
Resurgence of Linear Algebra

Circa 1990, if you asked a random Theory person, which of these
methods would scale up and get applied to large problems:

1 Singular Value Decomposition (SVD), other LA algorithms
2 Network Flows, Shortest Paths and other graph algorithms
3 Sophisticated data strunctures
4 Optimization.

Whp, answer would have been: (2) and (3).
Reality: Perhaps more (1) and (4).
Crucial help: from Continuous Mathematics, Developments in
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Learning Mixtures of Gaussians Vempala and Wong: For a
mixture of spherical Gaussians, the SVD subspace is the space of
component means → Learning Algorithm.
Non-negative Matrix Factorization (NMF)
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Who tosses Coins?

1 Randomized Algorithms ≡ Algorithm tosses Coins.

But, data Worst-Case.
2 Average Case (Probabilistic) Analysis: Data tosses coins.

Algorithm is deterministic.
3 Hybrids also possible.
4 Here more (1) than (2). More useful for large matrices peculiar to

a single context, like Web, FB graph, ....
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Why Randomized Algorithms?

Modern data matrices can be massive (> 108 non-zero entries).

O(n3) algorithms are too expensive. Time
RAM Cannot store matrix. So, an entry cannot be accessed in unit
time. space.

A Simple form of RA: Computes on a sample of rows/coulmns of
matrix. Need:

Proven error guarantees and
Ability to Sample on the fly.

Input data matrix may be distributed among servers.
Randomization will help reduce communication.
Two Scenarios, One method:

1 Entire matrix exists (eg. Web). Alg. draws sample.
2 Only sample of entries known: Netflix, Recommendation Systems.

[Need handle on sampling probabilities to assert error bounds.]
3 Here, think of (1) generally.
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The Setting

A an m×n data matrix, n,m large.

Do s i.i.d. trials; in each trial:

Pick a random column of A and scale it.

Compute only with the sampled and scaled n×s matrix.

 →
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Problems

Matrix Multiplication:

Compute (approximately) (all entires of) AAT .
More Generally: AB.

Singular Value Decomposition, Low Rank Approximation.
Matrix Sketches. [Compact representations of matrix.]
Graph Sparsification
Linear Regression.
Tensors: Spectral Norm.
Two things:

No Free Lunch. Samples can only get approximate answers.
But we will prove error bounds for all input matrices.
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Low Rank Approximation with Additive Error

Seek a rank k approximation A∗ to A with

||A−A∗||F ≤Best Possible︸ ︷︷ ︸
SVD

+ ε||A||F︸ ︷︷ ︸
Sampling Error

.

Theorem s =poly(k/ε) suffices provided
Sampling is done with probabilities proportional to squared length
of columns.
Only interesting if ε||A||F < (Best Possible SVD error). Holds for
PCA matrices.

“Length-squared sampling”. Frieze, Kannan, Vempala (1998)
Many improvements: Drineas, Mahoney, Sarlos, Deshpande,
Rademacher, ....

Alternative Scheme: Draw a sample of entries, set others to zero.
Sparsity gain rather than reduction in dimensions. Achlioptas,
McSherry; Bhojanapalli, Jain and Sanghavi.
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AAT and why length squared

AAT =∑
j(Col.j of A) (Rowj of A). [Outer Product]. Estimate by a

sample of j .

i.i.d. trials. pj =probability of picking column j , j = 1,2, . . . ,n. What
are good pj?
Uniform Sampling no good. Eg. All but one column of A is all
zeros.
Unbiased Estimator: X = 1

pj
(Col. j of A ) ( Row j of A) (Scaling)

Calculus: Length squared minimizes the variance.
With average of s samples:

E
(||AAT −Estimate of AAT ||F

)≤ ||A||2Fp
s .

Drineas, Kannan, Mahoney (Approx) Matrix Multiplication in O∗(n2)
time.
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Data Handling, Pass efficient Model

Massive Data - too large to be stored in RAM.

Simplified Model: Three resources - RAM time, space, Number of
passes. Pass is a sequential read of entire matrix.
Sampling Algorithms use O(1) passes and RAM space = O(1)
columns/rows of matrix. One pass computes length squared
probabilities. Pass 2 draws the sample and then only RAM
computation.
An approximate Low rank Approximation can be carried out even
in the Streaming Model - Edo Liberty (a vector version of frequent
item mining).
Also, one can first do length squared sampling to pick s columns,
then again do length squared sampling to pick s rows (to form a
s×s matrix) and so use only O(1) RAM space. Proof gets very
complicated.
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Sketch of a matrix

Can a sample of rows form a sketch of the matrix? No. Sample of
rows tells us nothing about the unsampled rows.

How about a sample of rows and a sample of columns ? Will see
the answer is Yes.
First suppose A has rank k . Then a sample of 100k rows should
pin down the row space of A.
But still don’t know for an unsampled row what linear combination
it is. Suppose we also pick a sample of 100k columns. Now,
intuitively, (if the rows are in general position), there should be a
unique linear way of expressing each row (in the 100k -column
matrix) in the row space.



Sketch of a matrix

Can a sample of rows form a sketch of the matrix? No. Sample of
rows tells us nothing about the unsampled rows.
How about a sample of rows and a sample of columns ? Will see
the answer is Yes.

First suppose A has rank k . Then a sample of 100k rows should
pin down the row space of A.
But still don’t know for an unsampled row what linear combination
it is. Suppose we also pick a sample of 100k columns. Now,
intuitively, (if the rows are in general position), there should be a
unique linear way of expressing each row (in the 100k -column
matrix) in the row space.



Sketch of a matrix

Can a sample of rows form a sketch of the matrix? No. Sample of
rows tells us nothing about the unsampled rows.
How about a sample of rows and a sample of columns ? Will see
the answer is Yes.
First suppose A has rank k . Then a sample of 100k rows should
pin down the row space of A.

But still don’t know for an unsampled row what linear combination
it is. Suppose we also pick a sample of 100k columns. Now,
intuitively, (if the rows are in general position), there should be a
unique linear way of expressing each row (in the 100k -column
matrix) in the row space.



Sketch of a matrix

Can a sample of rows form a sketch of the matrix? No. Sample of
rows tells us nothing about the unsampled rows.
How about a sample of rows and a sample of columns ? Will see
the answer is Yes.
First suppose A has rank k . Then a sample of 100k rows should
pin down the row space of A.
But still don’t know for an unsampled row what linear combination
it is. Suppose we also pick a sample of 100k columns. Now,
intuitively, (if the rows are in general position), there should be a
unique linear way of expressing each row (in the 100k -column
matrix) in the row space.



Length squared sample of rows and col.’s suffice

A is m×n.

C is m×s formed by sampling (and scaling) s columns of A
according to length squared.
R is

p
s×n formed by sampling

p
s rows of A according to length

squared.
Given just C,R, can find a s×p

s matrix U such that

E
(||A−CUR||22

)≤ c||A||2Fp
s .

Drineas, Kannan, Mahoney (2002) .........
Bourtsides and Woodruff (2015) Optimal time, size of U.
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Applications of CUR

Traditional SVD, given data matrix A, finds best rank k
approximation Ak to A. Two issues:

Computation time.
Not “interpolative”. Gene Patient Matrix. You tell the Biologist: The
principal component is 17 times first patient - 12 times 31st patient
+ 2.5 times the 7 th ...

Interpolative approximation useful in Genetics, other areas
Drineas, Mahoney.
DataBase applications Falustos
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AAT and Varience-covarience matrix

P probability distribution (density or discrete) on Rd . Mean 0.

Varience-covarience matrix M: Mij =EP(xixj).
A d ×∞ matrix with each column a sample weighted by prob.

Varience along v is vT AAT v= ∣∣vT A
∣∣2.

Sample Complexity: How many i.i.d. samples according to P
suffice to estimate varience to relative error along every direction?
Want to sample a (finite, scaled) sub-matrix B of A so that
∀v :

∣∣vT B
∣∣= (1±ε)

∣∣vT A
∣∣.

Question in this form arose in Volume computation and
log-concave sampling Kannan, Lovász, Simonovits.
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AAT and the Answer to the Question

Previously: Length-squared sampling estimate for AAT satisfies:

E
(||AAT −Estimate||F

)≤ ||A||2Fp
s . )(Proof Elementary)

Rudelson, Vershynin using beautiful technique of “Decoupling”
from Probability, Functional Analysis proved:
E

(||AAT −Estimate||2
)≤ c||A||F ||A||2p

s .

Much more than a technical improvement as we will see.
Now simpler proofs based on Matrix Höffding-Chernoff
inequalities: Eg. Tropp: “User friendly tail bounds for sums of
random marices”
Rudelson, Vershynin Theorem implies for log-concave probability
densities on Rd , O∗(d) samples suffice (improving earlier answers
of Pisier and Bourgain).
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Now simpler proofs based on Matrix Höffding-Chernoff
inequalities: Eg. Tropp: “User friendly tail bounds for sums of
random marices”
Rudelson, Vershynin Theorem implies for log-concave probability
densities on Rd , O∗(d) samples suffice (improving earlier answers
of Pisier and Bourgain).
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AAT and Spectral Sparsifiers

Spielman and Srivatsava: G graph with n nodes and m edges;
AG = node-edge incidence matrix.

Want sparser sub-graph H (with O∗(n) edges, say,), so that all
cuts are approximately right.Benzur, Karger
Stronger condition (than cuts):

∀v,
∣∣vT AG

∣∣= (1±ε)
∣∣vT AH

∣∣
Same question as approximating varience-covarince matrix.

Rudelson-Vershynin implies: ∀v :
∣∣|vT AG|2 −|vT AH |2∣∣=≤ cn||A||22|v|2

s .

Not good enough. But if only make AG an isometry,
||AG||2|v|2 = |vT AG|2 and take s ≥ cn, it all works.
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Pre-conditioned length squared sampling

A is n×m, m ≥ n. W is the n×n left pseudo-inverse of A: WA= an
isometry on the column space of A.

Sample columns of A according to length-squared probabilities
from WA:

Let pj = (length squared of col j of WA) / ||WA||2F .
Repeat s times: Pick col. j of A with probability pj and scale it by
1/pj to form a n×s matrix B.

∀v :
∣∣vT B

∣∣2 =
(
1± c

p
np
s

)∣∣vT A
∣∣2. Rudelson, Vershynin

All of the above true for any matrix A.
Computing pj involves finding W . Spielman, Srivatsava For
node-edge adjacency matrix of a graph, can be done in linear
time.
Open question: Are there other class of interesting matrices for
which pj can be computed fast?
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Pre-conditioned length squared and leverage scores

Rudelson-Vershynin theorem can be used to assert: O∗(rank (A))
samples suffice.

Can we save on rank (A)? Yes. First if we do SVD to find Ak , the
best rank k approximation to A and then use pre-conditioned
length squared probabilities of Ak , we can do with O∗(k) samples.
Drineas, Mahoney and Muthukrishnan: Theorem With poly(k/ε)
sample columns of A drawn according to pre-conditioned length
squared probabilities on Ak , we can get an interpolative
approximation A′ to A with the following relative error:
||A−A′||F ≤ (1+ε)||A−Ak ||F .
An alternative way to get the same theorem: Draw a sample of
r =poly(k/ε) sample columns of A with probabilities proportional
to the square of the volume of the simplex spanned by them.
Deshpande, Rademacher and Vempala Volume Sampling,
Determinental process



Pre-conditioned length squared and leverage scores

Rudelson-Vershynin theorem can be used to assert: O∗(rank (A))
samples suffice.
Can we save on rank (A)? Yes. First if we do SVD to find Ak , the
best rank k approximation to A and then use pre-conditioned
length squared probabilities of Ak , we can do with O∗(k) samples.

Drineas, Mahoney and Muthukrishnan: Theorem With poly(k/ε)
sample columns of A drawn according to pre-conditioned length
squared probabilities on Ak , we can get an interpolative
approximation A′ to A with the following relative error:
||A−A′||F ≤ (1+ε)||A−Ak ||F .
An alternative way to get the same theorem: Draw a sample of
r =poly(k/ε) sample columns of A with probabilities proportional
to the square of the volume of the simplex spanned by them.
Deshpande, Rademacher and Vempala Volume Sampling,
Determinental process



Pre-conditioned length squared and leverage scores

Rudelson-Vershynin theorem can be used to assert: O∗(rank (A))
samples suffice.
Can we save on rank (A)? Yes. First if we do SVD to find Ak , the
best rank k approximation to A and then use pre-conditioned
length squared probabilities of Ak , we can do with O∗(k) samples.
Drineas, Mahoney and Muthukrishnan: Theorem With poly(k/ε)
sample columns of A drawn according to pre-conditioned length
squared probabilities on Ak , we can get an interpolative
approximation A′ to A with the following relative error:

||A−A′||F ≤ (1+ε)||A−Ak ||F .
An alternative way to get the same theorem: Draw a sample of
r =poly(k/ε) sample columns of A with probabilities proportional
to the square of the volume of the simplex spanned by them.
Deshpande, Rademacher and Vempala Volume Sampling,
Determinental process



Pre-conditioned length squared and leverage scores

Rudelson-Vershynin theorem can be used to assert: O∗(rank (A))
samples suffice.
Can we save on rank (A)? Yes. First if we do SVD to find Ak , the
best rank k approximation to A and then use pre-conditioned
length squared probabilities of Ak , we can do with O∗(k) samples.
Drineas, Mahoney and Muthukrishnan: Theorem With poly(k/ε)
sample columns of A drawn according to pre-conditioned length
squared probabilities on Ak , we can get an interpolative
approximation A′ to A with the following relative error:
||A−A′||F ≤ (1+ε)||A−Ak ||F .

An alternative way to get the same theorem: Draw a sample of
r =poly(k/ε) sample columns of A with probabilities proportional
to the square of the volume of the simplex spanned by them.
Deshpande, Rademacher and Vempala Volume Sampling,
Determinental process



Pre-conditioned length squared and leverage scores

Rudelson-Vershynin theorem can be used to assert: O∗(rank (A))
samples suffice.
Can we save on rank (A)? Yes. First if we do SVD to find Ak , the
best rank k approximation to A and then use pre-conditioned
length squared probabilities of Ak , we can do with O∗(k) samples.
Drineas, Mahoney and Muthukrishnan: Theorem With poly(k/ε)
sample columns of A drawn according to pre-conditioned length
squared probabilities on Ak , we can get an interpolative
approximation A′ to A with the following relative error:
||A−A′||F ≤ (1+ε)||A−Ak ||F .
An alternative way to get the same theorem: Draw a sample of
r =poly(k/ε) sample columns of A with probabilities proportional
to the square of the volume of the simplex spanned by them.
Deshpande, Rademacher and Vempala Volume Sampling,
Determinental process





Randomized Algorithm for general tensors

A is n1 ×n2 ×n3 . . .nr symmetric.

Want to maximize
∑

i ,j ,k ,... Aijk ...xixjxk . . . over unit length vector x .
Theorem For any fixed ε> 0, can find in polynomial time a y
satisfying:

∑
i ,j ,k ,... Aijk ...yiyjyk . . . ≥ MAX Possible −ε||A||F .

Algorithm involves length squared sampling. Kannan, Vempala

Better results known under assumptions on the tensor known
used: (for eg. orthogonal rank 1 decomposition) - Anandkumar,
Foster, Hsu, Kakade, Liu
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The random sign matrix

“Count-Sketch” Matrix: Has a single non-zero entry in each
column which is ±1 with prob. 1/2 each, in a random row.
Dasgupta, Kumar, Sarlos

Clarkson, Woodruff, STOC(2013) Best Paper: A ANY m×n
matrix. m >> n

S a t ×m count-sketch matrix with t =poly(n/ε). [Indep. of m.]
Whp, SIMULTANEOUSLY FOR ALL x ∈Rn, |SAx | = (1±ε)|Ax |.
SA - can be computed in linear time. Then LRA just on SA suffices.

Clarkson, Woodruff: Low rank approximation, Regression, Matrix
Multiplication,... Optimal algorithms (time linear in number of
non-zeros).
Clarkson, Woodruff, STOC 2009 Space optimal Streaming
algorithms.
Bourtsides, Woodruff, 2015 Optimal CUR.
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Clarkson, Woodruff, STOC(2013) Best Paper: A ANY m×n
matrix. m >> n

S a t ×m count-sketch matrix with t =poly(n/ε). [Indep. of m.]
Whp, SIMULTANEOUSLY FOR ALL x ∈Rn, |SAx | = (1±ε)|Ax |.
SA - can be computed in linear time. Then LRA just on SA suffices.

Clarkson, Woodruff: Low rank approximation, Regression, Matrix
Multiplication,... Optimal algorithms (time linear in number of
non-zeros).
Clarkson, Woodruff, STOC 2009 Space optimal Streaming
algorithms.
Bourtsides, Woodruff, 2015 Optimal CUR.



Distributed Data

Suppose r servers each has a m×n matrix with m >> n; server i
has matrix A(i).

Want to compute with A=A(1)+A(2)+·· ·+A(r). [Examples:
Net-flow data, web crawl data...]
In many contexts, it is enough to compute with a random
projection of A, i.e., with PA where, P is a s×m random matrix.
Server i can find PA(i) locally and communicate this s×n matrix to
a Central Processor to sum ...
Communication is O(snr) avoiding m, EXCEPT

Servers need to agree on the same P. Needs O(smr)
communication!

Alon, Mataias, Szegedy Use of pseudo-random numbers.
Kane, Mekha, Nelson: Let x be a fixed vector. To get |PAx | ≈ |Ax |,
O(logn)-way independence suffices. Need to communicate only
the O(logn) bit-seed to all servers.
To ensure |PAx | ≈ |Ax | for all x ∈Rn, poly(n)-way independence
suffices.
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