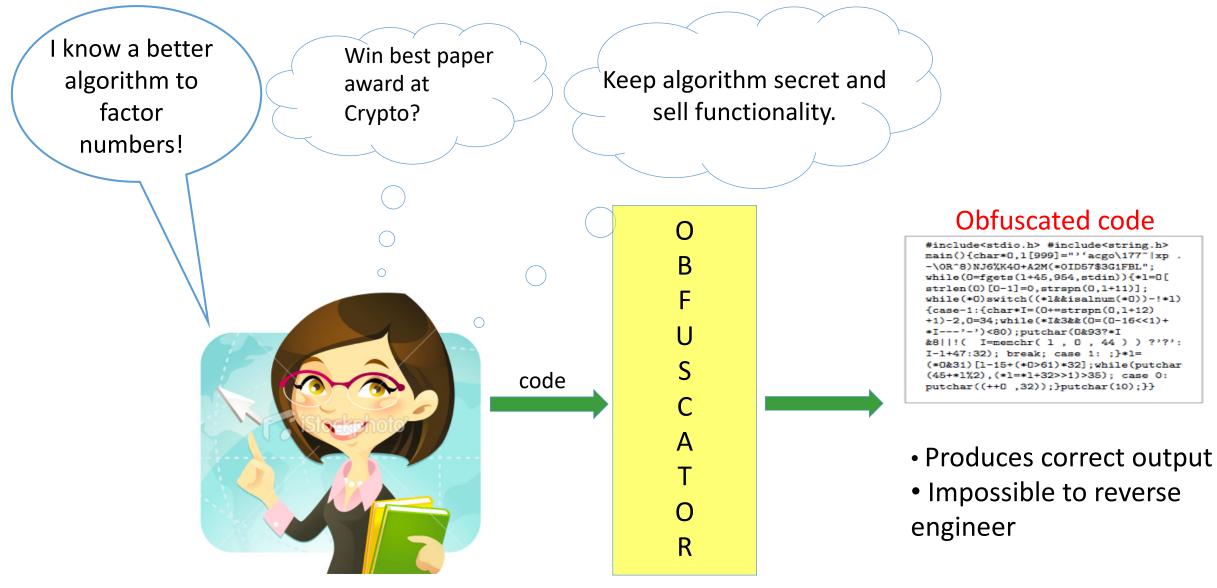
Obfuscation from Noisy Linear FE

Shweta Agrawal

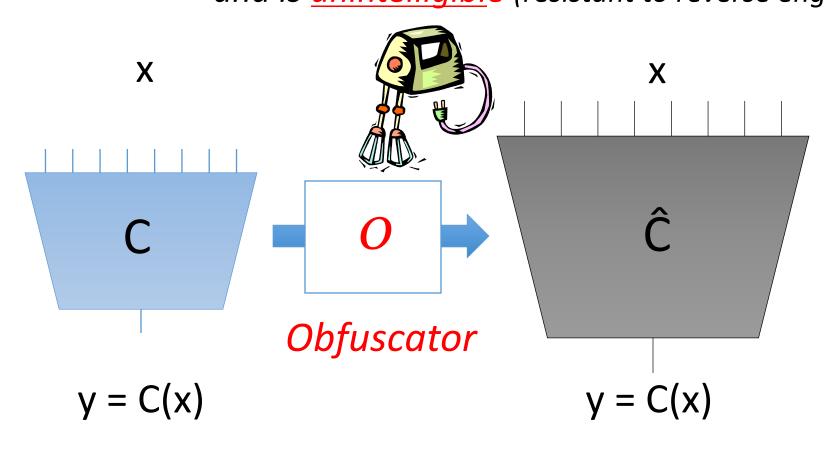
IIT Madras

Obfuscation



Obfuscation

Compile a circuit C into one Ĉ that preserves functionality, and is <u>unintelligible</u> (resistant to reverse engineering)



Indistinguishability Obfuscator iO [BGI+01]

"Which one of two equivalent circuits $C_1 \equiv C_2$ is obfuscated?"

- $C_1 \equiv C_2$, meaning
- Same size $|C_1| = |C_2|$
- Same truth table TB(C₁) = TB(C₂)

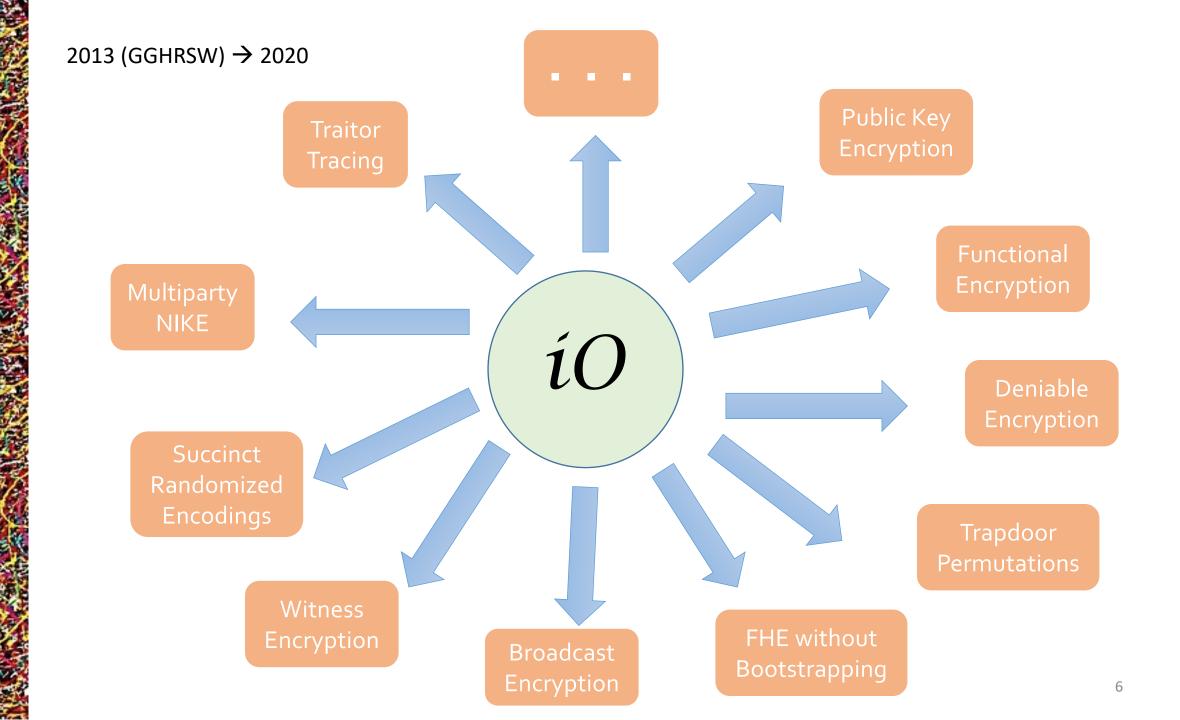
$$\left\{ iO(C1) \right\} \approx \left\{ iO(C2) \right\}$$

Trivial if efficiency is not a concern

Before we proceed... why do we care?

- Seemingly useless definition
- We already know both circuits are equivalent. Does it matter what is the particular representation?
- Unclear if there are applications

"Theorem" (GGHRSW13,SW13...) : iO is (almost?) crypto-complete



Does iO exist?

It Depends....

- Direct Constructions
 - All based on "multilinear maps" [GGH13,CLT13,GGH15]
 - Same template in all works (all eggs in same basket?)
 - Many attacks, fixes, repeat: hard to understand security
- Bootstrapping based constructions

It Depends....

• **Direct** Constructions

- All based on "multilinear maps" [GGH13,CLT13,GGH15]
- Same template in all works (all eggs in same basket?)
- Many attacks, fixes, repeat: hard to understand security
- Bootstrapping based constructions

Recap: <u>Bi</u>linear Maps

- Cryptographic bilinear map
 - Groups G_1 and G_2 of order p with generators g_1 , g_2 and a bilinear map
 - $e: G_1 \times G_1 \rightarrow G_2$ such that

$$\forall a, b \in Z_p^*, \qquad e(g_1^a, g_1^b) = g_2^{ab}$$

- Hardness (Bilinear Diffie Hellman): Can compute degree 2 "in the exponent", degree 3 looks like random.
- Efficient Instantiation: Weil or Tate pairings over elliptic curves.
- Tremendously useful for crypto!

Multilinear Maps: Classical Notion

- Cryptographic n-multilinear map (for groups)
 - Groups G_1, \ldots, G_n of order p with generators g_1, \ldots, g_n
 - Family of maps:

 $e_{i,k}: G_i \times G_k \rightarrow G_{i+k}$ for $i + k \leq n$, where

•
$$e_{i,k}(g_i^a, g_k^b) = g_{i+k}^{ab} \forall a, b \in \mathbb{Z}_p$$
.

- Hardness: at least "discrete log" in each G_i is "hard".
 - And hopefully the generalization of Bilinear DH

Multilinear Maps

- Applications described by Boneh and Silverberg in 2003
 - Pessimistic about existence in realm of algebraic geometry
- First (beautiful!) candidate construction by Garg, Gentry, Halevi, 2013
 Based on ideal lattices, ideas inspired by NTRU

Yilei's

talk

• Immensely useful, can be used to build iO (and much more!). Need maps of poly degree.

Bootsrapping Based Constructions: Reduce, Reduce, Reduce

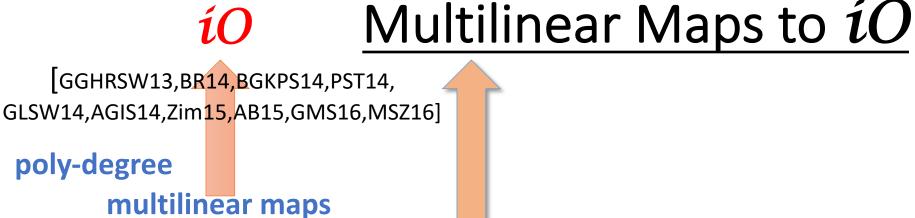
- What is the minimum functionality needed for iO?
- How much can we "clean up" assumptions?
- Much progress

iO Multilinear Maps to iO

[GGHRSW13,BR<mark>14,</mark>BGKPS14,PST14,

GLSW14,AGIS14,Zim<mark>15,</mark>AB15,GMS16,MSZ16]

poly-degree multilinear maps



Multilinear maps

constant-deg

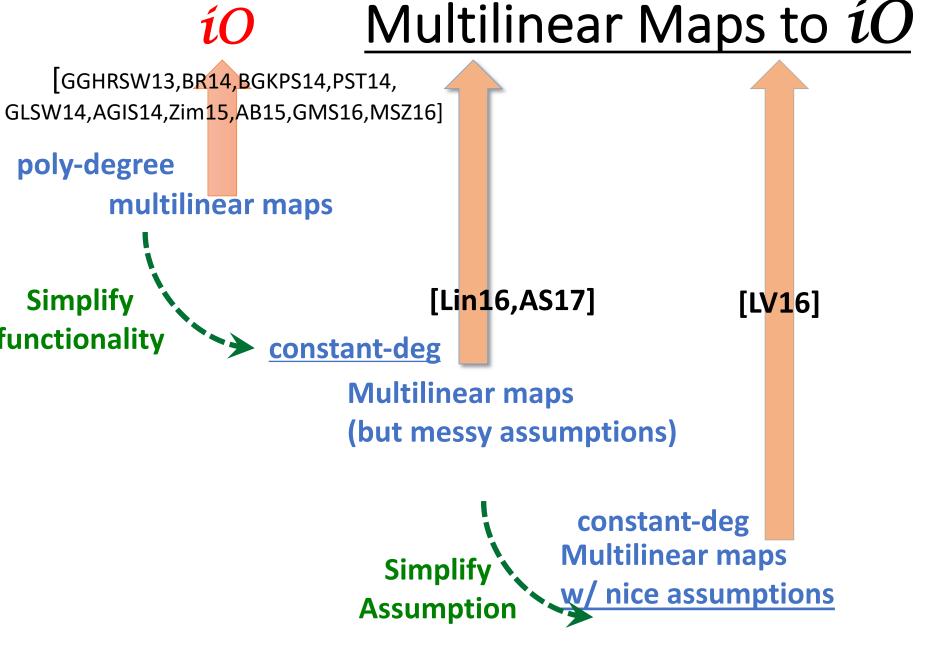
[Lin16,AS17]

(but messy assumptions)

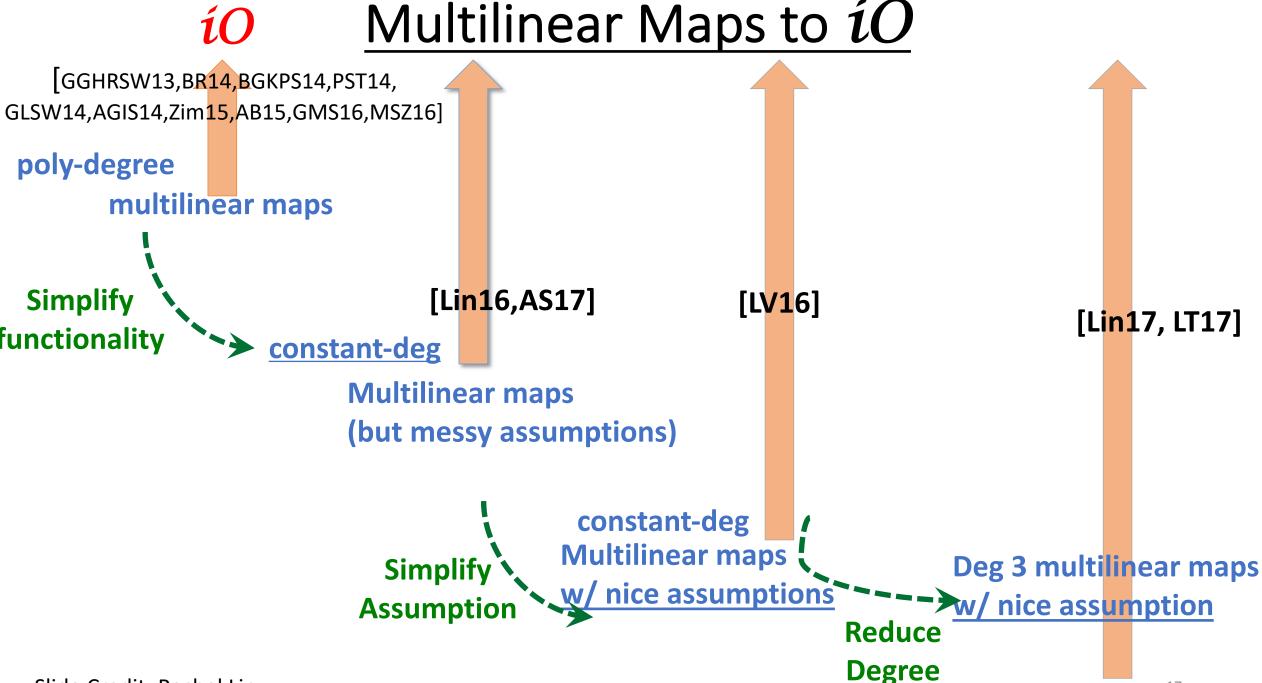
Slide Credit: Rachel Lin

Simplify

functionality



Slide Credit: Rachel Lin



Slide Credit: Rachel Lin

Multilinear Maps to iO

Deg 3 Barrier: Need to generate randomness obliviously, needs degree at least 3 [LV18,BBKK18]

Problem

(bilinear) maps from elliptic curve groups

maps,

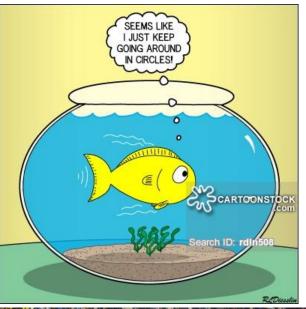
iO-land

18

Can we base iO on anything else?

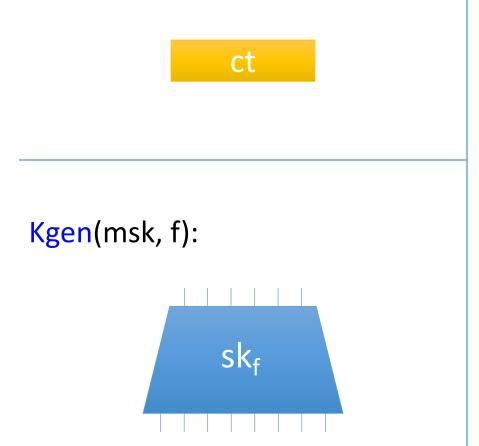
Can we base iO on anything else?

- Functional Encryption supporting computation of degree ≥ 3 polynomials [AJ15, BV15, Lin16, LV16, Lin17, AS17, LT17]
- Should be good news except.....
 - All constructions of degree 3 functional encryption themselves based on multilinear maps ⁽³⁾

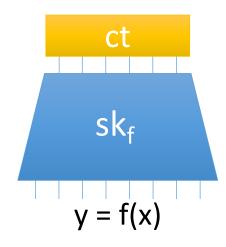


Functional Encryption (FE) [SW05,BSW11]

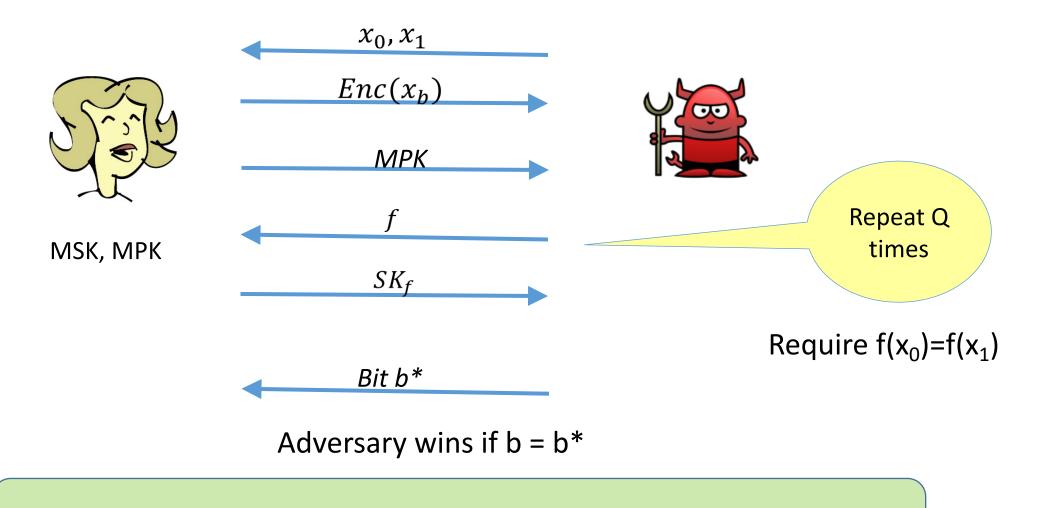
 $(mpk, msk) \leftarrow Setup(1^n)$ Enc(mpk, x):



Dec(sk_c, ct):



Selective IND Security



Ciphertext size should be sublinear in Q to imply iO [AJ15,BV15]

iO from Functional Encryption

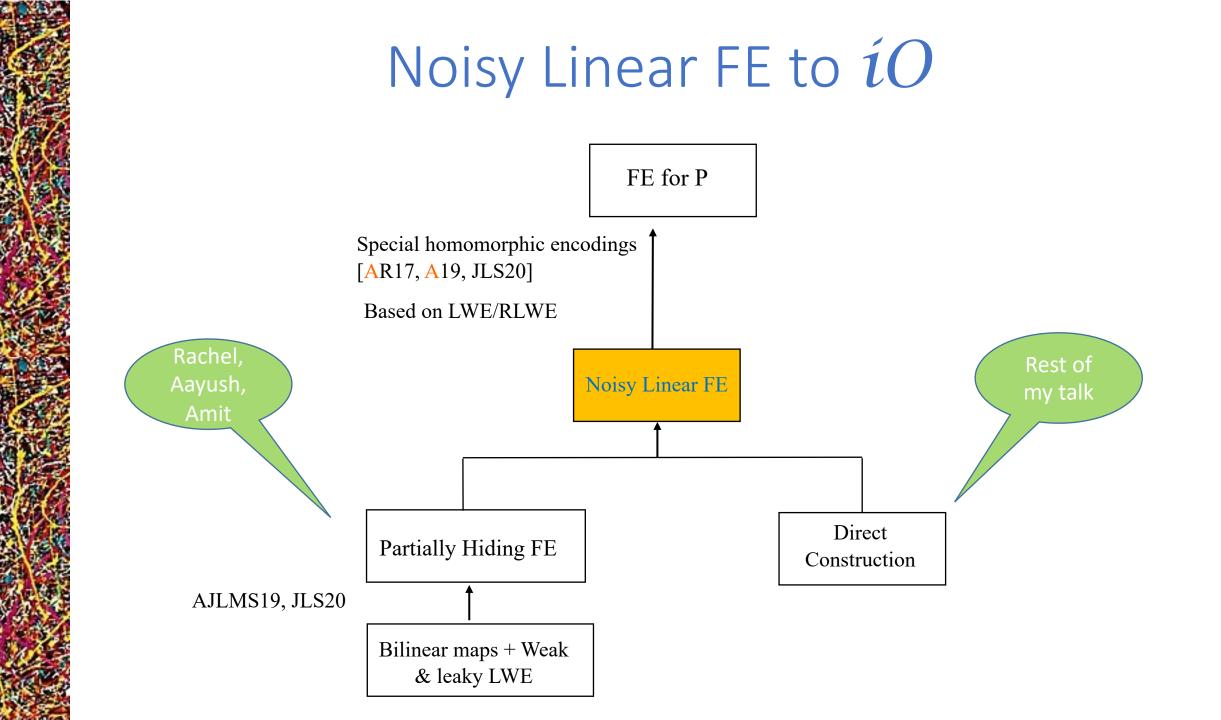
• Long sequence of works: Functional Encryption supporting computation

of constant degree polynomials [AJ15,BV15,Lin17,AS17,LT17]

- Symmetric key FE suffices [BNPW16,KNT17]
- New Abstraction [A19]: Noisy linear functional encryption

Weaker than functional encryption for degree 3 polynomials!

Theorem (A19) : Special fully homomorphic encryption (LWE) + (Sel. IND Secure) Noisy Linear FE $\rightarrow iO$

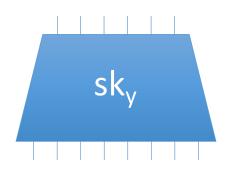


Noisy Linear Functional Encryption [ABDP15, ALS16]

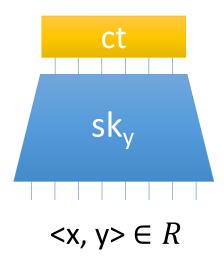
Let x, $y \in \mathbb{R}^n$

Enc(mpk, x):

Kgen(msk, y):



Dec(sk_y, ct):



Can be constructed from standard assumptions – DDH, LWE, QR

Noisy Linear Functional Encryption

Add noise to output!

Enc(x), Keygen(y), Decrypt to get <x,y> plus noise

- Where does noise come from?
- What security properties does it need to satisfy?
- Isn't this high degree computation? Going in circles ?

Noisy Linear Functional Encryption

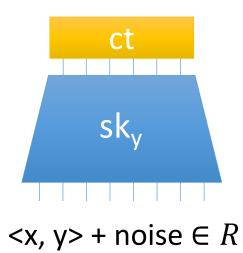
Noisy Linear Functional Encryption [A19]

Let x, $y \in \mathbb{R}^n$

Enc(msk, x):

Keygen(msk, y):

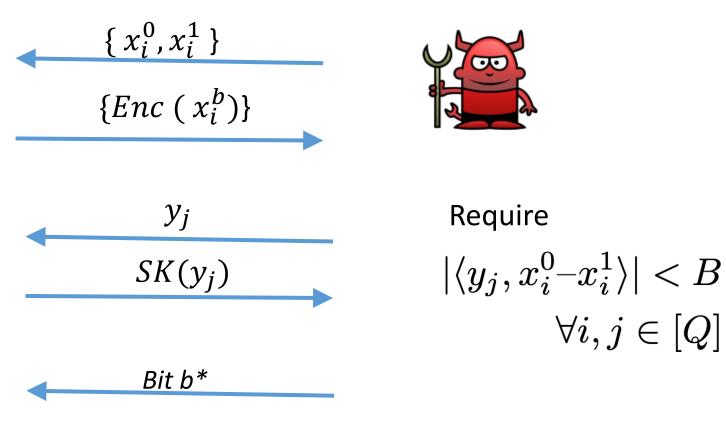
Dec(sk_y, ct):



Noise must:

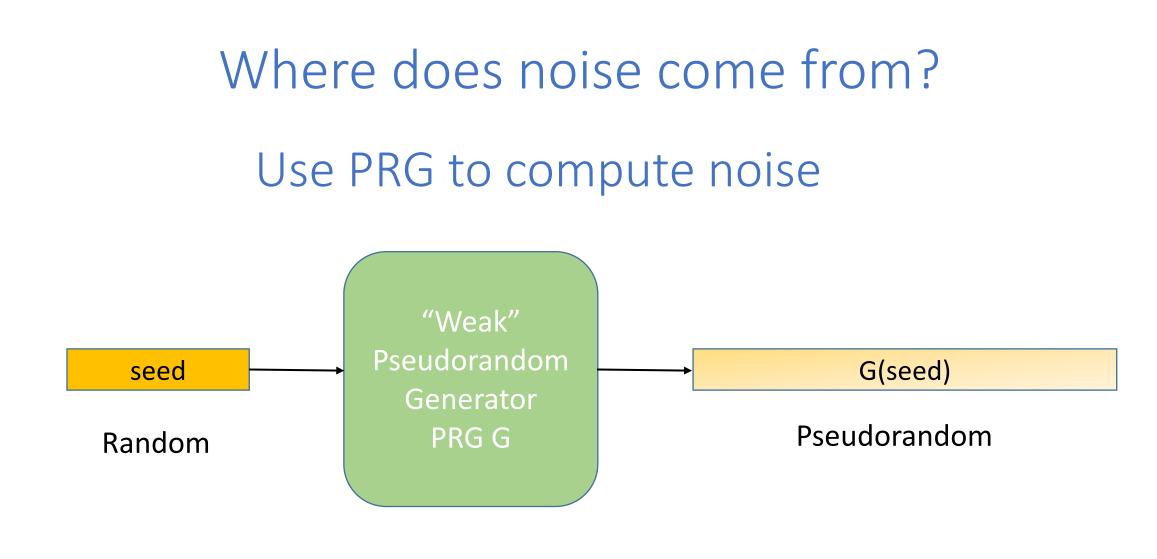
- be bounded by Bd
- satisfy weak pseudorandomness

Selective IND Security



Adversary wins if b = b*

Ciphertext size should be sublinear in Q to imply iO [A19]



- Represent G as polynomial.
- Use FE to compute G(seed) and add it to output

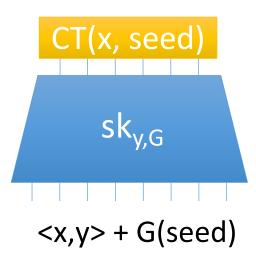
Key new observation: Old grandma advice!

If you cannot have what you want, you must learn to want what you can have

Key new observation: Relax requirement on correctness!

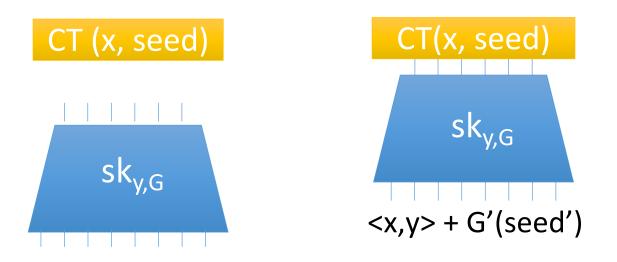
Use PRG to compute noise

• Use FE to compute <x, y> + G(seed).



- Only <x,y> needs to be correct!
- Precise value of G(seed) not important

A key new observation: Relax requirement on correctness!



- So far: Assume polynomial is PRG and insist on computing it exactly
- Here: Compute whatever can be computed and check if it can satisfy PRG like properties

Permits New Direct Constructions

- Extend LWE based Linear FE of ALS16 to Noisy Linear FE using new hardness conjectures on lattices.
- Very different from multilinear map assumptions
- May be more robust. May be post-quantum.
- Much simpler to analyse than mmap based direct constructions: no need

for straddling sets, Kilian randomization etc used by all prior work

First construction of iO without <u>any</u> maps.

Construction

is me

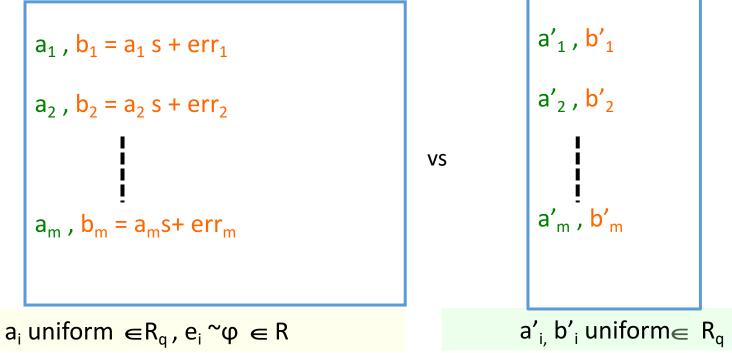
HH

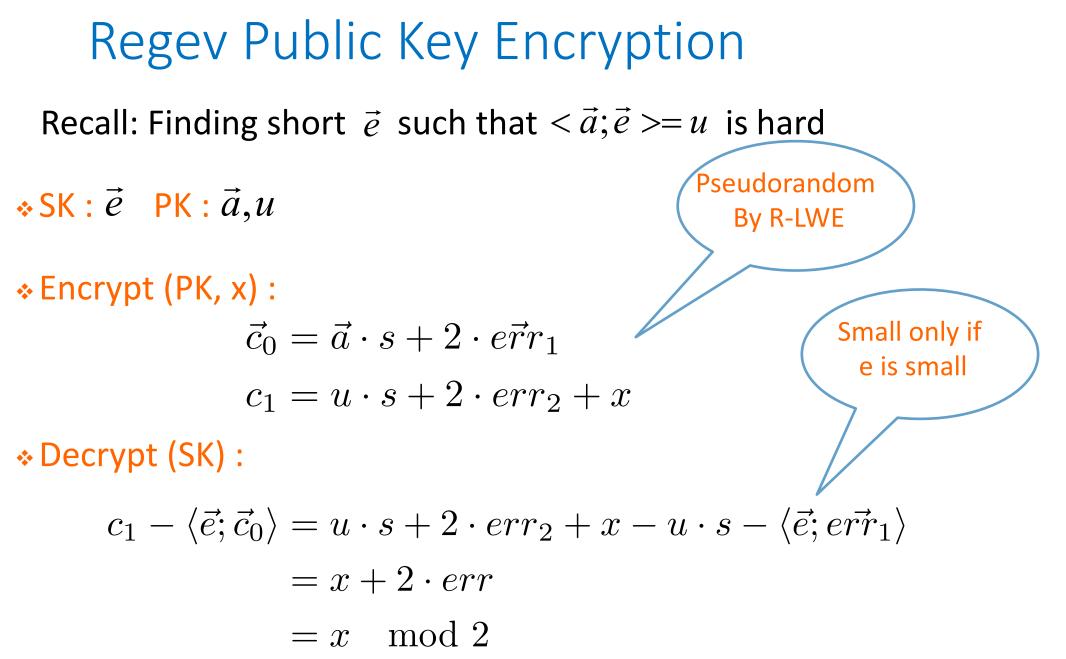
Ring Learning with Errors Problem

Let ring
$$R_q = Z_q[x] / < x^n + 1 >$$

DISTRIBUTION 1

DISTRIBUTION 2





MSK: $\vec{e_1}, \dots \vec{e_\ell}$ (short) PK: $\vec{a}, \vec{u} = (u_1, \dots, u_\ell)$ where $\langle \vec{a}; \ \vec{e_i} \rangle = u_i \in R_q$

MSK: $\vec{e_1}, \dots \vec{e_\ell}$ (short) PK: $\vec{a}, \vec{u} = (u_1, \dots, u_\ell)$ where $\langle \vec{a}; \ \vec{e_i} \rangle = u_i \in R_q$

Enc(PK, x):

$$\vec{c}_0 = \vec{a} \cdot s + 2 \cdot e\vec{r}_0$$
$$\vec{c}_1 = \vec{u} \cdot s + 2 \cdot e\vec{r}_1 + \vec{x}$$

MSK:
$$ec{e}_1,\ldots ec{e}_\ell$$
 (short)
PK: $ec{a}, ec{u} = (u_1,\ldots,u_\ell)$
where $\langle ec{a}; ec{e}_i
angle = u_i \in R_q$

Enc(PK, x):

$$\vec{c}_0 = \vec{a} \cdot s + 2 \cdot e\vec{r}_0$$
$$\vec{c}_1 = \vec{u} \cdot s + 2 \cdot e\vec{r}_1 + \vec{x}$$

KeyGen(MSK, y):

 $\sum_{i \in [\ell]} y_i \ \vec{e_i}$

MSK:
$$\vec{e}_1, \dots \vec{e}_\ell$$
 (short)
PK: $\vec{a}, \vec{u} = (u_1, \dots, u_\ell)$
where $\langle \vec{a}; \ \vec{e}_i \rangle = u_i \in R_q$

Enc(PK, x):

$$\vec{c}_0 = \vec{a} \cdot s + 2 \cdot e\vec{r}_0$$
$$\vec{c}_1 = \vec{u} \cdot s + 2 \cdot e\vec{r}_1 + \vec{x}$$

KeyGen(MSK, y):

$$\sum_{i \in [\ell]} y_i \ \vec{e_i}$$

Decrypt:

$$(\sum_{i \in [\ell]} y_i \ \vec{e_i})^\top \cdot \vec{c_0} = (\sum_{i \in [\ell]} y_i \ \vec{u_i}) \cdot s + 2 \cdot err$$

- $\vec{y}^T \vec{c_1} = (\sum_{i \in [\ell]} y_i \ u_i) \cdot s + 2 \cdot err + \langle \vec{x}; \ \vec{y} \rangle$
= $\langle \vec{x}, \ \vec{y} \rangle + 2 \cdot err$

Wait a minute....

- Decryption reveals $\langle \vec{x}, \vec{y} \rangle + 2 \cdot err$: inner product + noise
- Isn't this noisy linear FE already?



Noise is learnt fully after sufficient key requests!

Adding Noise to Linear FE

- Starting point idea: Linear FE computes $\langle ec{x}, \ ec{y}
 angle ext{ where } ec{x}, ec{y} \in R^\ell$
- Add dummy co-ordinate $\,x[\ell+1] = \mathrm{noise}, \quad y[\ell+1] = 1$
- Now output $\langle ec{x}, ec{y}
 angle + ext{noise}$
- Repeat Q times, once for each key request

Satisfies security, violates succinctness CT size grows with Q

Can we compute encodings of noise "on the fly"?

 Polynomial for computing noise must be degree at least 3 [LV18, BBKK18]

• Recall: Do not have FE for degree 3 polynomials without mmaps

• Is approximate computation easier?

Is approximate computation easier? Or, Enter NTRU

Let $R = Z[x]/\langle x^n + 1 \rangle$, $p_1 < p_2$ primes, $R_{p_1} = R/(p_1 \cdot R)$, $R_{p_2} = R/(p_2 \cdot R)$

Want to compute $d = h \cdot s + p_1 \cdot err + noise$

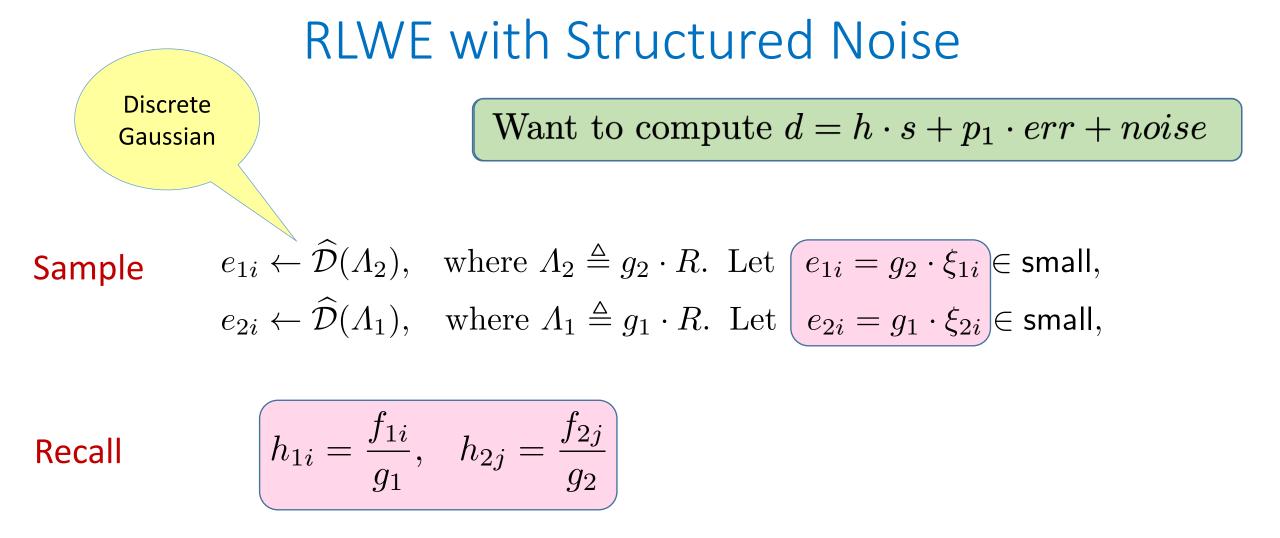
For $i \in \{1, \ldots, w\}$, sample f_{1i}, f_{2i} and g_1, g_2 from a discrete Gaussian over ring R. Set

$$h_{1i} = \frac{f_{1i}}{g_1}, \quad h_{2j} = \frac{f_{2j}}{g_2} \in R_{p_2} \ \forall \ i, j \in [w]$$

Assume these look random. Note difference from NTRU: Reusing denominator!

"noise" is

message!



We have that: $h_{1i} \cdot e_{2j} = f_{1i} \cdot \xi_{2j}, \quad h_{2j} \cdot e_{1i} = f_{2j} \cdot \xi_{1i} \in \text{small}$

RLWE with Structured Noise

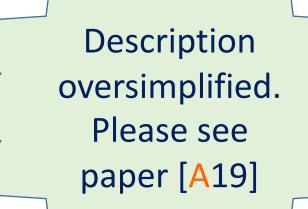
Want to compute $d = h \cdot s + p_1 \cdot err + noise$

 $h_{1i} \cdot e_{2i} = f_{1i} \cdot \xi_{2i}, \quad h_{2i} \cdot e_{1i} = f_{2i} \cdot \xi_{1i} \in \text{small}$ We showed: $d_{1i} = h_{1i} \cdot t_1 + p_1 \cdot e_{1i} \in R_{p_2}$ $d_{2i} = h_{2i} \cdot t_2 + p_1 \cdot e_{2i} \in R_{p_2}$ Compute encodings of "PRG seed" : As Multiply encodings: desired! $d_{1i} \cdot d_{2j} = (h_{1i} \cdot h_{2j}) \cdot (t_2 t_2) + p_1 \cdot \text{noise}$ where noise = $p_1 \cdot (f_{1i} \cdot \xi_{2j} \cdot t_1 + f_{2j} \cdot \xi_{1i} \cdot t_2 + p_1 \cdot g_1 \cdot g_2 \cdot \xi_{1i} \cdot \xi_{2j}) \in \text{small}$

RLWE with Structured Noise

Noise lives in an ideal that "cancels" large term in RLWE sample! Extends to higher degree!

"Theorem": Its easy to make noise!



What about security?

Security of NLinFE

- Some analysis in [A19]
- Proof from clumsy assumption in overly weak security game
 - Adversary only gets single ciphertext
- Security based on inability to find attacks 😕

But...

- Much <u>simpler to analyse</u> than previous direct constructions
- <u>Minimises</u> part which depends on heuristics
- Uses <u>no maps:</u> completely different design template
- Post Quantum?

Rigorous Cryptanalysis

- Follow-up [AP20]: Two attacks, and a fix
- Concrete parameters suggested
- New cryptanalytic techniques
- Security on much firmer footing

Hope: Inspires new candidates!

Attack 1: Multiple Ciphertext Attack

Structured noise annihilates large term not only in its own ciphertext but also in other ciphertexts

Consider large terms in
$$d_{1i}d'_{2j} = (h_{1i}h_{2j}) \cdot (t_1t'_2) + p_1 \cdot \text{small}$$

 $d_{2j}d'_{1i} = (h_{2j}h_{1i}) \cdot (t_2t'_1) + p_1 \cdot \text{small}$

Same label computed in two different ways!

Consider secrets in

$$d_{1i}d_{2j} = (h_{1i}h_{2j}) \cdot (t_1t_2) + p_1 \cdot \text{small}$$
$$d_{2j'}d_{1i'} = (h_{2j'}h_{1i'}) \cdot (t_2t_1) + p_1 \cdot \text{small}.$$

Now, secrets same but labels are changing

Attack 1: Multiple Ciphertext Attack

Legal Ciphertexts:

$$d_{1i} = h_{1i} \cdot t_1 + p_1 \cdot e_{1i}$$

$$d_{1i'} = h_{1i'} \cdot t_1 + p_1 \cdot e_{1i'}$$

$$d'_{1i} = h_{1i} \cdot t'_1 + p_1 \cdot e'_{1i}$$

$$d'_{1i'} = h_{1i'} \cdot t'_1 + p_1 \cdot e'_{1i'}$$

Can be expressed as:

$$\begin{pmatrix} d_{1i} \ d_{1i'} \\ d'_{1i} \ d'_{1i'} \end{pmatrix} = \begin{pmatrix} t_1 \\ t'_1 \end{pmatrix} \cdot (h_{1i} \ h_{1i'}) + p_1 \cdot \begin{pmatrix} e_{1i} \ e_{1i'} \\ e'_{1i} \ e'_{1i'} \end{pmatrix}$$

Label changes with index of element in ciphertext, secret changes with ciphertext. Can vary independently

RLWE with correlated noise

Distinguish many samples

$$\left(\underbrace{rac{f_{1i}}{g_1}}_{a} \cdot \underbrace{t_1[j]}_{s} + \underbrace{g_2 \cdot e_{1i}[j]}_{e}, \hspace{0.2cm} rac{f_{2i}}{g_2} \cdot t_2[j] + g_1 \cdot e_{2i}[j]
ight) \in R_q^2$$

from uniform in R_q^2 where $R_q = \mathbb{Z}_q[X]/(X^n+1)$.

Everything in blue is small. We can ask to vary i or j. **Remark:** even if g_1 is small, $\frac{1}{g_1} \mod q$ is not.

Attacking RLWE with correlated noise

Let
$$b_{1i}[j] = rac{f_{1i}}{g_1} \cdot t_1[j] + g_2 \cdot e_{1i}[j]$$

$$B_1 = egin{pmatrix} b_{11}[1] & b_{11}[2] \ b_{12}[1] & b_{12}[2] \end{pmatrix} = rac{1}{g_1}A + g_2E$$

with A of rank 1.

Using linearity of determinant:

$$det(B_{1}) = \frac{1}{g_{1}^{2}} \underbrace{\det(A)}_{0} + \frac{g_{2}}{g_{1}} det \begin{pmatrix} A_{1,1} & B_{1,2} \\ A_{2,1} & B_{2,2} \end{pmatrix} + \frac{g_{2}}{g_{1}} det \begin{pmatrix} B_{1,1} & A_{1,2} \\ B_{2,1} & A_{2,2} \end{pmatrix} + g_{2}^{2} det(B)$$
$$= \frac{g_{2}}{g_{1}} \cdot small$$

Attacking RLWE with correlated noise

We have seen:
$$\det(B_1) = \frac{g_2}{g_1} \cdot \text{small mod } q$$

By symmetry:
$$\det(B_2) = \frac{g_1}{g_2} \cdot \text{small mod } q$$

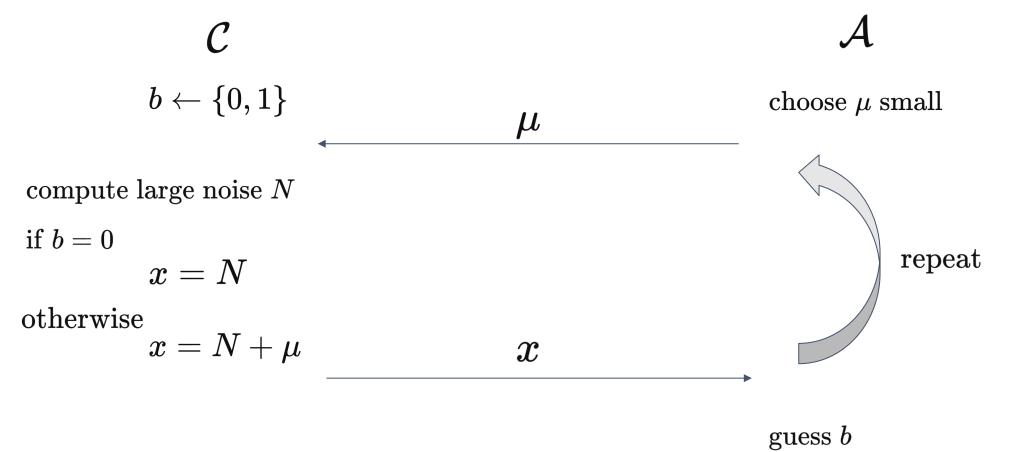
Multiplying these, we obtain:

 $\det(B_1) \cdot \det(B_2) =$ small mod q

Distinguishing attack!

Attack 2: Use noise term from NLinFE

The adversary can honestly play the following game



$$egin{aligned} N &= \sum_{\ell,i,j} v_{ij}^{ imes} \; \left[p_1 \cdot \left(p_1 \cdot (g_2^\ell \cdot ilde{\xi}_{1i}^\ell \cdot g_1^\ell \cdot ilde{\xi}_{2j}^\ell)
ight. \ &+ p_0 \cdot (g_2^\ell \cdot ilde{\xi}_{1i}^\ell \cdot g_1^\ell \cdot \xi_{2j}^\ell + g_2^\ell \cdot \xi_{1i}^\ell \cdot g_1^\ell \cdot ilde{\xi}_{2j}^\ell)
ight. \ &+ (f_{1i}^\ell \cdot t_1 \cdot ilde{\xi}_{2j}^\ell + f_{2j}^\ell \cdot t_2 \cdot ilde{\xi}_{1i}^\ell)
ight)
ight. \ &+ p_0 \cdot \left(p_0 \cdot (g_2^\ell \cdot \xi_{1i}^\ell \cdot g_1^\ell \cdot \xi_{2j}^\ell) + (f_{1i}^\ell \cdot t_1 \cdot \xi_{2j}^\ell + \cdot f_{2j}^\ell \cdot t_2 \cdot \xi_{1i}^\ell)
ight)
ight] \end{aligned}$$

$$egin{aligned} N &= \sum_{\ell,i,j} v_{ij}^{ imes} ~ \left[egin{split} p_1 \cdot \left(p_1 \cdot (g_2^\ell \cdot ilde{\xi}_{1i}^\ell \cdot g_1^\ell \cdot ilde{\xi}_{2j}^\ell)
ight. \ &+ p_0 \cdot (g_2^\ell \cdot ilde{\xi}_{1i}^\ell \cdot g_1^\ell \cdot \xi_{2j}^\ell + g_2^\ell \cdot \xi_{1i}^\ell \cdot g_1^\ell \cdot ilde{\xi}_{2j}^\ell)
ight. \ &+ (f_{1i}^\ell \cdot t_1 \cdot ilde{\xi}_{2j}^\ell + f_{2j}^\ell \cdot t_2 \cdot ilde{\xi}_{1i}^\ell)
ight)
ight. \ &+ p_0 \cdot \left(p_0 \cdot (g_2^\ell \cdot \xi_{1i}^\ell \cdot g_1^\ell \cdot \xi_{2j}^\ell) + (f_{1i}^\ell \cdot t_1 \cdot \xi_{2j}^\ell + \cdot f_{2j}^\ell \cdot t_2 \cdot \xi_{1i}^\ell)
ight)
ight] \end{aligned}$$

Look at noise modulo p_1^2 , p_0p_1 , p_1 , p_2^2 and p_0 to recover different components.

 $p_1^2 \cdot \sum_{\ell,i,j} v_{ij}^{ imes} \cdot g_2^\ell \cdot ilde{\xi}_{1i}^\ell \cdot g_1^\ell \cdot ilde{\xi}_{2i}^\ell$ $p_0p_1\cdot\sum_{\ell,i,j}v_{ij}^{ imes}\cdot(g_2^\ell\cdot ilde{\xi}_{1i}^\ell\cdot g_1^\ell\cdot\xi_{2j}^\ell+g_2^\ell\cdot\xi_{1i}^\ell\cdot g_1^\ell\cdot ilde{\xi}_{2j}^\ell)$ $p_1 \cdot \sum_{\ell,i,j} v_{ij}^{ imes} \ \cdot (f_{1i}^\ell \cdot t_1 \cdot ilde{\xi}_{2j}^\ell + f_{2i}^\ell \cdot t_2 \cdot ilde{\xi}_{1i}^\ell)$ $p_0^2 \cdot \sum_{\ell,i,j} v_{ij}^{ imes} \cdot g_2^\ell \cdot \xi_{1i}^\ell \cdot g_1^\ell \cdot \xi_{2i}^\ell$ $p_0 \cdot \sum_{\ell,i,j} v_{ij}^{ imes} \cdot (f_{1i}^\ell \cdot t_1 \cdot \xi_{2j}^\ell + \cdot f_{2j}^\ell \cdot t_2 \cdot \xi_{1i}^\ell)$

 $p_1^2 \cdot \sum_{\ell,i,j} v_{ij}^{ imes} \cdot g_2^\ell \cdot ilde{\xi}_{1i}^\ell \cdot g_1^\ell \cdot ilde{\xi}_{2i}^\ell$ $p_0p_1\cdot\sum_{\ell,i,j}v_{ij}^{ imes}\cdot(g_2^\ell\cdot ilde{\xi}_{1i}^\ell\cdot g_1^\ell\cdot\xi_{2j}^\ell+g_2^\ell\cdot\xi_{1i}^\ell\cdot g_1^\ell\cdot ilde{\xi}_{2j}^\ell)$ $p_1 \cdot \sum_{\ell,i,j} v_{ij}^{ imes} \ \cdot (f_{1i}^\ell \cdot t_1 \cdot ilde{\xi}_{2j}^\ell + f_{2i}^\ell \cdot t_2 \cdot ilde{\xi}_{1i}^\ell)$ $p_0^2 \cdot \sum_{\ell,i,j} v_{ij}^ imes \cdot g_2^\ell \cdot \xi_{1i}^\ell \cdot g_1^\ell \cdot \xi_{2i}^\ell$ $p_0 \cdot \sum_{\ell,i,j} v_{ij}^{ imes} \cdot (f_{1i}^\ell \cdot t_1 \cdot \xi_{2j}^\ell + \cdot f_{2j}^\ell \cdot t_2 \cdot \xi_{1i}^\ell) ig| + (0 ext{ or } \mu)$

 $\sum_{\ell,i,j} v_{ij}^{ imes} \cdot (f_{1i}^\ell \cdot t_1 \cdot \xi_{2j}^\ell + \cdot f_{2j}^\ell \cdot t_2 \cdot \xi_{1i}^\ell) + (0 ext{ or } \mu)$

Noise containing the challenge.

 $\sum_{\ell,i,j} oldsymbol{v}^{ imes}_{ij} \cdot (f^\ell_{1i} \cdot oldsymbol{t}_1 \cdot oldsymbol{\xi}^\ell_{2j} + \cdot f^\ell_{2j} \cdot oldsymbol{t}_2 \cdot oldsymbol{\xi}^\ell_{1i}) + (0 ext{ or } \mu)$

Red: depends on the secret key, Blue: depends on the ciphertext, Black: fixed

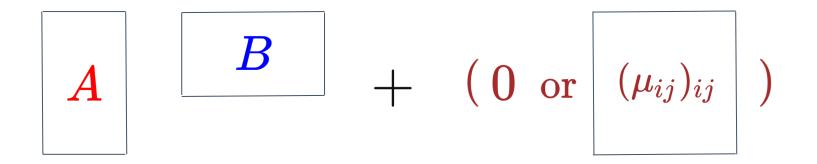
Can make red and blue vary independently.

Can be written as:

$$\langle \vec{a}, \vec{b}
angle + (0 ext{ or } \mu)$$

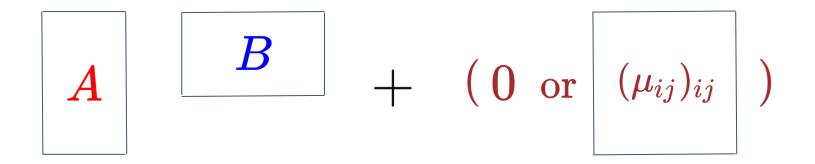
Red: depends on the secret key, Blue: depends on the ciphertext

Can make \vec{a} and \vec{b} vary independently.



Can make \vec{a} and \vec{b} vary independently.

 μ depends on both the secret key and the ciphertext.



To distinguish: compute rank Full (or large) rank \rightarrow case μ , Small rank \rightarrow case 0

Summing Up

- For fix to scheme, see paper [AP20]
- Takeaway: No fundamental security vulnerability
- Supports super-poly large output
- New design methodology

Open:

- Proof from simple assumption?
- More candidates?
- Better efficiency?

Thank You for your attention!

Image Credits: Jackson Pollock, who solves similar problems in a different space!