Keep your distamce Wash your bands

=

Y v ee Cryptanalysis

of Candidate
Program
Obfuscators

Yilei Chen
[VISA Research]

"1 2020 Simons Program on Lattices

Cryptanalysis
of Candidate
Program
Obfuscators

Yilei Chen
[VISA Research]

2020 Simons Program on Lattices

2000

Zero-Knowledge and Code Obfuscation
Hada

2001

On the (Im)possibility of Obfuscating Programs
Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, Yang

2013

Candidate Multilinear Maps from Ideal Lattices
Garg, Gentry, Halevi

Candidate indistinguishability obfuscation and functional
encryption for all circuits
Garg, Gentry, Halevi, Raykova, Sahai, Waters

2013

Start the age of discovery in Cryptoland

(assuming the mmaps and iO candidates are secure)

Multilinear maps fa @s@® Obfuscation

Candidate Multilinear Maps from Ideal Lattices
Garg, Gentry, Halevi

Candidate indistinguishability obfuscation and functional
encryption for all circuits

Garg, Gentry, Halevi, Raykova, Sahai, Waters

2013 - 2015 Watermarking

Deniable encryption A
i | _ Instantiating
unctional encryption random oracles

A

>
Multilinear maps s Obfuscation

Delegate RAM
v computation

Witness encryption Broadcast v with privacy
encryption

Hardness of finding
Nash Equilibrium

2013 - 2015 Watermarking

Deniable encryption A
Instantiating

Functional encryption \ random oracles

“Central hub” of cryptography I

$ /& J Delegate RAM
computation
Witness encryption Broadcast with privacy
encryption
Hardness of finding

Nash Equilibrium

Are the mmaps / obm
candidates secure?/

Multilinear maps S A/>N\ ¥ Obfuscation

2013 - 2015

Multilinear maps => Obfuscation

Candidate [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13]
Idealized multilinear maps => VBB [Barak, Garg, Kalai, Paneth, Sahai 14]
Multilinear Subgroup Elimination =>i0 [Gentry, Lewko, Sahai, Waters 15]

Multilinear maps > Obfuscation

2013 - 2015

Multilinear maps => Obfuscation

Candidate [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13]
Idealized multilinear maps => VBB [Barak, Garg, Kalai, Paneth, Sahai 14]
Multilinear Subgroup Elimination =>i0 [Gentry, Lewko, Sahai, Waters 15]

Multilinear maps > Obfuscation

VAN

Candidate multilinear maps from Lattice-ish problems
Garg, Gentry, Halevi 2013 [GGH 13]

Coron, Lepoint, Tibouchi 2013 [CLT 13]

Gentry, Gorbunov, Halevi 2015 [GGH 15]

?7??

2015

Multilinear maps => Obfuscation

Candidate [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13]
Idealized multilinear maps => VBB [Barak, Garg, Kalai, Paneth, Sahai 14]
Multilinear Subgroup Elimination =>i0 [Gentry, Lewko, Sahai, Waters 15]

> Obfuscation

Candidate multilinear maps from Lattice-ish problems
Garg, Gentry, Halevi 2013 [GGH 13]

Coron, Lepoint, Tibouchi 2013 [CLT 13]

Gentry, Gorbunov, Halevi 2015 [GGH 15]

222272

Cryptanalysis of the Multilinear Map over the Integers
Cheon, Han, Lee, Ryu, Stehle [Eurocrypt 2015]

2015
Status of multilinear maps and iO

N party key iO [GGHRSW 13]
exchange

GGH13 Standing Standing

CLT13

GGH15 Standing Standing

Cryptanalysis of the Multilinear Map over the Integers
Cheon, Han, Lee, Ryu, Stehle

Zeroizing without low-level zeroes: New MMAP attacks and their limitations
Coron, Gentry, Halevi, Lepoint, Maji, Miles, Raykova, Sahai, Tibouchi

2016
Status of multilinear maps and iO

N party key iO [GGHRSW 13]
exchange
GGH13 Partial attack
[Miles, Sahai, Zhandry 16 |
CLT13
GGH15 Standing

Cryptanalysis of GGH map
Hu, Jia

Annihilation attacks: Cryptanalysis of indistinguishability obfuscation over GGH13
Miles, Sahai, Zhandry

Cryptanalysis of GGH15 multilinear maps
Coron, Lee, Lepoint, Tibouchi

2013 - 2015 Watermarking

Deniable encryption A
i | _ Instantiating
unctional encryption random oracles

A

>
Multilinear maps s Obfuscation

Delegate RAM
v computation

Witness encryption Broadcast v with privacy
encryption

Hardness of finding
Nash Equilibrium

2015 Watermarking

Deniable encryption +
| _ Instantiating
Functional encryption random oracles

A

Multilinear maps

2016 Watermarking

Deniable encryption
Instantiating
random oracles

Functional encryption

2016

What was the choice you made in your life?

2016- 1962

|

‘3
: B
d

was the choic nade in your life?
| ™ o

ol S \
—— R

| ——

l

They're just kids, they,hadfo

«4/

describe theirfaverite animals.

Vivre sa vie (Jean-Luc Godard)

2016- 1962

One little girl of eight
chose a-bim

Vivre sa vie (Jean-Luc Godard)

~ Itwent: "A bird is an animal
with an inside and an outside.

-

e

a
!
!
!
l

|
Remove the outside, ":
there's the inside.

¢ 1

Remove the inside and you see

the soul. ‘%

2016

My choice: See the soul of obfuscation.

Today: the soul of obfuscation

> QOverview of obfuscators and attacks

> Two attacks on obfuscators based on GGH15

Cryptanalyses of candidate branching program obfuscators
Chen, Gentry, Halevi [Eurocrypt 2017 |

GGH15 beyond permutation branching programs

Chen, Vaikuntanathan, Wee [Crypto 2018 |

> Explain two interesting open problems

“NTRU without mod qg”
Better “rank attack” on Obfs & PRFs using quantum

> Overview
>>> How are the iO candidates doing?
>>> \What are the general attack strategies?

>>> Why focus on GGH157

i0O => CRYPTO since 2013 Watermarking

Deniable encryption A

Functional Encryption Instantiating
random oracles
A

>
Multilinear maps Obfuscation

Delegate RAM
v computation

Witness encryption Broadcast v with privacy
encryption

Hardness of finding
Nash Equilibrium

?2?2=>1i0

2020: none of them are “well LWE + bilinear maps
understood”, still exploring. + Low degree “PRG”

LWE + Constant degree PRG + l Candidate using lattices
Constant degree (>=3) multilinear maps
Noisy-Linear FE —

7

Algebret\ic* / Candidate using affine
geometry determinant program
Succinct Functional Encryption

Candidates A Candidate using
using lattices special FHE

\ v

Multilinear maps Obfuscation

Candidate using
tensor product®

-«

Black-box pseudo-free groups*
[Canetti, Vaikuntanathan, BC 6]

* not published in peer-reviewed conferences

General strategies of breaking iO:

In common:
0. Find two programs that are functionally equivalent, then
distinguish the obfuscated version of them :)

General strategies of breaking iO:

In common:

0. Find two programs that are functionally equivalent, then
distinguish the obfuscated version of them :)

1. Find equations over Z, Q, instead of over Fa.

2. Turn high degree equations into linear equations.

Looking ahead, there are many ways of preventing (2), but (1)
seems to be hard to prevent in all the “noisy” iO candidates.

General strategies of breaking iO:

In common:

0. Find two programs that are functionally equivalent, then
distinguish the obfuscated version of them :)

1. Find equations over Z, Q, instead of over Fa.

2. Turn high degree equations into linear equations.

Looking ahead, there are many ways of preventing (2), but (1)
seems to be hard to prevent in all the “noisy” iO candidates.

Interesting attacks on specific components of obfuscation:

1. Lattice attacks:
Trace attack on the NTRU variant used in GGH13 [Cheon, Jeong, Lee 16]
Subfield attacks on overstretched NTRU [Albrecht, Bai, Ducas 16]

2. SOS attacks on low-degree “PRGs”: [Lombardi, Vaikuntanathan 17], [Barak,
Brakerski, Komargodski, Kothari 18], [Barak, Hopkins, Jain, Kothari, Sahai 19]

Why focus on GGH15 (Gentry, Gorbunov, Halevi)?

Traitor Tracing
Direct construction from LWE
[Chen, Vaikuntanathan, [Goyal, Koppula, Waters 18]
Waters, Wee, Wichs 18]

Private Constrained
Pseudorandom Function Compute & Compare Obfuscation

(a.k.a. Lockable Obfuscation)

[Canetti, Chen 17] [Wichs, Zirdelis 17]
[Goyal, Koppula, Waters 17]

Safe modes of GGH15
multilinear maps

|

Full-fledged
Obfuscation

Why focus on GGH15 (Gentry, Gorbunov, Halevi)?

Traitor Tracing
Direct construction from LWE

[Chen, Vaikuntanathan, [Goyal, Koppula, Waters 18]
Waters, Wee, Wichs 18]

Private Constrained
Pseudorandom Function Compute & Compare Obfuscation

(a.k.a. Lockable Obfuscation)

[Canetti, Chen 17] / [Wichs, Zirdelis 17]
[Goyal, Koppula, Waters 17]
Safe modes of GGH15

l) “, Lattices, Multilinear Maps and Program Obfuscation
; Simons Institute + 343 views + Streamed 2 months ago

Upcoming:

Yilei Chen (Visa Research) https://simons.berkeley.edu/talks/advanced-lat

abe-etc Latices: . 9:45 Venkata Koppula
* 3 YouTube > Lockable obfuscation

Constraint hiding constrained PRFs for NC1 from LWE
ThelACR + 277 views * 2 years ago

Paper by Ran Canetti and Yilei Chen presented at Eurocrypt 2017. See 1 O : 5 0 R I S h a b G Oya I
https://iacr.org/cryptodb/data/paper.php?pubke u vouTuhe > Tra ito r TraCi n g

- Remove the inside and you see
the soul." |

Start now: the soul of obfuscation
a la [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13 | + GGH15 multilinear maps

Candidate iO from [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13 |
(0) Representation of plaintext program.

(1) Safeguard 1

(2) Safeguard 2

(3) Safeguard 3

(4) Wrap (0-3) by multilinear maps (GGH13, CLT13, or GGH15)

Safeguards aim at randomizing the plaintext program, preventing illegal
operations; mmaps is the source of “computational hardness”

8 g51/°" gSk -> gl_ls

Multilinear maps in the
group representation

Candidate iO from [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13 |
(0) Representation of plaintext program: Oblivious branching program
(1) Safeguard 1

(2) Safeguard 2

(3) Safeguard 3

(4) Wrap (0-3) by multilinear maps (GGH13, CLT13, or GGH15)

Barrington 1986: log-depth boolean circuits => matrix branching programs

Example: how to represent an AND gate

'

Input wire 1 Input wire 2 Input wire 1 Input wire 2

Candidate iO from [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13 |
(0) Representation of plaintext program: Oblivious branching program
(1) Safeguard 1

(2) Safeguard 2

(3) Safeguard 3

(4) Wrap (0-3) by multilinear maps (GGH13, CLT13, or GGH15)

1 Bl,l BZ,l BB,l B4,1

llf °)

unction branch
O B1,0 BZ,O B3,O B4 0
i 1 2 1 2
Evaluate: [|B=1?
1 Bll,l B’2,1 B’3,1 B'4,1 y b h”
)))) Dummy branc

O B 1,0 B 2,0 B 3,0 B 40 y

AllB', =

Candidate iO from [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13 |
(0) Representation of plaintext program: Oblivious branching program
(1) Safeguard 1: Kilian randomization [Kilian 88]

(2) Safeguard 2

(3) Safeguard 3

(4) Wrap (0-3) by multilinear maps (GGH13, CLT13, or GGH15)

-1 -1 -1
1 Bl,lKl |<1 B2,1K2 K2 BB,lKB K3 B4,1
-1 -1 -1
O B1,OK1 |<1 BZ,OKZ KZ B3,OK3 K3 B4,0
! 1 2 1 2 Random
matrix K, K’

’)) -1p2) 7 -1p2)) -1p2
1 B K Kl BZ,lKZ K2 BB,lKB K3 B4,1
)) 7 -1p2) 7 -1p) 7 -1p2
0 B K Kl BZ,OKZ K2 BB,OKB K3 B4,0

i 1 2 1 2

Candidate iO from [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13 |
(0) Representation of plaintext program: Oblivious branching program
(1) Safeguard 1: Kilian randomization

(2) Safeguard 2: Bundling scalars (against mix-input attack)

(3) Safeguard 3

(4) Wrap (0-3) by multilinear maps (GGH13, CLT13, or GGH15)

V4 V4

-1 -1 -1
1 a. .B.. K az,1K1 Bz'le 33,1K2 B3’1K3 a4'1K3 B

L1l 41 a1,1a3,1= a’1,13’3,1
-1 -l -1 a, a,.=a_ a
0 a1,oB1,oK1 a2,0K1 Bz,oKz a:-;,oKz Bs,oKs a4,0K3 B4,0 10730 10 3,0
. 1 5 1 5 a2,1a4,1= a’2,1a’4,1
| =
az,oa4,o a 2,oa 4,0
’)))) -1p2))) -1p»))) -1p»
1a 1,1B 1,1|< 1 d 2,1|< 1 B 2,1|< 2 d 3,1I< 2 B 3,1K 3 d 4,1I< 3 B 4,1
))))) -1p»))) -1p») ’) -1p2
0 a 1,oB 1,0K 1 d 2,0I< 1 B 2,0K 2 d 3,0K 2 B 3,0K 3 d 4,0K 3 B 4,0

i 1 2 1 2

Candidate iO from [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13 |

(0) Representation of plaintext program: Oblivious branching program
(1) Safeguard 1: Kilian randomization

(2) Safeguard 2: Bundling scalars (against mix-input attack)
(3) Safeguard 3: random diagonal entries and bookends
(4) Wrap (0-3) by multilinear maps (GGH13, CLT13, or GGH15)

-1 -1 -1
1 a1,1J Kl a2,1K1 K2 a3,1K2 K3 a4,1K3 -

-1 -1 -1
0 al,OJ I<1 aZ,OKl K2 a3,0K2 K3 a4,0K3 -

i 1 2 1 2

Zoom in: random diagonal entries and bookends

| - Vv
- K K

*

51,1_ al,lj[B, ,
]Kl 1 Sl,l S21 Shl
Ar * 0 S 'S .. s
—_ 1,0 2,0 h,0
SZ,l a2,1K1 [Bz,l]Kz —— |

_ 1 *
Sh,l_ ah,lKh-l L, L

Candidate iO from [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13 |
(0) Representation of plaintext program: Oblivious branching program
(1) Safeguard 1: Kilian randomization

(2) Safeguard 2: Bundling scalars

(3) Safeguard 3: random diagonal entries and bookends

(4) Wrap (0-3) by multilinear maps (GGH13, CLT13, or GGH15)

-1 -1 -1
1 a1,1J B1,1K1 a2,1K1 Bz,le a3,1K2 B3,1K3 a4,1K3 B4,1L

-1 -1 -1
0 a1,0J B1,OK1 a2,OK1 BZ,OKZ a3,OK2 BS,OK3 a4,OK3 B4,OL

i 1 2 1 2
) 'p?))) -1p2))) -1p2 ’)) -1p2 ’
1 a 1,1J B 1,1K 1 d 2,1K 1 B 2,1K 2 a 3,1K 2 B 3,1K 3 d 4,1K 3 B 4,1L
) '’p?))) -1p2 ’ ’) -1p»)) -1p2)
O d 1,0J B 1,0K 1 d 2,0K 1 B 2,0K 2 d 3,0K 2 B 3,OK3 d 4,0K 3 B 4,OL

i 1 2 1 2

Candidate iO from [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13 |
(0) Representation of plaintext program: Oblivious branching program
(1) Safeguard 1: Kilian randomization

(2) Safeguard 2: Bundling scalars

(3) Safeguard 3: random diagonal entries and bookends

(4) Wrap (0-3) by multilinear maps (GGH13, CLT13, or GGH15)

-1 -1 -1

1 a1,1J B1,1K1 a2,1K1 B2,1K2 a3,1K2 B3,1K3 a4,1K3 B4,1L
-1 -1 -1

0 al,OJ B1,0K1 a2,0K1 Bz,oKz a3,0K2 B3,0K3 a4,oK3 B4,o|‘

i 1 2 1 2

Already lost?

Then remember “Barrington”
and “bundling scalars”

Recap of GGH15 multilinear maps
[Gentry, Gorbunov, Halevi 15]

Y

Small [Unclear

L A]

Learning with errors [Regev 2005 |]
Search LWE: Given A, Y =SA+E mod q, find S,
Decisional LWE: Distinguish A, Y from random.

mod g

What is GGH15 trying to do?

S Sk _~ ol 1S
g,8"..8->8 A, S A+E ..., S A+E ->[|SA+E

Multilinear maps in the

, GGH15: (Ring)LWE analogy
group representation

The difficulty is to compute the map without revealing the secrets.

GGH15 for 1 multiplication Small 'Unclear

Encoding(S,):

GGH15 for 1 multiplication Small 'Unclear

Y,=S.A +E, Y,=S,A,+E,

Encoding(S,): 2 steps
1. ComputeY. =5 A+E

GGH15 for 1 multiplication Small 'Unclear

D 1 Y, =S A tE, D 2 Y, =S,A+E,

Encoding(S,): 2 steps

1. ComputeY. =5 A+E

2. Sample (by the trapdoor of A_,) small D. such
that A_D-=Y.

D. = Encoding(S,)

GGH15 for 1 multiplication Small 'Unclear

D,

Functionality

Recall the goal: S A+E_,..., S A+E -> [|SA+E

GGH15 for 1 multiplication Small 'Unclear

D,

Functionality

GGH15 for 1 multiplication Small 'Unclear

D,

Functionality

GGH15 for 1 multiplication Small 'Unclear

DZ
S2
Functionality
D2
+ E
: D2
“small”

D1,1

2,1

3,1

D

4,1

D1,O

2,0

3,0

D

4,0

secrets

A typical evaluation pattern for GGH15: subset product

S S

SZ,’I

83,1

S4,1

Sio

S20

Ss

S

N

Encodings

-+

“small”

Y, =S, A TE =
1,1 1,1 ™1 1, D4,1 Y4,1_84,1'6‘4-|-E4,1

]

D4,O Y4,0=S4,0A4

+
E4,0

117314 I8, 1K,

-1 -1 -1
1 5‘11,1J K1 a2,1K1 Kz a3,1K2 K3 a4,1K3 -

-1 -1 -1 |
0 al,OJ I<1 a2,0K1 Kz a3,0K2 K3 a4,0K3 -

i 1 2 1 2

[GGHRSW13]+[GGH15]

I?émove the inside and you s!ee
the soul." g

Where is the soul?
a la GGHRSW13 Obfuscation + GGH15 multilinear maps

Candidate iO from [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13 |
(0) Representation of plaintext program: Oblivious branching program
(1) Safeguard 1: Kilian randomization

(2) Safeguard 2: Bundling scalars

(3) Safeguard 3: random diagonal entries and bookends

(4) Wrap (0-3) by GGH15

-1 -1 -1

1 a1,1'] B1,1K1 a2,1K1 B2,1K2 a3,1K2 B3,1K3 a4,1K3 B4,1L
-1 -1 -1

0 al,OJ Bl,OKl a2,0K1 B2,0K2 as,oKz B3,0K3 a4,oK3 B4,0L

i 1 2 1 2

Attack: weakness of GGH15 + the weakness in (0)-(3)

Key idea of the attack (from [Coron, Lee, Lepoint, Tibouchi 16])

D2 mod q

S1 E. |+| E- D

Key idea of the attack (from [Coron, Lee, Lepoint, Tibouchi 16])

M| D, x| D, | moda

S1 E. |+| E- D

S1|| S2

If |si||s2]|=0, then

WM | D, x| D, | moda

S1 E. [+| E- D : holds over Z

Key idea of the attack (from [Coron, Lee, Lepoint, Tibouchi 16])

If |s1||s2|=0, then

M| D, x| D, | modg

S1 E> |+| E- D

2

Key idea of the attack (from [Coron, Lee, Lepoint, Tibouchi 16])

If |s1||s2|=0, then

M| D, x| D, | modg

S1 E> |+| E- D

2

E>

81‘ E1 |X

Key idea of the attack (from [Coron, Lee, Lepoint, Tibouchi 16])

Let | Wx

X< D (x| D |modq

X Z
E:

Sx| Ex |[X

N

Key idea of the attack (from [Coron, Lee, Lepoint, Tibouchi 16])

Let | Wx

X< D (x| D |modq

X Z
E:

D

Sx| Ex |[X

If we have more inputs at x and z, say x1, x2, x3, z1, z2, ... then

Wix1 z1 ‘ W1 z2 SX1 Ex1 Ez1 E
W2 21 ‘ W2 22 — Sx2 Exo X D D
Wx3 z1 ‘ Wx3 z2 Sx3 Ex3 Z1 22

Key idea of the attack (from [Coron, Lee, Lepoint, Tibouchi 16])

By evaluating on the combinations of x1, x2, x3, z1, z2, ..., we got

W1 21 ‘ Wix1 22 Sx1 Ex E21 E
W2 21 ‘ W2 22 — Sx2 Ex2 X D D
Wx3 z1 ‘ Wx3 z2 SX3 Ex3 Z1 22

In obfuscation, Sxi contains useful information,
Assuming the rest are random (and small)

-1 -1 -1

1 a J K az,1K1 K2 a3’1K2 K3 a4,1K3 L
-1 -1 -1

O | a J K az,oK1 K2 aa,oKz K3 a4,OK3 L

i 1 2 1 2

Key idea of the attack (from [Coron, Lee, Lepoint, Tibouchi 16])

By evaluating on the combinations of x1, x2, x3, z1, z2, ..., we got

W X K Z

Denote the whole matrixas W =X * Z.

Key idea of the attack (from [Coron, Lee, Lepoint, Tibouchi 16])

By evaluating on the combinations of x1, x2, x3, z1, z2, ..., we got

W X K Z

Denote the whole matrixas W =X * Z.

In [Chen, Gentry, Halevi 17], collect W s.t. Xis tall, Z is square,
compute the left kernel of W, then extract the bundling scalars.

In [Chen, Vaikuntanathan, Wee 18], collect W s.t. X and Z are square,
compute the rank of W, reveal information about the matrix BP directly.

More details about [CGH 17]

Target: Distinguish these two programs

1 I I I I I I
Program 1
oI I 1IHI I I
C D,
Goal of the attack: i 1 2 1 2 4 3
extract the bundling
scalars in the X zone, run
the mixed-input attack.
1 I I I I I I
" ~
o(P I P')I I I
Program 2 ~— _
i 1 2 1 2 4 | 3
hereP # T
X zone Zzone

Attack GGHRSW13+GGH15
Step 1: Accumulate a matrix W via many evaluations that yield zero.

l.e., evaluate on 000|000, 001|000, 010|000, ... 000|001, 001|001, ...

D1,1 D2,1

D1,o Dz,o

D,1,1 D’2,1

D’1,o D,z,o
X zone

ut "

1,1...W
21

1,v

W2,v

u,v

Dh-1,1 Dh,1
Dh-1,0 Dh,o
D h-1,1 D h,1
D’ ,

h-1,

D h,0
0
/ zone

w.=AD D_.-A D _.D'_ modq
N Xi~ z] Xi~ Z]

Attack GGHRSW13+GGH15
Step 1: Accumulate a matrix W via many evaluations that yield zero.
Step 2: Compute the left-kernel of W
(In the rest of the analysis in this talk, | will ignore the dummy branch.)

x1 x1 Z1 Ezv 1,1 " W1,V
2 ” ‘ 21 Way
Z1 ZV
S E ‘ ul""" Tuyv
XU XU
X zone / zone

w.=AD D_.-A D _.D'_ modq
N Xi~ z] Xi~ Z]

Attack GGHRSW13+GGH15
Step 1: Accumulate a matrix W via many evaluations that yield zero.
Step 2: Compute the left-kernel of W
(In the rest of the analysis in this talk, | will ignore the dummy branch.)

1 A4 W

X

FW=FX-Z=0=>F -X=0

(Z is square and full-rank whp)

Attack GGHRSW13+GGH15

Step 1: Accumulate a matrix W via many evaluations that yield zero.

Step 2: Compute the left-kernel of W: FW =FXZ =0 => FX=0

Step 3: From F, learn something about scalars

PP PPV
TR PP I

The useful equations:

v kin [1,d]
A N
A w
coefficients unknowns

Use the homogeneous feature, possible

to get a1,1a3,1/al,0a3,0’ a1,1a3,1/a2,1a4,1

x1 x1

Xu Xu

X

Sxi= axi J[*Bxi]Kx

where a =

a. .
] 1LXI)

Attack GGHRSW13+GGH15

Step 1: Accumulate a matrix W via many evaluations that yield zero.
Step 2: Compute the left-kernel of W: FW = FXZ =0 => FX=0

Step 3: From F, learn something about scalars

What we can get:

I
a1,1a3,1/a1,0a3,0] 1 L I I I I I I
a1,1a3,1/az,1a4,1 in Q[x]/¢(x) 0 I I I I : I I
What we want: | 1 p) 1 p) I 3 4
The small multiples of
each of them 1 1 2 3 | 4 F
3, 1,83,,8,0,8; 0000 |
1 I I I I|I I

Attack GGHRSW13+GGH15

Step 1: Accumulate a matrix W via many evaluations that yield zero.
Step 2: Compute the left-kernel of W: FW = FXZ =0 => FX=0

Step 3: From F, learn something about scalars

What we can get:

I

a1'1a3'1/a1’0a3’0 . 1 I I I I|I T
a1,1a3,1/az,1a4,1 in Q[x]/¢(x) 0 T I T T : I 1
What we want: | 1 p) 1 p) I 3 4
The small multiples of
each of them 11 21 3| 4 :1
,1,85,,8, 5,800 |

1 I I I I|1 1
For certain parameters, can |
use averaging attack. 0 P I Pt I | I 1
But in general, need quantum

| 1 2 1 2|3 4

poly or classical subexp!

NTRU problem:

Given h =f/g in Zq[x]/(l)(x), where f, g in Z[x]/d(x) with
small coefficients, find small multiples of f and g.

Open problem 1:
“NTRU problem without mod q”

Given h=f/g in , where f, gin Z[x]/$(x) with small
coefficients, find small multiples of f and g in Z[x]/d(x).

Open problem 1:

“NTRU problem without mod q”

Given h=f/g in , Where f, giin Z[x]/$(x) with small
coefficients, find small multiples of f and g in Z[x]/d(x).

Example: (Sage)

n = 8

P.<x> = ZZ["x"]

phi = x*n + 1

f = P.random element (x=-100, y=101, degree=n-1)

g = P.random element (x=-100, y=101, degree=n-1)

h = (f * g.change ring(QQ) .inverse mod(phi)) % phi

print(f, g, h)

-5*x"7 + 11*x"6 - 38*x"5 + 13*x"4 + T72*x"3 - T7*x"2 - 88*x + 23

-24*x"7T + x76 - 4*x”5 - 40*x"4 + 99*x*3 + 30*x"2 - 33*x + 96
-5967273975693765/23276530089158977*x"7 + 21013131762418457/23276530089158977*x"6 +
16763779410495968/23276530089158977*x"5 + 4594423085422955/23276530089158977*x"4 -
19985854142124613/23276530089158977*x"3 - 19258587086998750/23276530089158977*x"2 +
5782611576011603/23276530089158977*x + 28754308083338628/23276530089158977

Open problem 1:

“NTRU problem without mod q”

Given h=f/g in , Where f, giin Z[x]/$(x) with small
coefficients, find small multiples of f and g in Z[x]/d(x).

If given “many” f1/g, f2/g, ... fn/g with the same g, then
the problem can be solved using the averaging attack.

Summary of the [CGH 17] attack on GGHRSW13+GGH15

Step 1: Accumulate a matrix W via many evaluations that yield zero.

Step 2: Compute the left-kernel of W: FW = FXZ =0 => FX=0

Step 3: From F, learn the ratios of the scalars.

Step 4: (Quantum poly. or classically sub.exp.) from the ratios, find small scalars.

Two limitations: 1 I I I 1|1 1 1 1
1. Need quantum poly or |
classical subexp in the o 1 1 I/1 | 1 1 11
last step. i 1 2 1 213 4 3 4
2. Only applies to BPs |
where the indices can
be partitioned in X |
and Z zones. 1 I I I 1|1 1 1 I
o P I P! I : I I I I
| 1 2 1 2|3 4 3 4

Summary of the [CGH 17] attack on GGHRSW13+GGH15

Step 1: Accumulate a matrix W via many evaluations that yield zero.

Step 2: Compute the left-kernel of W: FW = FXZ =0 => FX=0

Step 3: From F, learn the ratios of the scalars.

Step 4: (Quantum poly. or classically sub.exp.) from the ratios, find small scalars.

Two limitations: 1 I I I 1|1 1 1 1

1. Need quantum poly or |
classical subexp in the o 1 1 I/1 | 1 1 11
last step. 1.2 1 213 4 3 4

2. Only applies to BPs

where the indices can |

be partitioned in X |
and Z zones. 1 I I I 1|1 1 1 I
_ P I Pl I | I I I I

Overcomed in [CVW 18] |
| 1 2 1 2|3 4 3 4

| CVW 18]: “rank attack”

Attack GGHRSW13+GGH15

Step 1: Accumulate a matrix W via many evaluations that yield zero.
Step2-Comptute-theteftkerneto-WHEEHI7

Step 2: Compute the rank of W:) [CVW 18]

x1 x1 ‘ Ez1 EZV W1 1" W1 Vv
W.,...W
X2 X2 ‘ 2,1 2V
X D . D -
Z1 ZV

S E ‘ Wu,1 Wu,v

XU XU

X zone / zone

w.=AD D_.-A D _D'_ modq
N Xi~ Z] Xi Z]

Attack GGHRSW13+GGH15
Step 1: Accumulate a matrix W via many evaluations that yield zero.

Step 2: Compute the rank of W :) The rank of W reveals the rank of “S”.

S=a J[slK S =a J[IK

Sx1 - i
Full | .

S Full rank
rank k 5 = W
whp e

S

X zone / zone

w.=AD D_.-AD D modq
N Xi— Zj Xi Zj

How to find two programs where this attack applies?

(Caveat: these two programs are not functionally equivalent.)

Program 1

i 2 3
Program 2
1 I | I

hereP # I

X zone

H

I I
I I
6 7
I I
I I
6 7
/ zone

How to find two programs where this attack applies?
(Caveat: these two programs are not functionally equivalent.)

. . Program 1
In the analysis, you will

I
see anintermediatestep | 1 1 T I I |
where for program 1, 0 I I I |
rank(W) depends on

I I

I I

whereas for program 2,
rank(W) depends on 0 I 1
I I |

hereP # I
P I X zone

I I
I I
6 7
I I
I I
6 7
/ zone

How to find two programs where inputs are not partitioned?

Program 1

1* I I I I
o* I I I I

I X1 Z1 X2 72

Program 2

1* I I I I

I X1 Z1 X2 72

hereP # I

How to find two programs where inputs are not partitioned?

The attack algorithm is the same,
except that dim(W) is bigger, and the
analysis is harder.

Program 1

1* I I I I
o* I I I I

I X1 Z1 X2 72

Program 2

1* I I I I

I X1 Z1 X2 72

hereP # I

How to find two programs where inputs are not partitioned?

The analysis uses a matrix-product switching trick Program 1
used in [Apon, Dottling, Garg, Mukherjee 17 |
& [Coron, Lee, Lepoint, Tibouchi 17] 1* I I I I
Given four matrices A, B, C, D where o* I T T T
B, C are square and of dimension n,
A, D are vectors of dimension n. I X1 | Z1 | X2 | Z2
Then

w = A*¥*B*C*D = u(A, C) * v(B, D), Program 2

where u and v are vectors of dimension n3.
1* I I T T

VS I X1 Z1 X2 72

I I M(P) I
hereP # I

How to find two programs where inputs are not partitioned?

VS

I I M(P) I

Implication: can switch the index from 1212
to 1122 by blowing up the dimension.

In general, if 123123...123 repeat c times,
the dimension of the matrix W is 2*{2c-1}.

Program 1

1* I I I I
o* I I I I

I X1 Z1 X2 72

Program 2

1* I I I I

I X1 Z1 X2 72

hereP # I

*Beyond iO: Rank attack can be used to break “PRFs” from matrix products.

1,1 2,1 3,1 4,1 51 6,1

1,0 2,0 3,0 4,0 B5,0 6,0

Here is a candidate PRF: F
Key: sample 2*c*L matrices { B., } of dimension w. (In the example, ¢ = 2, L=3)

On an L-bit input x, repeat x for c times, then do the subset-product evaluation.

*Beyond iO: Rank attack can be used to break “PRFs” from matrix products.

1,1 2,1 3,1 4,1 51 6,1

1,0 2,0 3,0 4,0 B5,0 6,0

Here is a candidate PRF: F
Key: sample 2*c*L matrices { B., } of dimension w. (In the example, ¢ = 2, L=3)
On an L-bit input x, repeat x for c times, then do the subset-product evaluation.

[Chen, Hhan, Vaikuntanathan, Wee 19]:
The rank attack runs in time w”{O(c)}. So when c is a constant, F is not a PRF.

The attack collects a matrix of dimension w”{2c}, then computes its rank. If the
rank is lower than some threshold, then it is not a random function.
We also simplify the proof of the matrix switching lemma.

Open problem 2:

Better rank attack for matrix PRFs or iO using quantum?
Or: Quantum advantage in the rank problem => breaking LWE?

Background:

> Quantum algorithms for deciding whether the rank is super high, or super low:
[Harrow, Hassidim, Lloyd 09], [Ambainis 12], [Belovs 11]
The precise runtime depends on the singular values of the matrix and others.

> Solving the rank problem of an exponential dimensional matrix

=>? => break all the PRFs computable in NC1?
This is based on two steps. First, use Barrington theorem to convert any NC1
circuit into a matrix branching program (of polynomially many input repetitions).
Second, use the algorithm in Section 3 of [Chen, Hhan, Vaikuntanathan, Wee 19]
to break all the PRFs based on matrix branching program in 2*{ O(r) } times, where
r is the time that the input repeats.

> [Zhandry 13] shows that the classical PRF computable in NC1 from [Banerjee,
Peikert, Rosen 12] is a PRF in the quantum-query model under LWE assumption.

Status of iOs under the framework of [GGHRSW 13]

Type of program | Simple Complex Very Complex
(branching programs) (read-once BP) (read-const-many BP) (read-n or dual-input BP)
GGH13 ' MSZ 16 [* ADGM 17 |* Standing

[CGH 17] CVW 18]
CLT13 CHLRS 15] [CLLT 17] Standing

[Coron etal. 15]
GGH15 [CGH 17] [CVW 18] Standing

Candidate iO from [Garg, Gentry, Halevi, Raykova, Sahai, Waters 13 |
(0) Representation of plaintext program: Oblivious branching program
(1) Safeguard 1: Kilian randomization

(2) Safeguard 2: Bundling scalars

(3) Safeguard 3: random diagonal entries and bookends

(4) Wrap (0-3) by GGH15

In [Chen, Vaikuntanathan, Wee 18], we propose a variant of GGHRSW13.
The main differences are

(0) The oblivious branching program has to repeat the indices for n times.
(2) The “bundling factors” are non-commutative.

Attacked by [Cheon, Cho, Hhan, Kim, Lee 19] using statistical method,
fixed in [Chen, Hhan, Vaikuntanathan, Wee 19].

[Bartusek, Guan, Ma, Zhandry 18] provides a different variant that is also
standing right now.

Open problem 1:

“NTRU problem without mod q”

Given h=f/g in , Where f, giin Z[x]/$(x) with small
coefficients, find small multiples of f and g in Z[x]/d(x).

Open problem 2:

Better rank attack for matrix PRFs or iO using ?
Or: advantage in the rank problem => breaking ?

Keep yoar distance Wash your hands

o T - e

Thanks for
your time!

AVOI1d MASS TRANSPORT

- — y R e A

Yilei Chen
[VISA Reseach]

2020 Simons Lattices

