
Walking the Edge between Structure and
Randomness:

The Quest for Indistinguishability Obfuscation

Shweta Agrawal
IIT Madras

Obfuscation from Noisy Linear FE

Shweta Agrawal
IIT Madras

Obfuscation
I know a better

algorithm to
factor

numbers!

Keep algorithm secret and
sell functionality.

code

Obfuscated code

• Produces correct output
• Impossible to reverse
engineer

Win best paper
award at
Crypto?

2

O
B
F
U
S
C
A
T
O
R

Obfuscation

y = C(x)

x

y = C(x)

x

Compile a circuit C into one Ĉ that preserves functionality,
and is unintelligible (resistant to reverse engineering)

C ĈO

Obfuscator

3

Indistinguishability Obfuscator iO [BGI+01]

C1 ≡ C2, meaning
• Same size |C1|=|C2|
• Same truth table TB(C1) = TB(C2)

≈iO (C1) iO (C2){ } { }
Trivial if efficiency is not a concern

“Which one of two equivalent circuits C1 ≡ C2 is obfuscated?”

4

Goal: Find an efficient compiler iO

Before we proceed…

• Seemingly useless definition

• We already know both circuits are equivalent. Does it

matter what is the particular representation?

• Unclear if there are applications

why do we care?

5

“Theorem” (GGHRSW13,SW13…) : iO is (almost?) crypto-complete

iO

6

Functional
Encryption

FHE without
Bootstrapping

Public Key
Encryption

Trapdoor
Permutations

Succinct
Randomized

Encodings

Deniable
Encryption

Multiparty
NIKE

Witness
Encryption Broadcast

Encryption

Traitor
Tracing

. . .2013 (GGHRSW) à 2020

Does iO exist?

7

•Direct Constructions
• All based on “multilinear maps” [GGH13,CLT13,GGH15]
• Same template in all works (all eggs in same basket?)
•Many attacks, fixes, repeat: hard to understand security

•Bootstrapping based constructions

8

It Depends….

•Direct Constructions
• All based on “multilinear maps” [GGH13,CLT13,GGH15]
• Same template in all works (all eggs in same basket?)
•Many attacks, fixes, repeat: hard to understand security

•Bootstrapping based constructions

9

It Depends….

Recap: Bilinear Maps

• Cryptographic bilinear map
• Groups 𝐺! and 𝐺" of order 𝑝 with generators 𝑔!, 𝑔" and a bilinear map
𝑒 ∶ 𝐺!×𝐺! →𝐺" such that

∀ 𝑎, 𝑏 ∈ 𝑍#∗ , 𝑒 𝑔!%, 𝑔!& = 𝑔"%&

• Hardness (Bilinear Diffie Hellman): Can compute degree 2 “in the
exponent”, degree 3 looks like random.

• Efficient Instantiation: Weil or Tate pairings over elliptic curves.

• Tremendously useful for crypto!
10

Multilinear Maps: Classical Notion

• Cryptographic n-multilinear map (for groups)
• Groups 𝐺1, … , 𝐺𝑛 of order 𝑝 with generators 𝑔1, … , 𝑔𝑛
• Family of maps:

𝑒',): 𝐺'× 𝐺𝑘 → 𝐺'*) for 𝑖 + 𝑘 ≤ 𝑛, where

• 𝑒',) 𝑔'% , 𝑔)& = 𝑔'*)%& ∀𝑎, 𝑏 ∈ 𝑍# .

• Hardness: at least “discrete log” in each 𝐺𝑖 is “hard’’.
• And hopefully the generalization of Bilinear DH

Multilinear Maps

12

• Applications described by Boneh and Silverberg in 2003
• Pessimistic about existence in realm of algebraic geometry

• First (beautiful!) candidate construction by Garg, Gentry, Halevi, 2013
• Based on ideal lattices, ideas inspired by NTRU

• Immensely useful, can be used to build iO (and much more!). Need
maps of poly degree.

Yilei’s
talk

Bootsrapping Based Constructions:
Reduce, Reduce, Reduce

•What is the minimum functionality needed for iO?

• How much can we “clean up” assumptions?

•Much progress

13

iO
[GGHRSW13,BR14,BGKPS14,PST14,

GLSW14,AGIS14,Zim15,AB15,GMS16,MSZ16]

multilinear maps
poly-degree

14

Multilinear Maps to iO

Slide Credit: Rachel Lin

iO
[GGHRSW13,BR14,BGKPS14,PST14,

GLSW14,AGIS14,Zim15,AB15,GMS16,MSZ16]

multilinear maps
poly-degree

Multilinear maps
(but messy assumptions)

constant-deg
[Lin16,AS17]Simplify

functionality

Multilinear Maps to iO

Slide Credit: Rachel Lin

iO
[GGHRSW13,BR14,BGKPS14,PST14,

GLSW14,AGIS14,Zim15,AB15,GMS16,MSZ16]

multilinear maps
poly-degree

Multilinear maps
(but messy assumptions)

constant-deg
[Lin16,AS17]Simplify

functionality
[LV16]

Simplify
Assumption

Multilinear maps
w/ nice assumptions

constant-deg

16

Multilinear Maps to iO

Slide Credit: Rachel Lin

Reduce
Degree

iO
[GGHRSW13,BR14,BGKPS14,PST14,

GLSW14,AGIS14,Zim15,AB15,GMS16,MSZ16]

multilinear maps
poly-degree

Multilinear maps
(but messy assumptions)

constant-deg
[Lin16,AS17]Simplify

functionality
[LV16]

Simplify
Assumption

Multilinear maps
w/ nice assumptions

constant-deg

[Lin17, LT17]

Deg 3 multilinear maps
w/ nice assumption

17

Multilinear Maps to iO

Slide Credit: Rachel Lin

18

Have: Degree 2
(bilinear) maps

from elliptic
curve groups

Desired: Deg 3+
maps,

iO-land

Big Open
Problem

Multilinear Maps to iO

Open #1 : Construct secure multilinear maps of degree > 2

Deg 3 Barrier: Need to generate randomness obliviously, needs
degree at least 3 [LV18,BBKK18]

Can we base iO on anything else?

19

Can we base iO on anything else?

• Functional Encryption supporting computation of degree ≥ 3
polynomials [AJ15, BV15, Lin16, LV16, Lin17, AS17, LT17]
• Should be good news except…..
• All constructions of degree 3 functional encryption themselves based on

multilinear maps L

20

(mpk, msk) ß Setup(1n)

Enc(mpk, x):

Kgen(msk, f):

skf

ct

y = f(x)

Dec(skC, ct):

Functional Encryption (FE) [SW05,BSW11]

ct

skf

21

Selective IND Security

22

Bit b*

MSK, MPK

MPK

Repeat Q
times

Adversary wins if b = b*

Ciphertext size should be sublinear in Q to imply iO [AJ15,BV15]

Require f(x0)=f(x1)

iO from Functional Encryption
• Long sequence of works: Functional Encryption supporting computation

of constant degree polynomials [AJ15,BV15,Lin17,AS17,LT17]

• Symmetric key FE suffices [BNPW16,KNT17]

• New Abstraction [A19]: Noisy linear functional encryption

23

Theorem (A19) : Special fully homomorphic encryption (LWE)
+ (Sel. IND Secure) Noisy Linear FE è iO

Weaker than functional encryption for degree 3 polynomials!

Partially Hiding FE
Direct

Construction

Noisy Linear FE

FE for P

Based on LWE/RLWE

Special homomorphic encodings
[AR17, A19, JLS20]

Noisy Linear FE to iO

Bilinear maps + Weak
& leaky LWE

AJLMS19, JLS20

Rachel,
Aayush,

Amit

Rest of
my talk

Enc(mpk, x):

Kgen(msk, y):

sky

ct

<x, y> ∈ 𝑅

Dec(sky, ct):

Noisy Linear Functional Encryption [ABDP15,ALS16]

ct

sky

25

Can be constructed from standard
assumptions – DDH, LWE, QR

Let x, y ∈ 𝑅+

Noisy Linear Functional Encryption

Add noise to output!
Enc(x), Keygen(y), Decrypt to get <x,y> plus noise

•Where does noise come from?

•What security properties does it need to satisfy?

• Isn’t this high degree computation? Going in circles ?

26

27

Noisy
Linear

Functional
Encryption

Enc(msk, x):

Keygen(msk, y):

sky

ct

<x, y> + noise ∈ 𝑅

Dec(sky, ct):

Noisy Linear Functional Encryption [A19]

ct

sky

28

Noise must:
• be bounded by Bd
• satisfy weak pseudorandomness

Let x, y ∈ 𝑅+

Selective IND Security

29

Bit b*

Adversary wins if b = b*

Ciphertext size should be sublinear in Q to imply iO [A19]

Require

{ 𝑥',, 𝑥'! }

{𝐸𝑛𝑐 (𝑥'&)}

𝑦-

𝑆𝐾(𝑦-)

Where does noise come from?

30

seed G(seed)

Random Pseudorandom

“Weak”
Pseudorandom

Generator
PRG G

• Represent G as polynomial.
• Use FE to compute G(seed) and add it to output

Use PRG to compute noise

Key new observation: Old grandma advice!

31

If you cannot have
what you want, you
must learn to want
what you can have

Key new observation: Relax requirement on correctness!

32

If you cannot compute
what you can use, you
must learn to use what

you can compute

Use PRG to compute noise
• Use FE to compute <x, y> + G(seed).

33

sky,G

CT(x, seed)

<x,y> + G(seed)

• Only <x,y> needs to be correct!
• Precise value of G(seed) not important

• So far: Assume polynomial is PRG and insist on computing it exactly

• Here: Compute whatever can be computed and check if it can satisfy PRG

like properties

34

CT (x, seed)

sky,G
sky,G

CT(x, seed)

<x,y> + G’(seed’)

A key new observation: Relax requirement on correctness!

• Extend LWE based Linear FE of ALS16 to Noisy Linear FE using new hardness

conjectures on lattices.

• Very different from multilinear map assumptions

• May be more robust. May be post-quantum.

• Much simpler to analyse than mmap based direct constructions: no need

for straddling sets, Kilian randomization etc used by all prior work

35

Permits New Direct Constructions

First construction of iO without any maps.

Construction

36

Ring Learning with Errors Problem

Let ring

37

vs

Sample s uniformly in Rq

a1 , b1 = a1 s + err1

a2 , b2 = a2 s + err2

am , bm = ams+ errm

ai uniform Rq , ei ~ϕ R ÎÎ Î

Rq = Zq[x]/ < x
n +1>

DISTRIBUTION 1

a’i, b’i uniform Rq

a’1 , b’1

a’2 , b’2

a’m , b’m

DISTRIBUTION 2

Regev Public Key Encryption
Recall: Finding short such that is hard

vSK : PK :

vEncrypt (PK, x) :

vDecrypt (SK) :

Small only if
e is small

38

!
"e !

"a,u

;e ua =< >
!!

e!

Pseudorandom
By R-LWE

~c0 = ~a · s+ 2 · ~err1

c1 = u · s+ 2 · err2 + x

<latexit sha1_base64="gTzKu/+eJjxXJOSqlqNhe489Si4=">AAACXnicbVFdS8MwFE3r16xfU18EX4JDEYXRDkVfhIEvPio4HayjpLd3M5imJUnFUfYnfRNf/ClmWwV1Xgg5nHMu9+YkzgXXxvffHXdhcWl5pbbqra1vbG7Vt3cedFYowA5kIlPdmGkUXGLHcCOwmytkaSzwMX6+nuiPL6g0z+S9GeXYT9lQ8gEHZiwV1YswxiGXJRN8KE/GXviCQCHy6dEVnWJGQ0gyQzU9pa0KT4QSlRpHAQ1DD+xl7cW8cWZqWebVC1Em32OiesNv+tOi8yCoQINUdRvV38IkgyJFaUAwrXuBn5t+yZThINCuXWjMGTyzIfYslCxF3S+n8YzpoWUSOsiUPdLQKfuzo2Sp1qM0ts6UmSf9V5uQ/2m9wgwu+yWXeWFQwmzQoBDUZHSSNU24QjBiZAEDxe2uFJ6YYmDsj3g2hODvk+fBQ6sZnDXP71qNdreKo0b2yQE5JgG5IG1yQ25JhwD5cBzHc9acT3fZ3XC3ZlbXqXp2ya9y974A4yqwUQ==</latexit>

c1 � h~e;~c0i = u · s+ 2 · err2 + x� u · s� h~e; ~err1i
= x+ 2 · err
= x mod 2

<latexit sha1_base64="5d7C/eZ9uLi1TYNoVGnsSn1waqM=">AAACqXicdVFda9swFJW9r877SrfHvVwWFsbKgm02OhiFwl720IcWljQsCkaWb1xRWTKSXBaM/9t+w972b6bE6T7S7YLQ4Zx7j67uzWsprIvjH0F46/adu/f27kcPHj56/GSw/3RqdWM4TriW2sxyZlEKhRMnnMRZbZBVucTz/PLjWj+/QmOFVp/dqsZFxUolloIz56ls8I3mWArVMilK9bqLeJbAG6CSqVIi0CvkgB/6m2cxUNMLoyOAhvJCO7BwACn0uEVjuiz1zFfv8ivhf47r9Czprk0pjUZw5Et3DH8LtNIFpBFFVVx3nA2G8TjeBNwEyRYMyTZOs8F3WmjeVKgcl8zaeRLXbtEy4wSX2EW0sVgzfslKnHuoWIV20W4m3cFLzxSw1MYf5WDD/lnRssraVZX7zIq5C7urrcl/afPGLd8vWqHqxqHi/UPLRoLTsF4bFMIgd3LlAeNG+F6BXzDDuPPLjfwQkt0v3wTTdJy8Hb87S4fHJ9tx7JHn5AV5RRJySI7JJ3JKJoQHo+AkmATT8CA8C2fhlz41DLY1z8hfEfKfbw3Idg==</latexit>

Linear Functional Encryption [ALS16]

MSK:

PK:

where

(short)

Linear Functional Encryption [ALS16]

MSK:

PK:

where

(short) Enc(PK, x):

Linear Functional Encryption [ALS16]

MSK:

PK:

where

(short) Enc(PK, x):

KeyGen(MSK, y):

Linear Functional Encryption [ALS16]

MSK:

PK:

where

(short) Enc(PK, x):

KeyGen(MSK, y): Decrypt:

-
=

Wait a minute….

• Decryption reveals : inner product + noise

• Isn’t this noisy linear FE already?

Noise not
pseudorandom

Noise is learnt fully after sufficient key requests!

Adding Noise to Linear FE

• Starting point idea: Linear FE computes

• Add dummy co-ordinate

• Now output

• Repeat Q times, once for each key request

Satisfies security, violates succinctness
CT size grows with Q

Can we compute encodings of noise “on the fly”?

• Polynomial for computing noise must
be degree at least 3 [LV18, BBKK18]

• Recall: Do not have FE for degree 3
polynomials without mmaps

• Is approximate computation easier?

Is approximate computation easier?
Or, Enter NTRU

46

“noise” is
message!

Assume these look random.
Note difference from NTRU: Reusing denominator!

RLWE with Structured Noise

47

Discrete
Gaussian

Thus, [2] assumes that the samples {h1i, h2j} for i, j 2 [w] are indistinguishable
from random, even though multiple samples share the same denominator.

Additionally, [2] assumes that RLWE with small secrets remains secure if the
noise terms live in some secret ideal. The motivation for choosing such structured
secrets is that they can be multiplied with well chosen NTRU terms such as the
{h1i, h2j} above, to cancel the denominator and obtain a small element which
can be absorbed in noise.

In more detail, for i 2 [w], let bD(⇤2), bD(⇤1) be discrete Gaussian distributions
over lattices ⇤2 and ⇤1 respectively. Then, sample

e1i bD(⇤2), where ⇤2 , g2 ·R. Let e1i = g2 · ⇠1i 2 small,

e2i bD(⇤1), where ⇤1 , g1 ·R. Let e2i = g1 · ⇠2i 2 small,

Here, small is used to collect terms whose norms may be bounded away from the
modulus. Note that for i, j 2 [w], it holds that:

h1i · e2j = f1i · ⇠2j , h2j · e1i = f2j · ⇠1i 2 small

Now, sample small secrets t1, t2 and for i 2 [w], compute

d1i = h1i · t1 + p1 · e1i 2 Rp2

d2i = h2i · t2 + p1 · e2i 2 Rp2

Then, note that the products d1i · d2j do not su↵er from large cross terms for
any i, j 2 [w]. As discussed above, due to the fact that the error of one sample is
chosen to “cancel out” the large denominator in the other sample, the product
yields a well behaved RLWE sample whose label is a product of the original labels.
In more detail,

d1i · d2j =
�
h1i · h2j

�
· (t2 t2) + p1 · noise

where noise = p1 ·
�
f1i · ⇠2j · t1 + f2j · ⇠1i · t2 + p1 · g1 · g2 · ⇠1i · ⇠2j

�
2 small

The encoding d1i · d2j can be seen an an RLWE encoding under a public label
– this enables the noise term p1 · noise above to be added to the inner product
computed by LinFE, yielding the desired NLinFE. The actual construction [2]
does several more tricks to ensure that the noise term is high entropy and spread
across the ring – we refer the reader to Section 3 for details.

Exploiting Correlated Noise across Multiple Ciphertexts. As discussed above,
Agrawal [2] provided a proof of security for the NLinFE construction (under a
non-standard assumption) in a very weak security model where the adversary
is only allowed to request a single ciphertext. In this work, we show that the
construction is in fact insecure if the adversary has access to multiple ciphertexts.
To do so, we first formally define a variant of the RLWE problem, which we
call the RLWE problem with correlated noise. The distribution of the elements
in this problem are similar to the one obtained by the encryption procedure

6

Sample

Thus, [2] assumes that the samples {h1i, h2j} for i, j 2 [w] are indistinguishable
from random, even though multiple samples share the same denominator.

Additionally, [2] assumes that RLWE with small secrets remains secure if the
noise terms live in some secret ideal. The motivation for choosing such structured
secrets is that they can be multiplied with well chosen NTRU terms such as the
{h1i, h2j} above, to cancel the denominator and obtain a small element which
can be absorbed in noise.

In more detail, for i 2 [w], let bD(⇤2), bD(⇤1) be discrete Gaussian distributions
over lattices ⇤2 and ⇤1 respectively. Then, sample

e1i bD(⇤2), where ⇤2 , g2 ·R. Let e1i = g2 · ⇠1i 2 small,

e2i bD(⇤1), where ⇤1 , g1 ·R. Let e2i = g1 · ⇠2i 2 small,

Here, small is used to collect terms whose norms may be bounded away from the
modulus. Note that for i, j 2 [w], it holds that:

h1i · e2j = f1i · ⇠2j , h2j · e1i = f2j · ⇠1i 2 small

Now, sample small secrets t1, t2 and for i 2 [w], compute

d1i = h1i · t1 + p1 · e1i 2 Rp2

d2i = h2i · t2 + p1 · e2i 2 Rp2

Then, note that the products d1i · d2j do not su↵er from large cross terms for
any i, j 2 [w]. As discussed above, due to the fact that the error of one sample is
chosen to “cancel out” the large denominator in the other sample, the product
yields a well behaved RLWE sample whose label is a product of the original labels.
In more detail,

d1i · d2j =
�
h1i · h2j

�
· (t2 t2) + p1 · noise

where noise = p1 ·
�
f1i · ⇠2j · t1 + f2j · ⇠1i · t2 + p1 · g1 · g2 · ⇠1i · ⇠2j

�
2 small

The encoding d1i · d2j can be seen an an RLWE encoding under a public label
– this enables the noise term p1 · noise above to be added to the inner product
computed by LinFE, yielding the desired NLinFE. The actual construction [2]
does several more tricks to ensure that the noise term is high entropy and spread
across the ring – we refer the reader to Section 3 for details.

Exploiting Correlated Noise across Multiple Ciphertexts. As discussed above,
Agrawal [2] provided a proof of security for the NLinFE construction (under a
non-standard assumption) in a very weak security model where the adversary
is only allowed to request a single ciphertext. In this work, we show that the
construction is in fact insecure if the adversary has access to multiple ciphertexts.
To do so, we first formally define a variant of the RLWE problem, which we
call the RLWE problem with correlated noise. The distribution of the elements
in this problem are similar to the one obtained by the encryption procedure

6

We have that:

Recall

Noisy Linear Functional Encryption. Noisy linear functional encryption (NLinFE)
is a generalization of linear functional encryption (LinFE) [1, 3]. Recall that
in linear FE, the encryptor provides a CTz which encodes vector z 2 R

n, the
key generator provides a secret key SKv which encodes vector v 2 R

n and the
decryptor combines them to recover hz,vi. NLinFE is similar to linear FE, except
that the function value is recovered only up to some bounded additive noise term,
and indistinguishability holds even if the challenge messages evaluated on any
function key are only “approximately” and not exactly equal. The functionality of
NLinFE is as follows: given a ciphertext CTz and a secret key SKv, the decryptor
recovers hz, vi+ noisez,v where noisez,v is specific to the message and function
being evaluated.

It is well known that functional encryption (FE) for the function class NC1

which achieves sublinear3 ciphertext is su�cient to imply iO [6, 15]. Agrawal [2]
additionally showed the following “bootstrapping” theorem.

Theorem 1.1 ([2]). (Informal) There exists an FE scheme for the circuit class

NC1 with sublinear ciphertext size and satisfying indistinguishability based security,

assuming:

– A noisy linear FE scheme NLinFE with sublinear ciphertext size satisfying

indistinguishability based security and supporting superpolynomially large

outputs.

– The Learning with Errors (LWE) Assumption.

– A pseudorandom generator (PRG) computable in NC0.

Since the last two assumptions are widely believed, it su�ces to construct an
NLinFE scheme to construct the all-powerful iO.

The NLinFE Construction. Agrawal provided a direct construction of NLinFE
which supports superpolynomially large outputs, based on new assumptions that
are based on the Ring Learning With Errors (RLWE) and NTRU assumptions
(we refer the reader to Section 2 for a refresher on RLWE and NTRU).

The starting point of Agrawal’s NLinFE scheme is the LinFE scheme of [3],
which is based on LWE (or RLWE). NLinFE inherits the encodings and secret
key structure of LinFE verbatim to compute inner products, and develops new
techniques to compute the desired noise. Since the noise must be computed
using a high degree polynomial for security [10, 39], the work of [2] designs new
encodings that are amenable to multiplication as follows.

Let R = Z[x]/hxn + 1i and Rp1 = R/(p1 · R), Rp2 = R/(p2 · R) for some
primes p1 < p2. Then, for i 2 {1, . . . , w}, sample f1i, f2i and g1, g2 from a discrete
Gaussian over ring R. Set

h1i =
f1i

g1
, h2j =

f2j

g2
2 Rp2 8 i, j 2 [w]

3 Here “sublinear” refers to the property that the ciphertext size is sublinear in the
number of keys requested by the FE adversary.

5

RLWE with Structured Noise

48

Thus, [2] assumes that the samples {h1i, h2j} for i, j 2 [w] are indistinguishable
from random, even though multiple samples share the same denominator.

Additionally, [2] assumes that RLWE with small secrets remains secure if the
noise terms live in some secret ideal. The motivation for choosing such structured
secrets is that they can be multiplied with well chosen NTRU terms such as the
{h1i, h2j} above, to cancel the denominator and obtain a small element which
can be absorbed in noise.

In more detail, for i 2 [w], let bD(⇤2), bD(⇤1) be discrete Gaussian distributions
over lattices ⇤2 and ⇤1 respectively. Then, sample

e1i bD(⇤2), where ⇤2 , g2 ·R. Let e1i = g2 · ⇠1i 2 small,

e2i bD(⇤1), where ⇤1 , g1 ·R. Let e2i = g1 · ⇠2i 2 small,

Here, small is used to collect terms whose norms may be bounded away from the
modulus. Note that for i, j 2 [w], it holds that:

h1i · e2j = f1i · ⇠2j , h2j · e1i = f2j · ⇠1i 2 small

Now, sample small secrets t1, t2 and for i 2 [w], compute

d1i = h1i · t1 + p1 · e1i 2 Rp2

d2i = h2i · t2 + p1 · e2i 2 Rp2

Then, note that the products d1i · d2j do not su↵er from large cross terms for
any i, j 2 [w]. As discussed above, due to the fact that the error of one sample is
chosen to “cancel out” the large denominator in the other sample, the product
yields a well behaved RLWE sample whose label is a product of the original labels.
In more detail,

d1i · d2j =
�
h1i · h2j

�
· (t2 t2) + p1 · noise

where noise = p1 ·
�
f1i · ⇠2j · t1 + f2j · ⇠1i · t2 + p1 · g1 · g2 · ⇠1i · ⇠2j

�
2 small

The encoding d1i · d2j can be seen an an RLWE encoding under a public label
– this enables the noise term p1 · noise above to be added to the inner product
computed by LinFE, yielding the desired NLinFE. The actual construction [2]
does several more tricks to ensure that the noise term is high entropy and spread
across the ring – we refer the reader to Section 3 for details.

Exploiting Correlated Noise across Multiple Ciphertexts. As discussed above,
Agrawal [2] provided a proof of security for the NLinFE construction (under a
non-standard assumption) in a very weak security model where the adversary
is only allowed to request a single ciphertext. In this work, we show that the
construction is in fact insecure if the adversary has access to multiple ciphertexts.
To do so, we first formally define a variant of the RLWE problem, which we
call the RLWE problem with correlated noise. The distribution of the elements
in this problem are similar to the one obtained by the encryption procedure

6

We showed:

Compute encodings of “PRG seed” :

Thus, [2] assumes that the samples {h1i, h2j} for i, j 2 [w] are indistinguishable
from random, even though multiple samples share the same denominator.

Additionally, [2] assumes that RLWE with small secrets remains secure if the
noise terms live in some secret ideal. The motivation for choosing such structured
secrets is that they can be multiplied with well chosen NTRU terms such as the
{h1i, h2j} above, to cancel the denominator and obtain a small element which
can be absorbed in noise.

In more detail, for i 2 [w], let bD(⇤2), bD(⇤1) be discrete Gaussian distributions
over lattices ⇤2 and ⇤1 respectively. Then, sample

e1i bD(⇤2), where ⇤2 , g2 ·R. Let e1i = g2 · ⇠1i 2 small,

e2i bD(⇤1), where ⇤1 , g1 ·R. Let e2i = g1 · ⇠2i 2 small,

Here, small is used to collect terms whose norms may be bounded away from the
modulus. Note that for i, j 2 [w], it holds that:

h1i · e2j = f1i · ⇠2j , h2j · e1i = f2j · ⇠1i 2 small

Now, sample small secrets t1, t2 and for i 2 [w], compute

d1i = h1i · t1 + p1 · e1i 2 Rp2

d2i = h2i · t2 + p1 · e2i 2 Rp2

Then, note that the products d1i · d2j do not su↵er from large cross terms for
any i, j 2 [w]. As discussed above, due to the fact that the error of one sample is
chosen to “cancel out” the large denominator in the other sample, the product
yields a well behaved RLWE sample whose label is a product of the original labels.
In more detail,

d1i · d2j =
�
h1i · h2j

�
· (t2 t2) + p1 · noise

where noise = p1 ·
�
f1i · ⇠2j · t1 + f2j · ⇠1i · t2 + p1 · g1 · g2 · ⇠1i · ⇠2j

�
2 small

The encoding d1i · d2j can be seen an an RLWE encoding under a public label
– this enables the noise term p1 · noise above to be added to the inner product
computed by LinFE, yielding the desired NLinFE. The actual construction [2]
does several more tricks to ensure that the noise term is high entropy and spread
across the ring – we refer the reader to Section 3 for details.

Exploiting Correlated Noise across Multiple Ciphertexts. As discussed above,
Agrawal [2] provided a proof of security for the NLinFE construction (under a
non-standard assumption) in a very weak security model where the adversary
is only allowed to request a single ciphertext. In this work, we show that the
construction is in fact insecure if the adversary has access to multiple ciphertexts.
To do so, we first formally define a variant of the RLWE problem, which we
call the RLWE problem with correlated noise. The distribution of the elements
in this problem are similar to the one obtained by the encryption procedure

6

Thus, [2] assumes that the samples {h1i, h2j} for i, j 2 [w] are indistinguishable
from random, even though multiple samples share the same denominator.

Additionally, [2] assumes that RLWE with small secrets remains secure if the
noise terms live in some secret ideal. The motivation for choosing such structured
secrets is that they can be multiplied with well chosen NTRU terms such as the
{h1i, h2j} above, to cancel the denominator and obtain a small element which
can be absorbed in noise.

In more detail, for i 2 [w], let bD(⇤2), bD(⇤1) be discrete Gaussian distributions
over lattices ⇤2 and ⇤1 respectively. Then, sample

e1i bD(⇤2), where ⇤2 , g2 ·R. Let e1i = g2 · ⇠1i 2 small,

e2i bD(⇤1), where ⇤1 , g1 ·R. Let e2i = g1 · ⇠2i 2 small,

Here, small is used to collect terms whose norms may be bounded away from the
modulus. Note that for i, j 2 [w], it holds that:

h1i · e2j = f1i · ⇠2j , h2j · e1i = f2j · ⇠1i 2 small

Now, sample small secrets t1, t2 and for i 2 [w], compute

d1i = h1i · t1 + p1 · e1i 2 Rp2

d2i = h2i · t2 + p1 · e2i 2 Rp2

Then, note that the products d1i · d2j do not su↵er from large cross terms for
any i, j 2 [w]. As discussed above, due to the fact that the error of one sample is
chosen to “cancel out” the large denominator in the other sample, the product
yields a well behaved RLWE sample whose label is a product of the original labels.
In more detail,

d1i · d2j =
�
h1i · h2j

�
· (t2 t2) + p1 · noise

where noise = p1 ·
�
f1i · ⇠2j · t1 + f2j · ⇠1i · t2 + p1 · g1 · g2 · ⇠1i · ⇠2j

�
2 small

The encoding d1i · d2j can be seen an an RLWE encoding under a public label
– this enables the noise term p1 · noise above to be added to the inner product
computed by LinFE, yielding the desired NLinFE. The actual construction [2]
does several more tricks to ensure that the noise term is high entropy and spread
across the ring – we refer the reader to Section 3 for details.

Exploiting Correlated Noise across Multiple Ciphertexts. As discussed above,
Agrawal [2] provided a proof of security for the NLinFE construction (under a
non-standard assumption) in a very weak security model where the adversary
is only allowed to request a single ciphertext. In this work, we show that the
construction is in fact insecure if the adversary has access to multiple ciphertexts.
To do so, we first formally define a variant of the RLWE problem, which we
call the RLWE problem with correlated noise. The distribution of the elements
in this problem are similar to the one obtained by the encryption procedure

6

Multiply encodings: As
desired!

RLWE with Structured Noise

49

Noise lives in an ideal that “cancels” large term in RLWE sample!

“Theorem”: Its easy to make noise!

Extends to higher degree!

Description
oversimplified.

Please see
paper [A19]

What about security?

50

51

Security of NLinFE

But…
• Much simpler to analyse than previous direct constructions

• Minimises part which depends on heuristics

• Uses no maps: completely different design template

• Post Quantum?

• Some analysis in [A19]

• Proof from clumsy assumption in overly weak security game

• Adversary only gets single ciphertext

• Security based on inability to find attacks L

• Follow-up [AP20]: Two attacks, and a fix

• Concrete parameters suggested

• New cryptanalytic techniques

• Security on much firmer footing

52

Rigorous Cryptanalysis

Hope: Inspires new candidates!

53

Attack 1: Multiple Ciphertext Attack

Consider large terms in

Consider secrets in

Structured noise annihilates large term not only in its own
ciphertext but also in other ciphertexts

of the NLinFE described above. We then show that this problem can be solved
in polynomial time by an attacker, which in turn translates to an attack on
Agrawal’s NLinFE construction.

The key vulnerability exploited by the attack is that the noise terms across
multiple ciphertexts are correlated. In more detail, we saw above that d1i =
h1i · t1+p1 ·e1i where e1i lives in the ideal g2 ·R. Now, consider the corresponding
element in another ciphertext: d01i = h1i · t01 + p1 · e01i where e01i is also in the ideal
g2 ·R. The key observation we make is that the noise e1i does not only annihilate
the requisite large terms in the encodings of its own ciphertext namely {d2i} – it
also annihilates large terms in the encodings of other ciphertexts, namely {d02i}.

This allows us to perform mix and match attacks, despite the fact that each
encoding is randomized with fresh randomness. Consider the large terms in the
following two products:

d1id
0
2j =

�
h1ih2j

�
· (t1t02) + p1 · small

d2jd
0
1i =

�
h2jh1i

�
· (t2t01) + p1 · small

We see above that the labels h1ih2j can be computed in two di↵erent ways (but
the secrets are di↵erent). In a symmetric manner, if we consider other indices i0

and j
0 for the ciphertext elements above, we can obtain

d1id2j =
�
h1ih2j

�
· (t1t2) + p1 · small

d2j0d1i0 =
�
h2j0h1i0

�
· (t2t1) + p1 · small.

Now, the secret is the same but the labels are changing. By playing on these
symmetries, we can combine the products above (and the symmetric ones) so
that all large terms are canceled and we are left with only small terms.

Intrinsically, what happens here is that in an element d1i = h1i · t1 + p1 · e1i,
we can change the h1i and t1 elements independently (the secret t1 changes with
the ciphertext and the label h1i changes with the index of the element in the
ciphertext). By varying these two elements independently, one can obtain 2⇥ 2
encodings (for 2 di↵erent choices of h1i and 2 di↵erent choices of t1), and consider
the 2⇥ 2 matrix associated. More formally, let us write

d1i = h1i · t1 + p1 · e1i
d1i0 = h1i0 · t1 + p1 · e1i0
d
0
1i = h1i · t01 + p1 · e01i

d
0
1i0 = h1i0 · t01 + p1 · e01i0

these encodings. We consider the matrix
✓
d1i d1i0

d
0
1i d

0
1i0

◆
=

✓
t1

t
0
1

◆
·
�
h1i h1i0

�
+ p1 ·

✓
e1i e1i0

e
0
1i e

0
1i0

◆
.

This matrix is the sum of a matrix of rank 1 with large coe�cients plus a full rank
matrix with small coe�cients that are multiples of g2. These properties ensure

7

Same label computed in two different ways!

of the NLinFE described above. We then show that this problem can be solved
in polynomial time by an attacker, which in turn translates to an attack on
Agrawal’s NLinFE construction.

The key vulnerability exploited by the attack is that the noise terms across
multiple ciphertexts are correlated. In more detail, we saw above that d1i =
h1i · t1+p1 ·e1i where e1i lives in the ideal g2 ·R. Now, consider the corresponding
element in another ciphertext: d01i = h1i · t01 + p1 · e01i where e01i is also in the ideal
g2 ·R. The key observation we make is that the noise e1i does not only annihilate
the requisite large terms in the encodings of its own ciphertext namely {d2i} – it
also annihilates large terms in the encodings of other ciphertexts, namely {d02i}.

This allows us to perform mix and match attacks, despite the fact that each
encoding is randomized with fresh randomness. Consider the large terms in the
following two products:

d1id
0
2j =

�
h1ih2j

�
· (t1t02) + p1 · small

d2jd
0
1i =

�
h2jh1i

�
· (t2t01) + p1 · small

We see above that the labels h1ih2j can be computed in two di↵erent ways (but
the secrets are di↵erent). In a symmetric manner, if we consider other indices i0

and j
0 for the ciphertext elements above, we can obtain

d1id2j =
�
h1ih2j

�
· (t1t2) + p1 · small

d2j0d1i0 =
�
h2j0h1i0

�
· (t2t1) + p1 · small.

Now, the secret is the same but the labels are changing. By playing on these
symmetries, we can combine the products above (and the symmetric ones) so
that all large terms are canceled and we are left with only small terms.

Intrinsically, what happens here is that in an element d1i = h1i · t1 + p1 · e1i,
we can change the h1i and t1 elements independently (the secret t1 changes with
the ciphertext and the label h1i changes with the index of the element in the
ciphertext). By varying these two elements independently, one can obtain 2⇥ 2
encodings (for 2 di↵erent choices of h1i and 2 di↵erent choices of t1), and consider
the 2⇥ 2 matrix associated. More formally, let us write

d1i = h1i · t1 + p1 · e1i
d1i0 = h1i0 · t1 + p1 · e1i0
d
0
1i = h1i · t01 + p1 · e01i

d
0
1i0 = h1i0 · t01 + p1 · e01i0

these encodings. We consider the matrix
✓
d1i d1i0

d
0
1i d

0
1i0

◆
=

✓
t1

t
0
1

◆
·
�
h1i h1i0

�
+ p1 ·

✓
e1i e1i0

e
0
1i e

0
1i0

◆
.

This matrix is the sum of a matrix of rank 1 with large coe�cients plus a full rank
matrix with small coe�cients that are multiples of g2. These properties ensure

7

Now, secrets same but labels are changing

54

Attack 1: Multiple Ciphertext Attack

Label changes
with index of

element in
ciphertext,

secret changes
with ciphertext.

Can vary
independently

of the NLinFE described above. We then show that this problem can be solved
in polynomial time by an attacker, which in turn translates to an attack on
Agrawal’s NLinFE construction.

The key vulnerability exploited by the attack is that the noise terms across
multiple ciphertexts are correlated. In more detail, we saw above that d1i =
h1i · t1+p1 ·e1i where e1i lives in the ideal g2 ·R. Now, consider the corresponding
element in another ciphertext: d01i = h1i · t01 + p1 · e01i where e01i is also in the ideal
g2 ·R. The key observation we make is that the noise e1i does not only annihilate
the requisite large terms in the encodings of its own ciphertext namely {d2i} – it
also annihilates large terms in the encodings of other ciphertexts, namely {d02i}.

This allows us to perform mix and match attacks, despite the fact that each
encoding is randomized with fresh randomness. Consider the large terms in the
following two products:

d1id
0
2j =

�
h1ih2j

�
· (t1t02) + p1 · small

d2jd
0
1i =

�
h2jh1i

�
· (t2t01) + p1 · small

We see above that the labels h1ih2j can be computed in two di↵erent ways (but
the secrets are di↵erent). In a symmetric manner, if we consider other indices i0

and j
0 for the ciphertext elements above, we can obtain

d1id2j =
�
h1ih2j

�
· (t1t2) + p1 · small

d2j0d1i0 =
�
h2j0h1i0

�
· (t2t1) + p1 · small.

Now, the secret is the same but the labels are changing. By playing on these
symmetries, we can combine the products above (and the symmetric ones) so
that all large terms are canceled and we are left with only small terms.

Intrinsically, what happens here is that in an element d1i = h1i · t1 + p1 · e1i,
we can change the h1i and t1 elements independently (the secret t1 changes with
the ciphertext and the label h1i changes with the index of the element in the
ciphertext). By varying these two elements independently, one can obtain 2⇥ 2
encodings (for 2 di↵erent choices of h1i and 2 di↵erent choices of t1), and consider
the 2⇥ 2 matrix associated. More formally, let us write

d1i = h1i · t1 + p1 · e1i
d1i0 = h1i0 · t1 + p1 · e1i0
d
0
1i = h1i · t01 + p1 · e01i

d
0
1i0 = h1i0 · t01 + p1 · e01i0

these encodings. We consider the matrix
✓
d1i d1i0

d
0
1i d

0
1i0

◆
=

✓
t1

t
0
1

◆
·
�
h1i h1i0

�
+ p1 ·

✓
e1i e1i0

e
0
1i e

0
1i0

◆
.

This matrix is the sum of a matrix of rank 1 with large coe�cients plus a full rank
matrix with small coe�cients that are multiples of g2. These properties ensure

7

of the NLinFE described above. We then show that this problem can be solved
in polynomial time by an attacker, which in turn translates to an attack on
Agrawal’s NLinFE construction.

The key vulnerability exploited by the attack is that the noise terms across
multiple ciphertexts are correlated. In more detail, we saw above that d1i =
h1i · t1+p1 ·e1i where e1i lives in the ideal g2 ·R. Now, consider the corresponding
element in another ciphertext: d01i = h1i · t01 + p1 · e01i where e01i is also in the ideal
g2 ·R. The key observation we make is that the noise e1i does not only annihilate
the requisite large terms in the encodings of its own ciphertext namely {d2i} – it
also annihilates large terms in the encodings of other ciphertexts, namely {d02i}.

This allows us to perform mix and match attacks, despite the fact that each
encoding is randomized with fresh randomness. Consider the large terms in the
following two products:

d1id
0
2j =

�
h1ih2j

�
· (t1t02) + p1 · small

d2jd
0
1i =

�
h2jh1i

�
· (t2t01) + p1 · small

We see above that the labels h1ih2j can be computed in two di↵erent ways (but
the secrets are di↵erent). In a symmetric manner, if we consider other indices i0

and j
0 for the ciphertext elements above, we can obtain

d1id2j =
�
h1ih2j

�
· (t1t2) + p1 · small

d2j0d1i0 =
�
h2j0h1i0

�
· (t2t1) + p1 · small.

Now, the secret is the same but the labels are changing. By playing on these
symmetries, we can combine the products above (and the symmetric ones) so
that all large terms are canceled and we are left with only small terms.

Intrinsically, what happens here is that in an element d1i = h1i · t1 + p1 · e1i,
we can change the h1i and t1 elements independently (the secret t1 changes with
the ciphertext and the label h1i changes with the index of the element in the
ciphertext). By varying these two elements independently, one can obtain 2⇥ 2
encodings (for 2 di↵erent choices of h1i and 2 di↵erent choices of t1), and consider
the 2⇥ 2 matrix associated. More formally, let us write

d1i = h1i · t1 + p1 · e1i
d1i0 = h1i0 · t1 + p1 · e1i0
d
0
1i = h1i · t01 + p1 · e01i

d
0
1i0 = h1i0 · t01 + p1 · e01i0

these encodings. We consider the matrix
✓
d1i d1i0

d
0
1i d

0
1i0

◆
=

✓
t1

t
0
1

◆
·
�
h1i h1i0

�
+ p1 ·

✓
e1i e1i0

e
0
1i e

0
1i0

◆
.

This matrix is the sum of a matrix of rank 1 with large coe�cients plus a full rank
matrix with small coe�cients that are multiples of g2. These properties ensure

7

Legal Ciphertexts:

Can be expressed as:

55

RLWE with correlated noise

Distinguish many samples

from uniform in where .

Everything in blue is small. We can ask to vary or .

Remark: even if is small, is not.

56

Attacking RLWE with correlated noise

Let

with of rank 1.

Using linearity of determinant:

57

Attacking RLWE with correlated noise

We have seen:

By symmetry:

Multiplying these, we obtain:

Distinguishing attack!

The adversary can honestly play the following game

Attack 2: Use noise term from NLinFE

Using Structure of N

Using the structure of N

Look at noise modulo , , , and to recover different components.

Using Structure of N

Using the structure of N
Using Structure of N

Using the structure of N
Using Structure of N

Using the structure of N

Noise containing the challenge.

Using Structure of N

Using the structure of N

Red: depends on the secret key, Blue: depends on the ciphertext, Black: fixed

Can make red and blue vary independently.

Using Structure of N

Using the structure of N

Red: depends on the secret key, Blue: depends on the ciphertext

Can make and vary independently.

Using Structure of N

Can be written as:

Using the structure of N

Can make and vary independently.

depends on both the secret key and the ciphertext.

Using Structure of N

Using the structure of N
Using Structure of N

To distinguish: compute rank
Full (or large) rank è case µ, Small rank è case 0

• For fix to scheme, see paper [AP20]

• Takeaway: No fundamental security vulnerability

• Supports super-poly large output

• New design methodology

68

Summing Up

Open:

• Proof from simple assumption?

• More candidates?

• Better efficiency?

Walking the Edge between Structure and
Randomness:

The Quest for Indistinguishability Obfuscation

Shweta Agrawal
IIT Madras

Thank You for your attention!

Image Credits: Jackson Pollock, who solves
similar problems in a different space!

