tools in a diverse toolbox --
almost every known protocol and benchmark really measures a distinct and particular
thing, and we probably need more of them, not fewer.



I made a Bibliography

Farly this year, 1 set out to collect every paper every written about
assessing performance of digital quantum computing components,

which is my best attempt to describe my scientific briar patch.

As of March 18, I collected 1535 sources from 1957 - 2020.

e 1170 journal articles

e 276 arxiv preprints

e J37 PhD and masters theses
o 29 conference papers

e 13 book chapters

e 7 books
e 1 NASA report, 1 set of lecture notes, and 1 poster.
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I classified them.

The number of papers in a
category is proportional to
the area of the circle.
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Does this define what’s important?

Taken at face value, this seems to suggest that we should spend the

next hour talking about state tomography and optical CV systems.

But this is just a historical artifact.
Scientists spent 20 years writing about
tomography of Wigner functions because
they didn’t have anything better to do.

é )

But now we have actual
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“Metrics & Benchmarks” are very exciting

Quantum computing has gained a lot of funding, hype, and engineering.
Now many people want metrics and benchmarks, in order to:

- Quantify how good quantum computers are,

- Determine which of two quantum computers is better,
- Measure progress (toward betterness) over time,

- 777

- Profit!

Maybe these are not the best questions to ask.
Let’s consider some questions that “benchmarks” could address.



Some questions we’d like answered

Does this thing work? What does this thing do?

. . ”
Does this thing do How can 1 make this thing better:

what you said it does? What’s wrong with this thing?

[s this thing good enough? What could I do with this thing?

. . What will happen when I use this thing?
How well does this thing work?

How many of these things would I need?

Which of these things is better? What can this thing do?
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Testing
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Some questions we’d like answered

Characterization

Testing

Does this thing work? What does this thing do?

. . ”
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Benchmarking



Protocols est omnis divisa in partes tres

Tests Characterization

* Certify or verify a property Protocols
* Report “yes” or “no’’. * Measure all aspects of a thing’s function

* Are conceptually simplest * Provide rich detail about faults/behavior
* Can be fraught in practice * Intended to predict all possible uses
* Generally require the most effort & data

Benchmarks

» Quantify how good something is, or how well it performs its function.
* Report one or more quantitative numbers.

* Are well-suited for comparing different things that do the same task.
* Are usually task-specific and don’t generally predict other tasks.



Broadly speaking, all these protocols

How {T / B / C} protocols work

follow the same pattern:

1.
2.

Run a test suite of circuits.
Repeat each circuit many times
and record statistics

Analyze the results.

Estimate vectors/matrices/scalars
or perform hypothesis testing.

5. Draw some conclusion about error performance.

In contrast to much CS literature, we are usually not worried about

prepare

apply gates
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cryptographic security or “Mechanical Turk” problems — we assume the data

is honest and faithful. But we do worry about systematic errors!




What *““things” are we talking about?

Does this thing work? What does this thing do?
How well does this thing work?

Quantum computers, obviously. Little ones now, bigger ones later.

But also components of quantum computers.
- qubits, subsets of qubits, or qudits
- individual logic operations
- Important subroutines
- and (in a slightly different sense), entire algorithms

And also (throughout the literature) other things with no relation to

quantum computing, like cavity modes and communication channels.
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Examples of “fully integrated” devices

Testbed-class digital quantum computers
- 5-50 qubits (27)
- Integrated programmable systems:
qubits + control + environment
- Designed to run general circuits

Future digital quantum computers

- NISQ platforms (504 qubits)
- Extrapolation into the future...

Analogue simulators

Quantum annealers (D-Wave)

|5



Examples of “fully integrated” devices

Testbed-class digital quantum computers

- 5-50 qubits (27)

- integrated programmable systems:

qubits + control + environment
- designed to run general circuits

Future digital quantum computers

- NISQ platforms (50+ qublts) |

Analogue simulators

Quantum annealers (D Wave)

- extrapolatlon mto the future
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There are
almost no
good reasons
to compare these
devices to each other.




We test, benchmark, characterize at 3 scales

Integrated
Quantum
Processors

Composite Elementary
Components Operations

Small (2-10) Gate set (1-2 qubits) 1-qubit gates

2-qubit gat
Medium (10-50) Subroutine qu 1, gaj -
Initialization /reset

Large (50+) Parity check Measurements
(stabilizer meas.)

QEC cycle (LogiQ) Non—cc?mputatlonal

operations (shuttle,

hide, cool, etc).




Which methods for which components?

Composite
Components/
Subroutines

Integrated

Elementary

Processors Operations

: hat Id usually not never
Testing what would e 8 eve
you test! .. useful perfect
s more detail
usually
Benchmarking need

more detail

feasible!
blg necessary?

Characterization
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Characterizing > Benchmarking > Testing

Benchmark metrics can usually be computed from tull characterization.
Binary property tests can usually be inferred from metrics.

This is usually wasteful and expensive:

- More detailed characterization requires measuring more things.
- Statistical uncertainty increases with more detail.

But some metrics/properties are only known as complicated functions of a

detailed characterization, e.g.: :
2-qubit GST gate estimate

o =» F=0.99
' 0 jo1] 0 ~~J o
2] ( {

- entanglement

¥ good!
" bad

- diamond norm

- logical error rate
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What does it mean for an

operation, component, or processor to ‘work’?
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Composite
Components/
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Integrated

Elementary
Operations

Processors

Testing

Benchmarking

Characterization

Process tomography
Detector tomography
Gate set tomography
Compressed sensing

Hamiltonian estimation
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Focus:

— ” Characterizing Operations

Note: There is significant overlap and ambiguity in experiments and the

literature between characterizing operations and benchmarking operations.

Tomography is often reduced to a benchmarking procedure, by ignoring the

detailed results and just extracting a fidelity.

|
|
|
|
|
|
ﬁ
; Randomized benchmarking is often promoted to a de facto characterization
|

procedure by using RB error rates in predictive models.

r e R e —————— . A R R - e R e R e R e - e e . e e - R e R 1
LT:-_ e e R R R e e R R R R R e R R J
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Composite
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Elementary
Operations

Integrated

Processors

Testing

Benchmarking

State tomography (!)
- compressed sensing
- MIPS tomography

- pure state tomography

Randomized benchmarking

Direct fidelity estimation
Cycle benchmarking
X-entropy benchmarking

|Ad hoc QEC stuff]
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Let’s talk about some benchmarks

In the rest of this talk, I'd like to examine the ideas that have been
proposed (so far) for “benchmarking” the holistic performance of

quantum processors.

I’'m not going to try and explain them all in detail!

Mostly, I want to point out why they’re all different.
And why we need to explore an even more diverse array of benchmarks.
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Let’s talk about some benchmarks

State tomography

Randomized benchmarking

Random circuit sampling (RCS) + cross-entropy benchmarking (XEB)
Quantum volume

Algorithms

Volumetric benchmarks
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State Tomography as a Benchmark

I'm surprised how often state tomography
is still used in Nature/Science papers.

Idea: demonstrate processor’s capability
by programming it to produce a particular

“Interesting” quantum state, and then use

state tomography to show that it did so.

DDDDDDDS DDDDDDDS
DDDDDDDD DDDDDDDD Héffner et al, Nature 438, 643 (2005)

This 1s a weak demo even in theory, since it only demonstrates one circuit.

But, in principle, “seeing the state” ought to provide great debugging info.

In practice, neither the state nor the tomography are pertect, so authors end

up reporting fidelity “F = 0.73(4)” m» the entire exercise is almost pointless.
33



Let’s talk about some benchmarks

State tomography

Randomized benchmarking

Random circuit sampling (RCS) + cross-entropy benchmarking (XEB)
Quantum volume
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Volumetric benchmarks
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Randomized Benchmarking

Clifford Randomized Benchmarking

Direct Randomized Benchmarking

/ ( Sequence of m compiled Clifford gates ) Inversion Clifford \

10) [H l P A( o O H \— I P l HI—

10) PHH p-®— P I &— P = H ® H | Hg

Standard RB runs many random | o slily - mld ey b gt 2
. . 0) Io H & . & H <>I 2 . P - P & H P

sequences of Clifford operations, | e T IRE T e,
\

(7

followed by a single inversion. | ————— Yo
:Oi_H nf 4 '\fp\fT\f‘h\fP\f l\f ) ool 7
The problem with doing this on | oy Eeb e e e | e
. . . 0) omL 4 I I 4 H P
N qubits 1s that each N-qubit 0B P eSS e

Clifford has to be compiled into a lot of elementary gates [O(N?)|.
For N>3, basically every Clifford RB circuit has p=0 of succeeding.

Direct RB is more scalable, but only to about N=10 qubits on current
state-of-the-art testbeds.
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Randomized Benchmarking

So what does it measure?

RB (or DRB) measures

the effective error rate per
circutt layer in random,

unstructured Clifford circuits.

1.0 A
e ——- 2 qubits, r=2.6(1)%
“o 3 qubits, r=4.3(2)%
—~ 0g5® TNao —-- 4 qubits, r=6.9(4)%
' p S :
qié ~.—— 5 qubits, r=16(3)%
oy ® N*‘~~
5 0.6 7 ® ‘~‘~4
s e o
O N,
Q . ®
n 047 \®
0 N °
v N q
= °o~.
~.e
oo -\ \\.\
—~ ..
O-O I 1 1
0 10 20 30
Q Sequence length (m) )

This is a meaningtul, well-motivated quantity.

4 B
@) (o
B, y
-
0.2 A
) -®—- Predicted
% —4— Observed
s 0.1
o
2 _-4---—®
&)
0.0 | . .
2 3 4 5
@ Number of qubits (n) y

But it’s inextricably linked to the particular ensemble of circuits:

- random, unstructured Clifford-only circuits on all N qubits.

- depends on how each Clifford is compiled (or relative density of gates)

- only describes average behavior — specific circuits can be different.
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Let’s talk about some benchmarks

Random circuit sampling (RCS) + cross-entropy benchmarking (XEB)
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XEB / RCS

This is what Google used last year Q* = i =l W
# 0) Two-qubit gate:
to demonstrate quantum supremacy. 35 a B Loy s Y
q p y #*Q*_ |0>\/W __- T I'I | Z contro [
W B O B TS Ol
Circuits are similar to DRB, but use Sl R e S '
non-Clifford gates, and alternate layers
of 1-qubit and 2-qubit gates. a ., N
: vese . b . p | wesee. B ¥ L ;
i dripbely || Bl

These circuits scramble local errors,
and (ideally) produce states that look

very much like Haar-random ones

ntropy benchmarking fidelity, 7,

-
<

OO ® E F GHE F G H |

_________________________

' ©®®®® A B CDCDAGB |

_________________________

° ’ ° ° '
102 UMD THERES
(unlike RB, there’s no inversion step!) &= s
é O Full circui t X Elided circuit -+ Patch t
O | QAR ER, FOSe, QEVIR, FoES, N SIS, SIS,
ooooooooooooooooooooooooooooooooo
oooooooooooooooooooooooooooooooooo
oooooooooooooooooooooooooooooooooo
F ] I hard di L 3RGOOG: SOGOOE: HOGHOE.
I
Alrously, these are nard to pre 1Ct. FOCEOE: 2OEEOE: 2L
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10 10 15 20 25 30 35 40 45 50 95 12 14 16 18 20
Number of qubits, n Number of cycles, m
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Let’s talk about some benchmarks

State tomography

Randomized benchmarking

Random circuit sampling (RCS) + cross-entropy benchmarking (XEB)
(Quantum volume

Algorithms

Volumetric benchmarks
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Quantum Volume

physical depth

IBM proposed quantum volume as the increases with d i“‘;‘r’::;?o‘:ith
first intentional holistic benchmark. l /
— —

One number: describes dimension of the 0)

. . 0) SU(4) sui) | (| Su(4)
Hilbert space that can be accessed uniformly. N \
|V vs log( V) is confusing...| 0)4 T H SUM LT su@ '(} m

Oi_ SU(4) SU(4) .) SU(4)

-

Specifies yet another class of

minimally-structured “random” circuits: ! 2

- width and depth vary together as d,
- specified by logical operations, not physical gates
- physical depth can be quite a bit larger than logical!

40
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Quantum Volume vs RCS / XEB

1 »
:

Are Google’s and IBM’s benchmarks measuring the same thing?

- Both produce random states, and use non-Clifford gates.
- Success metrics (heavy-output probability and “linear cross-entropy”) are
nominally different, but actually closely related and roughly equivalent).

QV circuits are highly compilation-dependent (RCS are not).
QV circuits are much deeper (for given width) than you might expect.

RCS allows independently varying width /depth.
RCS is very good at scrambling errors; QV depends on compilation.
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Let’s talk about some benchmarks

State tomography

Randomized benchmarking

Random circuit sampling (RCS) + cross-entropy benchmarking (XEB)
Quantum volume

Algorithms

Volumetric benchmarks
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Algorithms as a Benchmark

Classical benchmarks are usually a basket of real-world tasks.

There’s a long history of running [tiny| algorithms on quantum processors.

In principle, this is a great idea:

- We expect algorithm circuits to behave different from random ones.
- Algorithms would properly test the whole system including compiler.
- Running algorithms would allow benchmarking quantum vs classical!

In practice, it’s premature:

- Testbed processors can’t run any meaningful algorithms yet.
- Algorithms and compilers are changing too fast for stable benchmarks.
- Most promising algorithms are hybrid and don’t just test the quantum processor.
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Algorithms as a Benchmark

Benchmarks based on algorithms / applications are clearly the future!
But we need to develop a systematic framework for building them, starting

by asking “What aspects of performance do we want to measure?”

Quantum Volume is an nice early step toward this — it attempts to
synthesize several distinct and important properties (error rate, error type,

connectivity, programmability, compiler efficiency) in a single number.

But we need to understand (and benchmark) these properties separately too,

before we can intelligently mix them to simulate application performance.

We need more study of what impacts algorithm performance.
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Let’s talk about some benchmarks

State tomography

Randomized benchmarking

Random circuit sampling (RCS) + cross-entropy benchmarking (XEB)
Quantum volume

Algorithms

Volumetric benchmarks
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Volumetric Benchmarks

e In many circumstances, what we want to know about a quantum processor 1is:

“What is its capability — what circuits can it run with high success probability?”’

al0] 1) —

e 'This is largely determined by three properties of the circuit: L)

al1] o — F

- width (number of qubits) — |

al2] ) %

- depth (number of clock cycles) a1 o —J?

- structure (what kind of circuit is it?) depth = 9

e (Quantum volume measures ability to run random square (width = depth) circuits.

4
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Volumetric Benchmarks

Quantum volume seeks a single-number answer

But volume usually doesn’t capture the full range of a
processor’s capability — or limitations.

We introduced volumetric benchmarks to measure

ability to run all circuit shapes, of any structure.
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Going forward: Measuring QC performance

Benchmarking and characterization remain separate (and complementary)

We are going to need them both: characterization of low-level properties
to predict performance on circuits, and benchmarks to measure it.

(Fventually, these had better converge...)

We are rapidly developing new ideas about how to measure and
benchmark the overall performance of quantum processors!

There have been major discrete advances just in the past few years.

We need more creative benchmarks — and we need them with clear

statements about “What, exactly, does this benchmark measure?”
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