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Obfuscation

| know a better
algorithm to
factor

numbers!

Win best paper
award at
Crypto? N

\

Keep algorithm secret and
sell functionality. \

Obfuscated code

#include<stdio.h> #include<string.h>
main(){char=0,1[998]=""‘acgo\177  Ixp .
—\OR"8)NISYUK4L0+A2M(=0IDS7$3G1FBL";
while(O=fgets(1+45,954 ,stdin) ) {*=1=0[
strlen(0) [0-1]=C,strspn(0,1+11)];
while(*0)switch((*1&&isalnun(*0))-!*1)
{case-1:{char*I=(0+=strspn(0,1+12)
+1)-2,0=34;wvhile (*xI&3&&(0=(0-16<<1)+

*I———?—7)<80) ;putchar (0&937=1

&8|1!'( I=memchr( 1 , 0O , 44 ) ) 2°7':
I-1+47:32); break; case 1: ;}*1l=
(=0%31) [1-15+(*0>61)%*32] ;while (putchar
(45+=1%2) , (*1=%1+32>>1)>35); case O:
putchar{((++0 ,32));}putchar(10);}}

code

—)

 Produces correct output
* Impossible to reverse
engineer

0O 4> 0 unc nmwoO




Obfuscation

Compile a circuit C into one C that preserves functionality,
and is unintelligible (resistant to reverse engineering)

Obfuscator
y = C(x) y = C(x)




Indistinguishability Obfuscator 10 [BGI+01]

“Which one of two equivalent circuits C; £ C, is obfuscated?”

C, = C,, meaning
 Samesize |C|=|G,|
* Same truth table TB(C,) = TB(C,)

{ oa }-{ Toe }

Trivial if efficiency is not a concern

Goal: Find an efficient compiler 10



Before we proceed... why do we care?

* Seemingly useless definition

* We already know both circuits are equivalent. Does it

matter what is the particular representation?

e Unclear if there are applications

®
“Theorem” (GGHRsw13,sw13..) : 10 is (almost?) crypto-complete
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Does 10 exist?




't Depends....

* Direct Constructions
* All based on “multilinear maps” [GGH13,CLT13,GGH15]

* Same template in all works (all eggs in same basket?)
* Many attacks, fixes, repeat: hard to understand security

* Bootstrapping based constructions




't Depends....

* Direct Constructions




Recap: Bilinear Maps

* Cryptographic bilinear map
* Groups (41 and G, of order p with generators g4, g, and a bilinear map
e : G1XGq — G, such that
Vab € Z,, e(gf,gf) = gP

* Hardness (Bilinear Diffie Hellman): Can compute degree 2 “in the
exponent”, degree 3 looks like random.

e Efficient Instantiation: Weil or Tate pairings over elliptic curves.

* Tremendously useful for crypto!

10



Multilinear Maps: Classical Notion

* Cryptographic n-multilinear map (for groups)
* Groups Gy, ..., G, of order p with generators g4, ..., g,
e Family of maps:
eix: GiX Gy = Gy fori+k < n,where

. ei,k(gia’gllg) = gi% Va, b € Ly -

* Hardness: at least “discrete log” in each G; is “hard”’.
* And hopefully the generalization of Bilinear DH




Multilinear Maps

* Applications described by Boneh and Silverberg in 2003

* Pessimistic about existence in realm of algebraic geometry

* First (beautiful!) candidate construction by Garg, Gentry, Halevi, 2013
* Based on ideal lattices, ideas inspired by NTRU

* Immensely useful, can be used to build 10 (and much more!). Need
maps of poly degree.




Bootsrapping Based Constructions:
Reduce, Reduce, Reduce

* What is the minimum functionality needed for 1O?

* How much can we “clean up” assumptions?

* Much progress




i0 Multilinear Maps to 10

[GGH RSW13,BR14,BGKPS14,PST14,
GLSW14,AGIS14,Zim15,AB15,GMS16,MSZ16]

poly-degree
multilinear maps

Slide Credit: Rachel Lin
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i0 Multilinear Maps to 10

[GGHRSW13,BB{4\,BGKPSI4,PST14, N
GLSW14,AGIS14,Zim15,AB15,GMS16,MSZ16]

poly-degree
multilinear maps

i
\

. o J
Simplify [Lin16,AS17]
functionality “~3 constant-deg

Multilinear maps
(but messy assumptions)

Slide Credit: Rachel Lin



i0 Multilinear Maps to 10

[GGHRSW13,BR14)BGKPS14,PST14, 4

GLSW14,AGIS14,Zim15,AB15,GMS16,MSZ16]

poly-degree
multilinear maps

i
\

° ° \ I
Simplify S [Li
functionality \‘) constant-deg

n]

16,AS17] [LV16]

Multilinear maps
(but messy assumptions)

. .\
Simplify N
Assumption

Slide Credit: Rachel Lin

\ constant-deg

Multilinear maps
nice assumptions

16



i0 Multilinear Maps to 10
[GGHRSW13,BB{4\,BGKPSI4,PST14, A

GLSW14,AGIS14,Zim15,AB15,GMS16,MSZ16]

poly-degree
multilinear maps

i
\

\
simplify S [Lin16,AS17] [LV16]
functionality “~» constant-deg

Multilinear maps
(but messy assumptions)

[Lin17, LT17]

'\ constant-deg | |/

!
Slmplnfy \ Multilinear maps | Deg 3 multilinear maps

Assumptlon ~V¥ nice assumptions™ I;;")w/ nice assumption
educe

Degree

Slide Credit: Rachel Lin 17



Multilinear Maps to 10

Deg 3 Barrier: Need to generate randomness obliviously, needs
degree at least 3 [LV18,BBKK18]

®
Open #1 : Construct secure multilinear maps of degree > 2

—/

4 Deie

Have: Degree 2
(bilinear) maps
from elliptic
curve groups

N

Desired: Deg 3+
maps,
iO-land

N /

18






Can we base 10 on anything else?

* Functional Encryption supporting computation of degree > 3
polynomials [AJ15, BV15, Linl6, LV16, Lin17, AS17, LT17]

* Should be good news except.....

 All constructions of degree 3 functional encryption themselves based on
multilinear maps ®

SEEMS LIKKE

| JUST KEEP
GOING AROUND
IN CIRCLES!




Functional Encryption (FE) [swos,asw11]

(mpk, msk) €< Setup(1")
Enc(mpk, x):

Kgen(msk, f):

Dec( sk, ct):

y = f(x)

21



Selective IND Security

< X0, X1
Enc(xp) >
MPK >
MSK, MPK e f Ri?:laezQ
SK; .
Require f(xp)=f(x,)
< Bit b*

Adversary wins if b = b*

Ciphertext size should be sublinear in Q to imply 10 [AJ15,BV15]

22




10 from Functional Encryption

* Long sequence of works: Functional Encryption supporting computation

of constant degree polynomials [AJ15,BV15,Lin17,AS17,LT17]
* Symmetric key FE suffices [BNPW16,KNT17]

* New Abstraction [A19]: Noisy linear functional encryption

{ Weaker than functional encryption for degree 3 polynomials! }

Theorem (219) : Special fully homomorphic encryption (LWE)
+ (Sel. IND Secure) Noisy Linear FE = 10




Noisy Linear FE to 10

FE for P

A

Special homomorphic encodings
[AR17, A19, JLS20]

Based on LWE/RLWE
Noisy Linear FE
) ... Direct
Partially Hiding FE Construction
AJLMS19, JLS20 1

Bilinear maps + Weak
& leaky LWE




Neisy Linear Functional Encryption [aBbpr15,ALs16]

Letx,y € R™

Enc(mpk, x):

Kgen(msk, y):

Dec( sk,, ct):

<X,y>€E R

Can be constructed from standard
assumptions — DDH, LWE, QR

25



Noisy Linear Functional Encryption

Add noise to output!
Enc(x), Keygen(y), Decrypt to get <x,y> plus noise

* Where does noise come from?

* What security properties does it need to satisfy?

\° Isn’t this high degree computation? Going in circles ? y




Noisy
Linear

Functional
Encryption




Noisy Linear Functional Encryption [a19

Letx,y € R™

Enc(msk, x):

Keygen(msk, y):

Dec( sk,, ct):

<X, y>+ noise € R

Noise must:
* be bounded by Bd
» satisfy weak pseudorandomness

28



Selective IND Security

(bl
{Enc (x{)}

>
- Yj Require
SK (y}) . (yj,z;—x;)| < B
Vi, j € [Q]
<« Bit b*

Adversary wins if b = b*

Ciphertext size should be sublinear in Q to imply 10 [A19]

29



Where does noise come from?

Use PRG to compute noise

@« N

seed > > G(seed)

Random Pseudorandom

< 4

* Represent G as polynomial.
e Use FE to compute G(seed) and add it to output




Key new observation: Old grandma advice!

If you cannot have
what you want, you
must learn to want
what you can have

31



Key new observation: Relax requirement on correctness!

If you cannot compute
what you can use, you
must learn to use what
you can compute

32



Use PRG to compute noise

* Use FE to compute <x, y> + G(seed).

<x,y> + G(seed)

* Only <x,y> needs to be correct!
* Precise value of G(seed) not important

33



A key new observation: Relax requirement on correctness!

<x,y>+ G’(seed’)

e So far: Assume polynomial is PRG and insist on computing it exactly

* Here: Compute whatever can be computed and check if it can satisfy PRG

like properties




Permits New Direct Constructions

Extend LWE based Linear FE of ALS16 to Noisy Linear FE using new hardness

conjectures on lattices.

Very different from multilinear map assumptions

May be more robust. May be post-quantum.

Much simpler to analyse than mmap based direct constructions: no need

for straddling sets, Kilian randomization etc used by all prior work

(9

First construction of 10 without any maps.

35






Ring Learning with Errors Problem

Letring R =Z [x]/<x"+1>

DISTRIBUTION 1 DISTRIBUTION 2
Sample s uniformly in R,
a;,b;=a;s+err a'y, b’y
az ) b2 = a2 S + errz a’2 ’ b’2
I I
I Vs I
I I
I I
a,, b, =a,sterr, ', b

]

a; uniform €R,, e,~¢ R a’; b’; uniforme R,




Regev Public Key Encryption

Recall: Finding short ¢ such that <a;e >=u is hard

Pseudorandom

+»Encrypt (PK, x) :
Small only if
e is small

5() C_L)'S—|—2°6777°1
ci=u-s+2-erro+x

+» Decrypt (SK) :

cp —(€:Ch)=u-s+2-errg+x—u-s— (€ erry)

~»

T+ 2-err

r mod 2

38



Linear Functional Encryption [atsie]

S
S
e -V
™
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Linear Functional Encryption [atsie]

MSK: €1, ...€p (short) Enc( PK, x):

- —

PK: @, U = (U1,...,up) Co=0a- s+ 2-erry

u-s+2-errm+ 2

—

where (@; €;) = u; € R, C1




Linear Functional Encryption [atsie]

MSK: 51, c .. 5g (short)

- —

PK: @, U= (U1,...,U)

where <5; 62> = u; € R,

Enc( PK, x):

0

C1

a-s—+2-errg

u-s+2-erri+x

KeyGen( MSK, y):

Zie[ﬁ] Yi €;




KeyGen( MSK, y):

2icle Yi €i

Decrypt

( yigi)T'Eoz(zyiﬁz‘)’s-l-?-err
ic[4] €[]

- Ja= (Zyz u;) - S+ 2-err + (&; ¥)

i€[4]
- <f7 g> + 2 -err



Wait a minute....

* Decryption reveals (Z, ¥) + 2 - err : inner product + noise

* Isn’t this noisy linear FE already?

- . N
Noise not

seudorandom ]
P y ® [

D Noise is learnt fully after sufficient key requests! 7




Adding Noise to Linear FE

Starting point idea: Linear FE computes <f, g‘} where X,y € R*
» Add dummy co-ordinate x| 4+ 1] = noise, y|f + 1] =1

« Now output <f, ?7> + noise

e Repeat Q times, once for each key request

4 )
Satisfies security, violates succinctness

CT size grows with Q




Can we compute encodings of noise “on the fly”?

« Polynomial for computing noise must
be degree at least 3 [LV18, BBKK18]

e Recall: Do not have FE for degree 3
polynomials without mmaps

* |s approximate computation easier?




|S approximate computation easier?
Or, Enter NTRU

Let R = Z[z]/{z™ + 1), p1 < p2 primes, R,, = R/(p1 - R), Ry, = R/(p2 - R)

“noise” is
message!

[Want to compute d = h - s + p; - err + noise J

For ¢ € {1,...,w}, sample fi;, fo; and g1, go from a discrete Gaussian over
ring R. Set
i _ Joj .
hii ===, hgj=""€Ry, V i,j€ v
g1 92
4 N

Assume these look random.
Note difference from NTRU: Reusing denominator!




RLWE with Structured Noise

Discrete
Gaussian

[ Want to compute d = h - s + p; - err + noise ]

Samp|e €1; < ]/D\(AQ), where /12 £ go - R. Let [617; = (o - fli}e smaII,

€95 < ﬁ(/ll), where /11 - g1 - R. Let €2; — (1 €2i S smaII,

Recall [hu = &, hao; = &}
g1 92

We have that: hli $ €25 = flz’ y 52]', hzj €14 — f2j . flz’ € small

47



RLWE with Structured Noise

[ Want to compute d = h - s + p; - err + noise ]

We showed:  hy; - eo; = f1;- €25, hoj-e1; = fo; - &1y € small

Compute encodings of “PRG seed” : dii =|hyi t1 +p1 (€1 € Ry,
do; =lha; | t2 + p1 -|€2; € Ry,

Multiply encodings:
dy; - doj = (hai - hej ) - (t2 t2) + p1 - noise
where noise = py - (f1; - &5 -1+ foj - &1t + D1 g1 g2 - E1i - &) € small

48



RLWE with Structured Noise

Noise lives in an ideal that “cancels” large term in RLWE sample!

Extends to higher degree!

[ “Theorem”: Its easy to make noise! }

Description
oversimplified.
Please see
paper [A19]

49



What about security?




Security of NLinFE

* Some analysis in [A19]

* Proof from clumsy assumption in overly weak security game

* Adversary only gets single ciphertext

* Security based on inability to find attacks ®

/ But... \

Much simpler to analyse than previous direct constructions

* Minimises part which depends on heuristics

e Uses no maps: completely different design template

\ e Post Quantum? J




Rigorous Cryptanalysis

* Follow-up [AP20]: Two attacks, and a fix
* Concrete parameters suggested

* New cryptanalytic techniques

e Security on much firmer footing

©

Hope: Inspires new candidates!

52




Attack 1: Multiple Ciphertext Attack

Structured noise annihilates large term not only in its own
ciphertext but also in other ciphertexts

Consider large terms in dudgj (h1;ho;) - (t1th) + p1 - small
dgj 15 — (hgjhli) . (tgtl) —|—p1 - small

Same label computed in two different ways!

Consider secrets in dyidaj = (hiihej) - (t1t2) + p1 - small
dgj/dlz'/ = (hzj/hh'/) . (tztl) + p1 - small.

Now, secrets same but labels are changing

53



Attack 1: Multiple Ciphertext Attack

Legal Ciphertexts:

Can be expressed as:

(du dyq
/ /

12 *"12/

)=

t1
ty

di; = hy; - t1 +p1 - ey

diy = hyy - t1 + p1 - exy
/ / /
15 — hi - t1 +p1-eq;
/ / /
14/ — hli/ y tl _|_ pl . 617;/

A [ €14 €14/
) (hu hii ) + D1 <G/M ¢

)

A

4 N

Label changes
with index of
element in
ciphertext,
secret changes
with ciphertext.
Can vary
independently

)

54



RLWE with correlated noise

Distinguish many samples

from uniform in R% where R, =7Z,X]/(X™+1) .
Everything in blue is small. We can ask to vary z or 7.

Remark: even if g;is small, gi mod ¢q is not.
1

55



Attacking RLWE with correlated noise

. Ji : )
Let by; []] = j - 11 []] + g9 - €1i [-7]

(bull] bul2\
Bre (512[1] b12[2]) “a At el

with A of rank 1.

Using linearity of determinant:

A B B A
det(B;) = Ldet(A) + £ det ( b 1’2) + 2 det ( b ”) + go% det(B)
NS Ay1 By 9 By Aszp
0
— 2 . small
91

56



Attacking RLWE with correlated noise

We have seen: det(B7) = 91 - small mod ¢

By symmetry:  det(By) = 92 - small mod ¢

Multiplying these, we obtain:

det(B;) - det(By) = small mod g

[ Distinguishing attack! }

57



Attack 2: Use noise term from NLInFE

The adversary can honestly play the following game

C A
b+ {0,1} choose p small
. H

compute large noise NV
ifb=20 ¢

r = N repea
otherwise

=N+ p T

v

guess b




Using Structure of N

N:ZZ,i,j’Uz?;’ D1 gg Elz g{ 'fzg
‘|'P0'(gg'€1z"gf’f%"‘gg‘ﬁ{z"gf'g?j)

+(f; °g2j+f§j -ty £y;)

+po - p()'(gg' {zg{ gj)-l_( fi'tl'fgj+'f§j't2'€ii)




Using Structure of N

N=3Y, v [pr(pl-(gé-fi gt &)
o0 (5 & of - & + 95 €L - &)
F(fhy - Eo - fy o ta - E1))
90 (po- (04 € 0f - &)+ (fhs - ta - &+ ff -2 €0)]

Look at noise modulo p3, pop1, p1, p3 and Po to recover different components.




Using Structure of N

Zﬁz,j J 92 glz gl 52]
g4
Pop1 - Zfz,j ggglzgggg +g§ gl 52_7)
24 / 4
1° D g Vij (ff - 1'€2j+f2j°t2'€1i)

€

2 X 14
Dy - Ze,z‘,j Vii "9 91

Do - Zf i,j U (flz ty - gj T fg] ‘1o ggz)




Using Structure of N

~/ =~/
P%‘Ze,i,jvfj'gg'ﬁu'g{’fzj
~f 44
POPI‘Z&@J’U% '(gé'glz”g{'&gj_'_gg‘ {i°g€'€2j)
~{ ~{
p1 - Zg,i,j ’UZ?(J- | (ffz -ty §2j "’fgj ‘g flz)

2 14 14 14 14
by - Ze,z‘,j Vit 9y - €15 0 01 °€2j

Po 'Ze,z‘,j vixj ‘ (ffz ‘11 gj + °-f§j 1o 'ffi)H (0 or p) J




Using Structure of N

D2t V5 °t1°€§j+°f§j'tz-€fi + (0 or p

Noise containing the challenge.




Using Structure of N

i Vi (fls -t - 55+ F3; - t2 - &) + (0 or )

- /

Red: depends on the secret key, Blue: depends on the ciphertext, Black: fixed

Can make red and blue vary independently.




Using Structure of N

Can be written as:
e N

(G, b) + (0 or 1)

A J

Red: depends on the secret key, Blue: depends on the ciphertext

—

Can make @ and b vary independently.




Using Structure of N

A + (0 or| (mij)i|)

Can make g andg vary independently.

[t depends on both the secret key and the ciphertext.




Using Structure of N

A + (0 or| (mij)i|)

- D
To distinguish: compute rank

Full (or large) rank =» case u, Small rank =» case 0




summing Up

* For fix to scheme, see paper [AP20]
* Takeaway: No fundamental security vulnerability
e Supports super-poly large output

* New design methodology

4 Open:
» Proof from simple assumption?
» More candidates?

\* Better efficiency?

68
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