Kuperberg’s Collimation Sieve vs. CSIDH

Chris Peikert
University of Michigan

Quantum Cryptanalysis of Post-Quantum Cryptography
Simons Institute
24 February 2020
He Gives C-Sieves on the CSIDH

Chris Peikert
University of Michigan

Quantum Cryptanalysis of Post-Quantum Cryptography
Simons Institute
24 February 2020
Conclusions

1. Proposed CSIDH parameters have *relatively little quantum security* beyond the cost of quantum evaluation (on a uniform superposition).
Conclusions

1. Proposed CSIDH parameters have relatively little quantum security beyond the cost of quantum evaluation (on a uniform superposition).

2. CSIDH-512 key recovery costs, e.g., only $\approx 2^{16}$ evaluations using $\approx 2^{40}$ bits of quantum-accessible RAM (+ small other resources).
Conclusions

1. Proposed CSIDH parameters have relatively little quantum security beyond the cost of quantum evaluation (on a uniform superposition).

2. CSIDH-512 key recovery costs, e.g., only $\approx 2^{16}$ evaluations using $\approx 2^{40}$ bits of quantum-accessible RAM (+ small other resources).

3. Assuming evaluation costs not much more than for the ‘best case’:
Conclusions

1. Proposed CSIDH parameters have relatively little quantum security beyond the cost of quantum evaluation (on a uniform superposition).

2. CSIDH-512 key recovery costs, e.g., only $\approx 2^{16}$ evaluations using $\approx 2^{40}$ bits of quantum-accessible RAM (+ small other resources).

3. Assuming evaluation costs not much more than for the ‘best case’:

 CSIDH-512 breakable with $\approx 2^{60}$ T-gates
Conclusions

1. Proposed CSIDH parameters have relatively little quantum security beyond the cost of quantum evaluation (on a uniform superposition).

2. CSIDH-512 key recovery costs, e.g., only $\approx 2^{16}$ evaluations using $\approx 2^{40}$ bits of quantum-accessible RAM (+ small other resources).

3. Assuming evaluation costs not much more than for the ‘best case’:
 - **CSIDH-512** breakable with $\approx 2^{60}$ T-gates, so falls well short of its claimed NIST level 1 p-q security. ($\geq 2^{170}/\text{MAXDEPTH}$)
Conclusions

1. Proposed CSIDH parameters have relatively little quantum security beyond the cost of quantum evaluation (on a uniform superposition).

2. CSIDH-512 key recovery costs, e.g., only \(\approx 2^{16} \) evaluations using \(\approx 2^{40} \) bits of quantum-accessible RAM (+ small other resources).

3. Assuming evaluation costs not much more than for the ‘best case’:
 - CSIDH-512 breakable with \(\approx 2^{60} \) T-gates, so falls well short of its claimed NIST level 1 p-q security. \(\geq 2^{170} / \text{MAXDEPTH} \)
 - CSIDH-1024 breakable with \(\approx 2^{72} \) T-gates and \(\approx 2^{44} \) bits QRACM
Conclusions

1. Proposed CSIDH parameters have relatively little quantum security beyond the cost of quantum evaluation (on a uniform superposition).

2. CSIDH-512 key recovery costs, e.g., only $\approx 2^{16}$ evaluations using $\approx 2^{40}$ bits of quantum-accessible RAM (+ small other resources).

3. Assuming evaluation costs not much more than for the ‘best case’:

 CSIDH-512 breakable with $\approx 2^{60}$ T-gates, so falls well short of its claimed NIST level 1 p-q security. ($\geq 2^{170}/\text{MAXDEPTH}$)

 CSIDH-1024 breakable with $\approx 2^{72}$ T-gates and $\approx 2^{44}$ bits QRACM, so it also falls short of level 1.
Conclusions

1. Proposed CSIDH parameters have relatively little quantum security beyond the cost of quantum evaluation (on a uniform superposition).

2. CSIDH-512 key recovery costs, e.g., only $\approx 2^{16}$ evaluations using $\approx 2^{40}$ bits of quantum-accessible RAM (+ small other resources).

3. Assuming evaluation costs not much more than for the ‘best case’:
 - **CSIDH-512** breakable with $\approx 2^{60}$ T-gates, so falls well short of its claimed NIST level 1 p-q security. ($\geq 2^{170}/\text{MAXDEPTH}$)
 - **CSIDH-1024** breakable with $\approx 2^{72}$ T-gates and $\approx 2^{44}$ bits QRACM, so it also falls short of level 1.
 - **CSIDH-1792**
Conclusions

1. Proposed CSIDH parameters have relatively little quantum security beyond the cost of quantum evaluation (on a uniform superposition).

2. CSIDH-512 key recovery costs, e.g., only \(\approx 2^{16} \) evaluations using \(\approx 2^{40} \) bits of quantum-accessible RAM (+ small other resources).

3. Assuming evaluation costs not much more than for the ‘best case’:

 CSIDH-512 breakable with \(\approx 2^{60} \) T-gates, so falls well short of its claimed NIST level 1 p-q security. (\(\geq 2^{170} / \text{MAXDEPTH} \))

 CSIDH-1024 breakable with \(\approx 2^{72} \) T-gates and \(\approx 2^{44} \) bits QRACM, so it also falls short of level 1.

 CSIDH-1792 breakable with \(\approx 2^{84} \) T-gates and \(\approx 2^{48} \) bits QRACM
Conclusions

1. Proposed CSIDH parameters have relatively little quantum security beyond the cost of quantum evaluation (on a uniform superposition).

2. CSIDH-512 key recovery costs, e.g., only $\approx 2^{16}$ evaluations using $\approx 2^{40}$ bits of quantum-accessible RAM (+ small other resources).

3. Assuming evaluation costs not much more than for the ‘best case’:
 - **CSIDH-512** breakable with $\approx 2^{60}$ T-gates, so falls well short of its claimed NIST level 1 p-q security. ($\geq 2^{170}/\text{MAXDEPTH}$)
 - **CSIDH-1024** breakable with $\approx 2^{72}$ T-gates and $\approx 2^{44}$ bits QRACM, so it also falls short of level 1.
 - **CSIDH-1792** breakable with $\approx 2^{84}$ T-gates and $\approx 2^{48}$ bits QRACM, so it also doesn’t reach level 1 possibly except for high end of MAXDEPTH range.
CSIDH (‘sea-side’) [CastryckLangeMartindalePannyRenes'18]

- Isogeny-based ‘post-quantum commutative group action’ following [Couveignes'97,RostovtsevStolbunov'06]: abelian group G, set Z, action

$$\star: G \times Z \rightarrow Z$$
CSIDH (‘sea-side’) [CastryckLangeMartindalePannyRenes’18]

- Isogeny-based ‘post-quantum commutative group action’ following [Couveignes’97,RostovtsevStolbunov’06]: abelian group G, set Z, action

$$\star : G \times Z \rightarrow Z$$

(Other isogeny-based crypto like SIDH [JF’11,...]: nonabelian, no group action.)
CSIDH (‘sea-side’) [CastryckLangeMartindalePannyRenes'18]

- Isogeny-based ‘post-quantum commutative group action’ following [Couveignes'97, RostovtsevStolbunov'06]: abelian group G, set Z, action

$$\star: G \times Z \rightarrow Z$$

(Other isogeny-based crypto like SIDH [JF'11, . . .]: nonabelian, no group action.)

DiffieHellman-style noninteractive key exchange with public param $z \in Z$:

- Alice: secret $a \in G$, public $p_A = a \star z \in Z$
- Bob: secret $b \in G$, public $p_B = b \star z \in Z$

Shared key: $a \star p_B = b \star p_A = (a + b) \star z$, by commutativity
CSIDH (‘sea-side’) [CastryckLangeMartindalePannyRenes’18]

- Isogeny-based ‘post-quantum commutative group action’ following [Couveignes’97,RostovtsevStolbunov’06]: abelian group G, set Z, action

$$\star : G \times Z \to Z$$

(Other isogeny-based crypto like SIDH [JF’11,...]: nonabelian, no group action.)

DiffieHellman-style noninteractive key exchange with public param $z \in Z$:

Alice: secret $a \in G$, public $p_A = a \star z \in Z$

Bob: secret $b \in G$, public $p_B = b \star z \in Z$

Shared key: $a \star p_B = b \star p_A = (a + b) \star z$, by commutativity

- Efficient! 64-byte keys, 80ms key exchange for claimed NIST level 1 quantum security: as hard as AES-128 key search
CSIDH ('sea-side') [CastryckLangeMartindalePannyRenes'18]

- Isogeny-based ‘post-quantum commutative group action’ following [Couveignes'97, RostovtsevStolbunov'06]: abelian group G, set Z, action

$$\star : G \times Z \to Z$$

(Other isogeny-based crypto like SIDH [JF’11,…]: nonabelian, no group action.)

DiffieHellman-style noninteractive key exchange with public param $z \in Z$:

- Alice: secret $a \in G$, public $p_A = a \star z \in Z$
- Bob: secret $b \in G$, public $p_B = b \star z \in Z$

Shared key: $a \star p_B = b \star p_A = (a + b) \star z$, by commutativity

- Efficient! 64-byte keys, 80ms key exchange for claimed NIST level 1 quantum security: as hard as AES-128 key search

- Signatures [Stolbunov’12, DeFeoGalbraith’19, BeullensKleinjungVercauteren’19]: pk + sig = 1468 bytes at same claimed security level
Attacking the CSIDH, Quantumly

- Secret-key recovery: given \(z, a \star z \in Z \), find \(a \in G \) (or equivalent)
Attacking the CSIDH, Quantumly

- Secret-key recovery: given $z, a \ast z \in Z$, find $a \in G$ (or equivalent)
- Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev’10]
Attacking the CSIDH, Quantumly

- Secret-key recovery: given $z, a \star z \in \mathbb{Z}$, find $a \in G$ (or equivalent) Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev’10]

Quantum HShP Algorithm Ingredients [Kuperberg’03,…]

1. **Oracle** outputs random ‘labeled’ quantum states, by evaluating \star on a uniform superposition over G.
Attacking the CSIDH, Quantumly

- Secret-key recovery: given $z, a \star z \in \mathbb{Z}$, find $a \in G$ (or equivalent)

Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev’10]

Quantum HShP Algorithm Ingredients [Kuperberg’03,…]

1. **Oracle** outputs random ‘labeled’ quantum states, by evaluating \star on a uniform superposition over G.

2. **Sieve** combines labeled states to generate ‘more favorable’ ones.
Attacking the CSIDH, Quantumly

- Secret-key recovery: given $z, a * z \in Z$, find $a \in G$ (or equivalent)
 Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev’10]

Quantum HShP Algorithm Ingredients [Kuperberg’03,…]

1. **Oracle** outputs random ‘labeled’ quantum states, by evaluating $*$ on a uniform superposition over G.
2. **Sieve** combines labeled states to generate ‘more favorable’ ones.
3. **Measurement** of ‘very favorable’ state recovers bit(s) of hidden shift.
Attacking the CSIDH, Quantumly

- Secret-key recovery: given \(z, a \star z \in \mathbb{Z} \), find \(a \in G \) (or equivalent)

Reduces to Hidden-Shift Problem (HShP) on \(G \) [ChildsJaoSoukharev’10]

Quantum HShP Algorithm Ingredients [Kuperberg’03,…]

1. **Oracle** outputs random ‘labeled’ quantum states, by evaluating \(\star \) on a uniform superposition over \(G \).

2. **Sieve** combines labeled states to generate ‘more favorable’ ones.

3. **Measurement** of ‘very favorable’ state recovers bit(s) of hidden shift.

Sieve Algorithms

[Kuperberg’03] \(2^{O(\sqrt{n})} \) oracle queries and qubits \((n = \log|G|) \)
Attacking the CSIDH, Quantumly

- Secret-key recovery: given $z, a \ast z \in \mathbb{Z}$, find $a \in G$ (or equivalent)
 Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev'10]

Quantum HShP Algorithm Ingredients [Kuperberg'03,…]

1. **Oracle** outputs random ‘labeled’ quantum states, by evaluating \ast on a uniform superposition over G.

2. **Sieve** combines labeled states to generate ‘more favorable’ ones.

3. **Measurement** of ‘very favorable’ state recovers bit(s) of hidden shift.

Sieve Algorithms

[Kuperberg'03] $2^{O(\sqrt{n})}$ oracle queries and qubits

[Regev'04] $2^{O(\sqrt{n \log n})}$ oracle queries, only poly(n) qubits
Attacking the CSIDH, Quantumly

- Secret-key recovery: given \(z, a \star z \in \mathbb{Z} \), find \(a \in G \) (or equivalent)

Reduces to Hidden-Shift Problem (HShP) on \(G \) [ChildsJaoSoukharev’10]

Quantum HShP Algorithm Ingredients [Kuperberg’03,…]

1. **Oracle** outputs random ‘labeled’ quantum states, by evaluating \(\star \) on a uniform superposition over \(G \).

2. **Sieve** combines labeled states to generate ‘more favorable’ ones.

3. **Measurement** of ‘very favorable’ state recovers bit(s) of hidden shift.

Sieve Algorithms

- [Kuperberg’03] \(2^O(\sqrt{n}) \) oracle queries and qubits

- [Regev’04] \(2^O(\sqrt{n \log n}) \) oracle queries, only poly\((n)\) qubits

- [Kuperberg’11] \(2^O(\sqrt{n}) \) oracle queries and bits of quantum-accessible RAM.
Attacking the CSIDH, Quantumly

- Secret-key recovery: given $z, a \star z \in \mathbb{Z}$, find $a \in G$ (or equivalent)
 Reduces to Hidden-Shift Problem (HShP) on G [ChildsJaoSoukharev’10]

Quantum HShP Algorithm Ingredients [Kuperberg’03,…]

1. **Oracle** outputs random ‘labeled’ quantum states, by evaluating \star on a uniform superposition over G.
2. **Sieve** combines labeled states to generate ‘more favorable’ ones.
3. **Measurement** of ‘very favorable’ state recovers bit(s) of hidden shift.

Sieve Algorithms

[Kuperberg’03]	$2^{O(\sqrt{n})}$ oracle queries and qubits	($n = \log	G	$)
[Regev’04]	$2^{O(\sqrt{n \log n})}$ oracle queries, only poly(n) qubits			
[Kuperberg’11]	$2^{O(\sqrt{n})}$ oracle queries and bits of quantum-accessible RAM			
 ‘Collimation sieve’ subsumes prior two, offers more trade-offs. E.g., $\log(\text{queries}) \cdot \log(\text{QRACM}) \gtrsim n$. |
Prior Security Estimates for CSIDH-512

- **Oracle costs $\leq 2^{43.3}$ T-gates (+ much cheaper linear gates) for ‘best case,’ somewhat non-uniform superposition [BLMP’19]**
Prior Security Estimates for CSIDH-512

- Oracle costs $\leq 2^{43.3}$ T-gates (+ much cheaper linear gates) for ‘best case,’ somewhat non-uniform superposition [BLMP’19]

 Good reason to expect similar cost for uniform superposition [BKV’19]
Prior Security Estimates for CSIDH-512

- Oracle costs $\leq 2^{43.3}$ T-gates (+ much cheaper linear gates) for ‘best case,’ somewhat non-uniform superposition [BLMP’19]

 Good reason to expect similar cost for uniform superposition [BKV’19]

- Sieve costs:

<table>
<thead>
<tr>
<th>Work</th>
<th>Algorithm</th>
<th>Oracle queries</th>
<th>Sieve memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSIDH paper [CLMPR’18]</td>
<td>[Regev’04]</td>
<td>2^{62}</td>
<td>poly(n)</td>
</tr>
</tbody>
</table>
Prior Security Estimates for CSIDH-512

- **Oracle costs** \(\leq 2^{43.3} \) T-gates (+ much cheaper linear gates) for ‘best case,’ somewhat non-uniform superposition [BLMP’19]

 Good reason to expect similar cost for uniform superposition [BKV’19]

- **Sieve costs:**

<table>
<thead>
<tr>
<th>Work</th>
<th>Algorithm</th>
<th>Oracle queries</th>
<th>Sieve memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSIDH paper [CLMPR’18]</td>
<td>[Regev’04]</td>
<td>(2^{62})</td>
<td>poly((n))</td>
</tr>
<tr>
<td>[BonnetainSchrottenloher’18]</td>
<td>[Kuperberg’03]</td>
<td>(2^{32.5})</td>
<td>(2^{31}) qubits</td>
</tr>
</tbody>
</table>
Prior Security Estimates for CSIDH-512

- Oracle costs $\leq 2^{43.3}$ T-gates (+ much cheaper linear gates) for ‘best case,’ somewhat non-uniform superposition [BLMP’19]

 Good reason to expect similar cost for uniform superposition [BKV’19]

- Sieve costs:

<table>
<thead>
<tr>
<th>Work</th>
<th>Algorithm</th>
<th>Oracle queries</th>
<th>Sieve memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSIDH paper [CLMPR’18]</td>
<td>[Regev’04]</td>
<td>2^{62}</td>
<td>poly(n)</td>
</tr>
<tr>
<td>BonnetainSchrottenloher’18</td>
<td>[Kuperberg’03]</td>
<td>$2^{32.5}$</td>
<td>2^{31} qubits</td>
</tr>
<tr>
<td>None prior!</td>
<td>[Kuperberg’11]</td>
<td>??</td>
<td>??</td>
</tr>
</tbody>
</table>
Our Contributions

- We generalize and practically improve Kuperberg’s c-sieve, and analyze its concrete complexity on proposed CSIDH parameters:

 - Handle arbitrary group orders (generalizing from two-power/smooth)
 - Recover several secret bits from each sieve run
 - Control (classical) memory and time complexities better
 - Run simulations up to the exact CSIDH-512 order $|G| \approx 2^{257.1}$

Work

- Algorithm
- Oracle queries
- Sieve memory 2^{62} poly(n)
- $|G| \approx 2^{257.1}$
- 2^{40} QRACM
- 2^{48} bits
- Quantum

Independently, Bonnetain and Schrottenloher gave a complementary, theoretical c-sieve analysis, arriving at similar conclusions.
Our Contributions

- We generalize and practically improve Kuperberg’s c-sieve, and analyze its concrete complexity on proposed CSIDH parameters:
 - Handle arbitrary group orders (generalizing from two-power/smooth)
 - Recover several secret bits from each sieve run
 - Control (classical) memory and time complexities better
 - Run simulations up to the exact CSIDH-512 order $|G| \approx 2^{257.1}$
Our Contributions

We generalize and practically improve Kuperberg’s c-sieve, and analyze its concrete complexity on proposed CSIDH parameters:

- Handle arbitrary group orders (generalizing from two-power/smooth)
- Recover several secret bits from each sieve run
- Control (classical) memory and time complexities better
- Run simulations up to the exact CSIDH-512 order $|G| \approx 2^{257.1}$

<table>
<thead>
<tr>
<th>Work</th>
<th>Algorithm</th>
<th>Oracle queries</th>
<th>Sieve memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CLMPR'18]</td>
<td>[Regev'04]</td>
<td>2^{62}</td>
<td>poly(n)</td>
</tr>
<tr>
<td>[BS'18]</td>
<td>[Kuperberg'03]</td>
<td>$2^{32.5}$</td>
<td>2^{31} qubits</td>
</tr>
<tr>
<td>This work</td>
<td>[Kuperberg'11]</td>
<td>$2^{18.7}$</td>
<td>2^{32} bits QRACM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$2^{15.7}$</td>
<td>2^{40} bits QRACM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$2^{14.1}$</td>
<td>2^{48} bits QRACM</td>
</tr>
</tbody>
</table>

Independently, Bonnetain and Schrottenloher gave a complementary, theoretical c-sieve analysis, arriving at similar conclusions.
Our Contributions

- We generalize and practically improve Kuperberg’s c-sieve, and analyze its concrete complexity on proposed CSIDH parameters:
 - Handle arbitrary group orders (generalizing from two-power/smooth)
 - Recover several secret bits from each sieve run
 - Control (classical) memory and time complexities better
 - Run simulations up to the exact CSIDH-512 order $|G| \approx 2^{257.1}$

<table>
<thead>
<tr>
<th>Work</th>
<th>Algorithm</th>
<th>Oracle queries</th>
<th>Sieve memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CLMPR’18]</td>
<td>[Regev’04]</td>
<td>2^{62}</td>
<td>poly(n)</td>
</tr>
<tr>
<td>[BS’18]</td>
<td>[Kuperberg’03]</td>
<td>$2^{32.5}$</td>
<td>2^{31} qubits</td>
</tr>
<tr>
<td>This work</td>
<td>[Kuperberg’11]</td>
<td>$2^{18.7}$</td>
<td>2^{32} bits QRACM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$2^{15.7}$</td>
<td>2^{40} bits QRACM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$2^{14.1}$</td>
<td>2^{48} bits QRACM</td>
</tr>
</tbody>
</table>

*Independently, Bonnetain and Schrottenloher gave a complementary, theoretical c-sieve analysis, arriving at similar conclusions.
Hidden Shifts and CRS-Style Crypto

Hidden-Shift Problem on Group $(G, +)$

- Given injective $f_0, f_1: G \rightarrow Z$ such that $f_1(x) = f_0(x + s)$ for some ‘secret’ $s \in G$, find s.

Attacking CRS via HShP [ChildsJaoSoukharev'10]

- Fix a commutative group action $\star: G \times Z \rightarrow Z$.

- For base value $z_0 \in Z$ and public key $z_1 = s \star z_0$, define $f_b: G \rightarrow Z$ by $g \mapsto g \star z_b$.

- Then f_b is injective because \star is free and transitive, and $f_1(x) = x \star z_1 = x \star (s \star z_0) = (x + s) \star z_0 = f_0(x + s)$.

- So, solving HShP for this f_0, f_1 recovers the secret key s.

Hidden Shifts and CRS-Style Crypto

Hidden-Shift Problem on Group \((G, +)\)

- Given injective \(f_0, f_1: G \rightarrow \mathbb{Z}\) such that \(f_1(x) = f_0(x + s)\) for some ‘secret’ \(s \in G\), find \(s\).

Attacking CRS via HShP [ChildsJaoSoukharev’10]

- Fix a commutative group action \(\ast: G \times \mathbb{Z} \rightarrow \mathbb{Z}\).
Hidden Shifts and CRS-Style Crypto

Hidden-Shift Problem on Group \((G, +)\)

- Given injective \(f_0, f_1 : G \rightarrow \mathbb{Z}\) such that \(f_1(x) = f_0(x + s)\) for some ‘secret’ \(s \in G\), find \(s\).

Attacking CRS via HShP [ChildsJaoSoukharev’10]

- Fix a commutative group action \(\star : G \times \mathbb{Z} \rightarrow \mathbb{Z}\).
- For base value \(z_0 \in \mathbb{Z}\) and public key \(z_1 = s \star z_0\), define

\[
f_b : G \rightarrow \mathbb{Z} \\
g \mapsto g \star z_b.
\]
Hidden Shifts and CRS-Style Crypto

Hidden-Shift Problem on Group \((G, +)\)

- Given injective \(f_0, f_1 : G \to Z\) such that \(f_1(x) = f_0(x + s)\) for some ‘secret’ \(s \in G\), find \(s\).

Attacking CRS via HShP [ChildsJaoSoukharev’10]

- Fix a commutative group action \(\star : G \times Z \to Z\).
- For base value \(z_0 \in Z\) and public key \(z_1 = s \star z_0\), define

\[
 f_b : G \to Z \\
 g \mapsto g \star z_b.
\]

Then \(f_b\) is injective because \(\star\) is free and transitive, and

\[
 f_1(x) = x \star z_1 = x \star (s \star z_0) = (x + s) \star z_0 = f_0(x + s).
\]
Hidden Shifts and CRS-Style Crypto

Hidden-Shift Problem on Group \((G, +)\)

- Given injective \(f_0, f_1 : G \to \mathbb{Z}\) such that \(f_1(x) = f_0(x + s)\) for some ‘secret’ \(s \in G\), find \(s\).

Attacking CRS via HShP [ChildsJaoSoukharev’10]

- Fix a commutative group action \(\ast : G \times \mathbb{Z} \to \mathbb{Z}\).
- For base value \(z_0 \in \mathbb{Z}\) and public key \(z_1 = s \ast z_0\), define

\[
 f_b : G \to \mathbb{Z} \\
 g \mapsto g \ast z_b.
\]

Then \(f_b\) is injective because \(\ast\) is free and transitive, and

\[
f_1(x) = x \ast z_1 = x \ast (s \ast z_0) = (x + s) \ast z_0 = f_0(x + s).
\]

- So, solving HShP for this \(f_0, f_1\) recovers the secret key \(s\).
Overview of ‘High Bits’ Collimation Sieve

▷ Solves HShP on a finite cyclic group \mathbb{Z}_N of known order N.

From this we can extract secret bit(s) using QFT.

How:

- make progressively ‘nicer’ phase vectors with multipliers in successively smaller intervals, by collimating vectors.
Overview of ‘High Bits’ Collimation Sieve

- Solves HShP on a finite cyclic group \mathbb{Z}_N of known order N.
- Works with (pure) quantum states called phase vectors, each having a vector of integer (phase) multipliers.

Given: 'fresh' phase vectors with huge (random) multipliers in $[N]$, of any desired feasible length L.

Goal: construct a 'very nice' length-L phase vector having small (random) multipliers in $[S] = \{0, 1, \ldots, S-1\}$, for $S \ll L$.

From this we can extract secret bit(s) using QFT.

How: make progressively 'nicer' phase vectors with multipliers in successively smaller intervals, by collimating vectors.
Overview of ‘High Bits’ Collimation Sieve

- Solves HShP on a finite cyclic group \mathbb{Z}_N of known order N.
- Works with (pure) quantum states called phase vectors, each having a vector of integer (phase) multipliers.

Given: ‘fresh’ phase vectors with huge (random) multipliers in $[N]$, of any desired feasible length L. From this we can extract secret bit(s) using QFT.

How: make progressively ‘nicer’ phase vectors with multipliers in successively smaller intervals, by collimating vectors.
Overview of ‘High Bits’ Collimation Sieve

- Solves HShP on a finite cyclic group \mathbb{Z}_N of known order N.
- Works with (pure) quantum states called phase vectors, each having a vector of integer (phase) multipliers.

Given: ‘fresh’ phase vectors with huge (random) multipliers in $[N]$, of any desired feasible length L.

Goal: construct a ‘very nice’ length-L phase vector having small (random) multipliers in $[S] = \{0, 1, \ldots, S - 1\}$, for $S \lesssim L$. From this we can extract secret bit(s) using QFT.
Overview of ‘High Bits’ Collimation Sieve

- Solves HShP on a finite cyclic group \mathbb{Z}_N of known order N.
- Works with (pure) quantum states called phase vectors, each having a vector of integer (phase) multipliers.

Given: ‘fresh’ phase vectors with huge (random) multipliers in $[N]$, of any desired feasible length L.

Goal: construct a ‘very nice’ length-L phase vector having small (random) multipliers in $[S] = \{0, 1, \ldots, S - 1\}$, for $S \lesssim L$.

From this we can extract secret bit(s) using QFT.
Overview of ‘High Bits’ Collimation Sieve

- Solves HShP on a finite cyclic group \(\mathbb{Z}_N \) of known order \(N \).

- Works with (pure) quantum states called phase vectors, each having a vector of integer (phase) multipliers.

 Given: ‘fresh’ phase vectors with huge (random) multipliers in \([N]\), of any desired feasible length \(L \).

 Goal: construct a ‘very nice’ length-\(L \) phase vector having small (random) multipliers in \([S] = \{0, 1, \ldots, S - 1\}\), for \(S \lesssim L \).

 From this we can extract secret bit(s) using QFT.

 How: make progressively ‘nicer’ phase vectors with multipliers in successively smaller intervals, by collimating vectors.
Fix interval sizes $L \approx S_0 < S_1 < \cdots < S_d = N$, for $S_{i+1}/S_i \approx L$. Depth $d \approx \log_L(N) - 1 = \log(N)/\log(L) - 1$.
Collimation Sieve Structure

- Fix interval sizes $L \approx S_0 < S_1 < \cdots < S_d = N$, for $S_{i+1}/S_i \approx L$.
- Depth $d \approx \log_L(N) - 1 = \log(N)/\log(L) - 1$.
- Leaf nodes get ‘fresh’ length-L phase vectors on $[N]$.

▶ Each internal node collimates its children, narrowing range by $\approx L$.
▶ Key insight: more QRACM \Rightarrow larger L, lower depth, fewer vectors.
Collimation Sieve Structure

Fix interval sizes $L \approx S_0 < S_1 < \cdots < S_d = N$, for $S_{i+1}/S_i \approx L$. Depth $d \approx \log_L(N) - 1 = \log(N)/\log(L) - 1$.

Leaf nodes get ‘fresh’ length-L phase vectors on $[N]$.

Each internal node collimates its children, narrowing range by $\approx L$.
Collimation Sieve Structure

- Fix interval sizes \(L \approx S_0 < S_1 < \cdots < S_d = N \), for \(S_{i+1}/S_i \approx L \).
- Depth \(d \approx \log_L(N) - 1 = \log(N)/\log(L) - 1 \).
- Leaf nodes get ‘fresh’ length-\(L \) phase vectors on \([N]\).
- Each internal node collimates its children, narrowing range by \(\approx L \).
- Key insight: more QRACM \(\implies \) larger \(L \), lower depth, fewer vectors.
Phase Vectors

For $s \in \mathbb{Z}_N$, a phase vector of length L is a pure quantum state

$$|\psi\rangle \propto \sum_{j \in [L]} \chi(b(j) \cdot s/N)|j\rangle, \quad \chi(x) = \exp(2\pi i \cdot x)$$

where the (known) $b(j) \in [N]$ are its phase multipliers.
Phase Vectors

For $s \in \mathbb{Z}_N$, a phase vector of length L is a pure quantum state

$$|\psi\rangle \propto \sum_{j \in [L]} \chi(b(j) \cdot s/N)|j\rangle, \quad \chi(x) = \exp(2\pi i \cdot x)$$

where the (known) $b(j) \in [N]$ are its phase multipliers.

E.g., we get qubit $|\psi\rangle \propto |0\rangle + \chi(b' \cdot s/N)|1\rangle$ for uniform $b' \in [N]$ by querying the hidden-shift oracle. So $L = 2$, $b(0) = 0$, and $b(1) = b'$.

In general, we store the phase multipliers in a sorted list. So a phase vector requires $\tilde{O}(L)$ bits but only $\log L$ qubits. This is the source of the exponential improvement in quantum space versus Kuperberg's first sieve.
Phase Vectors

- For \(s \in \mathbb{Z}_N \), a phase vector of length \(L \) is a pure quantum state
 \[|\psi\rangle \propto \sum_{j \in [L]} \chi(b(j) \cdot s/N)|j\rangle, \quad \chi(x) = \exp(2\pi i \cdot x) \]

 where the (known) \(b(j) \in [N] \) are its phase multipliers.

- E.g., we get qubit \(|\psi\rangle \propto |0\rangle + \chi(b' \cdot s/N)|1\rangle \) for uniform \(b' \in [N] \) by querying the hidden-shift oracle. So \(L = 2 \), \(b(0) = 0 \), and \(b(1) = b' \).

- In general, we store the phase multipliers in a sorted list. So a phase vector requires \(\tilde{O}(L) \) bits but only \(\log L \) qubits.
Phase Vectors

- For \(s \in \mathbb{Z}_N \), a phase vector of length \(L \) is a pure quantum state

\[
|\psi\rangle \propto \sum_{j \in [L]} \chi(b(j) \cdot s/N)|j\rangle, \quad \chi(x) = \exp(2\pi i \cdot x)
\]

where the (known) \(b(j) \in [N] \) are its phase multipliers.

- E.g., we get qubit \(|\psi\rangle \propto |0\rangle + \chi(b' \cdot s/N)|1\rangle \) for uniform \(b' \in [N] \) by querying the hidden-shift oracle. So \(L = 2 \), \(b(0) = 0 \), and \(b(1) = b' \).

- In general, we store the phase multipliers in a sorted list. So a phase vector requires \(\tilde{O}(L) \) bits but only \(\log L \) qubits.

- This is the source of the exponential improvement in quantum space versus Kuperberg’s first sieve.
Combining Phase Vectors

Given phase vectors $|\psi_1\rangle, |\psi_2\rangle$ of lengths L_1, L_2 with multiplier functions b_1, b_2, tensoring them yields a state

$$|\psi'\rangle = |\psi_1, \psi_2\rangle \propto \sum_{j_1 \in \langle L_1 \rangle} \sum_{j_2 \in \langle L_2 \rangle} \chi(b_1(j_1) \cdot s/N) \cdot \chi(b_2(j_2) \cdot s/N)|j_1, j_2\rangle$$

$$= \sum_{\vec{j} \in \langle L \rangle} \chi(b'(\vec{j}) \cdot s/N)|\vec{j}\rangle$$

where $b'(\vec{j}) = b_1(j_1) + b_2(j_2)$ and $L = \langle L_1 \rangle \times \langle L_2 \rangle \cong \langle L_1 L_2 \rangle$.

E.g., ℓ 'fresh' labeled qubits from the oracle yield a length-2^{ℓ} phase vector whose multipliers are the $(\mod N)$ subset-sums of the labels. This yields a 'fresh' length-L phase vector on $\langle N \rangle$, in $\log L$ queries.

A more interesting combination procedure: collimation...
Combining Phase Vectors

Given phase vectors $|\psi_1\rangle, |\psi_2\rangle$ of lengths L_1, L_2 with multiplier functions b_1, b_2, tensoring them yields a state

$$|\psi'\rangle = |\psi_1, \psi_2\rangle \propto \sum_{j_1 \in [L_1]} \sum_{j_2 \in [L_2]} \chi(b_1(j_1) \cdot s/N) \cdot \chi(b_2(j_2) \cdot s/N) |j_1, j_2\rangle = \sum_{\vec{j} \in L} \chi(b'(\vec{j}) \cdot s/N) |\vec{j}\rangle$$

where $b'(\vec{j}) = b_1(j_1) + b_2(j_2)$ and $L = [L_1] \times [L_2] \cong [L_1 L_2]$.

E.g., ℓ ‘fresh’ labeled qubits from the oracle yield a length-2^ℓ phase vector whose multipliers are the $(\text{mod}-N)$ subset-sums of the labels.
Combining Phase Vectors

Given phase vectors $|\psi_1\rangle, |\psi_2\rangle$ of lengths L_1, L_2 with multiplier functions b_1, b_2, tensoring them yields a state

$$|\psi'\rangle = |\psi_1, \psi_2\rangle \propto \sum_{j_1 \in [L_1]} \sum_{j_2 \in [L_2]} \chi(b_1(j_1) \cdot s/N) \cdot \chi(b_2(j_2) \cdot s/N) |j_1, j_2\rangle = \sum_{\vec{j} \in L} \chi(b'(|\vec{j}|) \cdot s/N) |\vec{j}\rangle$$

where $b'(|\vec{j}|) = b_1(j_1) + b_2(j_2)$ and $L = [L_1] \times [L_2] \cong [L_1 L_2]$.

E.g., ℓ ‘fresh’ labeled qubits from the oracle yield a length-2^ℓ phase vector whose multipliers are the (mod-N) subset-sums of the labels. This yields a ‘fresh’ length-L phase vector on $[N]$, in $\log L$ queries.
Combining Phase Vectors

Given phase vectors $|\psi_1\rangle, |\psi_2\rangle$ of lengths L_1, L_2 with multiplier functions b_1, b_2, tensoring them yields a state

$$|\psi'\rangle = |\psi_1, \psi_2\rangle \propto \sum_{j_1 \in [L_1]} \sum_{j_2 \in [L_2]} \chi(b_1(j_1) \cdot s/N) \cdot \chi(b_2(j_2) \cdot s/N) |j_1, j_2\rangle$$

$$= \sum_{\vec{j} \in L} \chi(b'(\vec{j}) \cdot s/N) |\vec{j}\rangle$$

where $b'(\vec{j}) = b_1(j_1) + b_2(j_2)$ and $L = [L_1] \times [L_2] \cong [L_1 L_2]$.

E.g., ℓ ‘fresh’ labeled qubits from the oracle yield a length-2^ℓ phase vector whose multipliers are the (mod-N) subset-sums of the labels. This yields a ‘fresh’ length-L phase vector on $[N]$, in $\log L$ queries.

A more interesting combination procedure: collimation...
Collimation Procedure

Given: two phase vectors $|\psi_i\rangle$ of length $L_i \approx L$ on $[S']$

Goal: one phase vector $|\psi\rangle$ of length $\approx L$ on $[S]$, for $S \approx S' / L$
Collimation Procedure

Given: two phase vectors $|\psi_i\rangle$ of length $L_i \approx L$ on $[S']$

Goal: one phase vector $|\psi\rangle$ of length $\approx L$ on $[S]$, for $S \approx S'/L$

How: 1. Form the phase vector $|\psi'\rangle = |\psi_1, \psi_2\rangle$ with index set $[L_1] \times [L_2]$ and multipliers $b'(j) = b_1(j_1) + b_2(j_2)$.
Collimation Procedure

Given: two phase vectors $|\psi_i\rangle$ of length $L_i \approx L$ on $[S']$

Goal: one phase vector $|\psi\rangle$ of length $\approx L$ on $[S]$, for $S \approx S'/L$

How:
1. Form the phase vector $|\psi'\rangle = |\psi_1, \psi_2\rangle$ with index set $[L_1] \times [L_2]$ and multipliers $b'(\vec{j}) = b_1(j_1) + b_2(j_2)$.
2. Measure $|\psi'\rangle$ according to $q = [b'(\vec{j})/S]$.
 All ‘surviving’ multipliers are in $[S]$, up to global phase.
Collimation Procedure

Given: two phase vectors $|\psi_i\rangle$ of length $L_i \approx L$ on $[S']$

Goal: one phase vector $|\psi\rangle$ of length $\approx L$ on $[S]$, for $S \approx S'/L$

How:
1. Form the phase vector $|\psi'\rangle = |\psi_1, \psi_2\rangle$ with index set $[L_1] \times [L_2]$ and multipliers $b'(\vec{j}) = b_1(j_1) + b_2(j_2)$.
2. Measure $|\psi'\rangle$ according to $q = \lfloor b'(\vec{j})/S \rfloor$. All ‘surviving’ multipliers are in $[S]$, up to global phase.
3. Compute the subset $J \subseteq [L_1] \times [L_2]$ of \vec{j} that satisfy the above, reindex J to $|[J]|$, and output the resulting $|\psi\rangle$.
Collimation Procedure

Given: two phase vectors $|\psi_i\rangle$ of length $L_i \approx L$ on $[S']$

Goal: one phase vector $|\psi\rangle$ of length $\approx L$ on $[S]$, for $S \approx S'/L$

How:

1. Form the phase vector $|\psi'\rangle = |\psi_1, \psi_2\rangle$ with index set $[L_1] \times [L_2]$ and multipliers $b'(j) = b_1(j_1) + b_2(j_2)$.

2. Measure $|\psi'\rangle$ according to $q = \lfloor b'(j)/S \rfloor$.

 All ‘surviving’ multipliers are in $[S]$, up to global phase.

3. Compute the subset $J \subseteq [L_1] \times [L_2]$ of j that satisfy the above, reindex J to $[|J|]$, and output the resulting $|\psi\rangle$.

Analysis

- Phase vector $|\psi'\rangle$ has length $L_1L_2 \approx L^2$, and the multipliers $b'(j)$ are well distributed in $[2S']$.

Collimation Procedure

Given: two phase vectors $|\psi_i\rangle$ of length $L_i \approx L$ on $[S']$

Goal: one phase vector $|\psi\rangle$ of length $\approx L$ on $[S]$, for $S \approx S'/L$

How:
1. Form the phase vector $|\psi'\rangle = |\psi_1, \psi_2\rangle$ with index set $[L_1] \times [L_2]$ and multipliers $b'(\vec{j}) = b_1(j_1) + b_2(j_2)$.
2. Measure $|\psi'\rangle$ according to $q = \lfloor b'(\vec{j})/S \rfloor$. All ‘surviving’ multipliers are in $[S]$, up to global phase.
3. Compute the subset $J \subseteq [L_1] \times [L_2]$ of \vec{j} that satisfy the above, reindex J to $||J||$, and output the resulting $|\psi\rangle$.

Analysis

- Phase vector $|\psi'\rangle$ has length $L_1L_2 \approx L^2$, and the multipliers $b'(\vec{j})$ are well distributed in $[2S']$.
- So, most size-S subintervals have $\approx L^2 \cdot S/(2S') \approx L$ multipliers.
 (In practice, need some tricks to control the variance.)
Collimation Procedure

Given: two phase vectors $|\psi_i\rangle$ of length $L_i \approx L$ on $[S']$

Goal: one phase vector $|\psi\rangle$ of length $\approx L$ on $[S]$, for $S \approx S'/L$

How:
1. Form the phase vector $|\psi'\rangle = |\psi_1, \psi_2\rangle$ with index set $[L_1] \times [L_2]$ and multipliers $b'(\vec{j}) = b_1(j_1) + b_2(j_2)$.
2. Measure $|\psi'\rangle$ according to $q = \lfloor b'(\vec{j})/S \rfloor$.
 All ‘surviving’ multipliers are in $[S]$, up to global phase.
3. Compute the subset $J \subseteq [L_1] \times [L_2]$ of \vec{j} that satisfy the above, reindex J to $[|J|]$, and output the resulting $|\psi\rangle$.

Analysis
- Phase vector $|\psi'\rangle$ has length $L_1L_2 \approx L^2$, and the multipliers $b'(\vec{j})$ are well distributed in $[2S']$.
- So, most size-S subintervals have $\approx L^2 \cdot S/(2S') \approx L$ multipliers.
 (In practice, need some tricks to control the variance.)
- Step 3 requires $O(1)$ QRACM$[L]$ lookups and $\tilde{O}(L)$ classical work.
Post-Processing: Regularization and Measurement

- Collimation sieve yields a phase vector $|\psi\rangle$ on $[S]$ of length $L \approx S$.

If $b: [L] \rightarrow [S]$ is not a bijection, measure to make it densely injective onto some $X \subseteq [S]$. Can then reindex as $|\tilde{\psi}\rangle \propto \sum_{j \in X} \chi(j \cdot s/N) |j\rangle$. This is a densely subsampled Fourier transform of a point function. Measuring its QFT yields almost $\log S$ bits of s.
Post-Processing: Regularization and Measurement

- Collimation sieve yields a phase vector $|\psi\rangle$ on $[S']$ of length $L \approx S$.
- Suppose $L = S$ and $b: [S] \rightarrow [S']$ is a bijection.
Post-Processing: Regularization and Measurement

- Collimation sieve yields a phase vector $|\psi\rangle$ on $[S]$ of length $L \approx S$.
- Suppose $L = S$ and $b: [S] \to [S]$ is a bijection. Can reindex $|\psi\rangle$ as

$$|\psi\rangle \propto \sum_{j \in [S]} \chi(j \cdot s/N) |j\rangle.$$
Post-Processing: Regularization and Measurement

- Collimation sieve yields a phase vector $|\psi\rangle$ on $[S]$ of length $L \approx S$.
- Suppose $L = S$ and $b: [S] \rightarrow [S]$ is a bijection. Can reindex $|\psi\rangle$ as

$$|\psi\rangle \propto \sum_{j \in [S]} \chi(j \cdot s/N) |j\rangle.$$

Its QFT$_S$ is essentially the point function at $s \cdot S/N$. Measuring yields the $\log S$ most-significant bits of s, with large probability.
Collimation sieve yields a phase vector $|\psi\rangle$ on $[S]$ of length $L \approx S$.

Suppose $L = S$ and $b: [S] \rightarrow [S]$ is a bijection. Can reindex $|\psi\rangle$ as

$$|\psi\rangle \propto \sum_{j \in [S]} \chi(j \cdot s/N)|j\rangle.$$

Its QFT$_S$ is essentially the point function at $s \cdot S/N$. Measuring yields the $\log S$ most-significant bits of s, with large probability.

If $b: [L] \rightarrow [S]$ is not a bijection, measure to make it densely injective onto some $X \subseteq [S]$. Can then reindex as

$$|\tilde{\psi}\rangle \propto \sum_{j \in X} \chi(j \cdot s/N)|j\rangle.$$
Post-Processing: Regularization and Measurement

- Collimation sieve yields a phase vector $|\psi\rangle$ on $[S]$ of length $L \approx S$.
- Suppose $L = S$ and $b: [S] \to [S]$ is a bijection. Can reindex $|\psi\rangle$ as

$$|\psi\rangle \propto \sum_{j \in [S]} \chi(j \cdot s/N) |j\rangle.$$

Its QFT$_S$ is essentially the point function at $s \cdot S/N$. Measuring yields the $\log S$ most-significant bits of s, with large probability.

- If $b: [L] \to [S]$ is not a bijection, measure to make it densely injective onto some $X \subseteq [S]$. Can then reindex as

$$|\tilde{\psi}\rangle \propto \sum_{j \in X} \chi(j \cdot s/N) |j\rangle.$$

This is a densely subsampled Fourier transform of a point function. Measuring its QFT yields almost $\log S$ bits of s.

Practical Issues

Issue 1: Lengths of collimated phase vectors are quite variable. Too short and too long are both problems.
Practical Issues

Issue 1: Lengths of collimated phase vectors are quite variable. Too short and too long are both problems.

Solution: Request lengths adaptively, and discard too-short vectors.

```
(Discarding ≥ 2% saves factor in longest vector.)
```

Solution: Sieve to 'scaled intervals' $S_i \cdot [S]$ for $i = 0, \ldots, \log S(N) - 1$, tensor results and measure to get entire secret.
Practical Issues

Issue 1: Lengths of collimated phase vectors are quite variable. Too short and too long are both problems.

Solution: Request lengths *adaptively*, and *discard* too-short vectors. (Discarding 2% saves $\geq 2^{10}$ factor in longest vector.)
Practical Issues

Issue 1: Lengths of collimated phase vectors are quite variable. Too short and too long are both problems.

Solution: Request lengths adaptively, and discard too-short vectors. (Discarding 2% saves $\geq 2^{10}$ factor in longest vector.)

Issue 2: Measuring sieve output on $[S]$ yields $\approx \log S$ MSBs of secret.
Practical Issues

Issue 1: Lengths of collimated phase vectors are quite variable. Too short and too long are both problems.

Solution: Request lengths adaptively, and discard too-short vectors. (Discarding 2% saves \(\geq 2^{10} \) factor in longest vector.)

Issue 2: Measuring sieve output on \([S]\) yields \(\approx \log S \) MSBs of secret.

Solution: Sieve to ‘scaled intervals’ \(S^i \cdot [S] \) for \(i = 0, \ldots, \log_S(N) - 1 \), tensor results and measure to get entire secret.
Open Questions

- **Key Question:** what is the complexity of the requisite CSIDH oracle?
Open Questions

- **Key Question:** what is the complexity of the requisite CSIDH oracle?
- Existing estimates [BLMP’19] are for ‘best conceivable’ distributions; we need uniform distribution.
Open Questions

- **Key Question:** what is the complexity of the requisite CSIDH oracle?
- Existing estimates [BLMP'19] are for ‘best conceivable’ distributions; we need uniform distribution. *Or do we?*
Open Questions

- **Key Question:** what is the complexity of the requisite CSIDH oracle?
- Existing estimates [BLMP'19] are for ‘best conceivable’ distributions; we need uniform distribution. Or do we?

- We have many short relations in class group [BKV'19], enabling fast reduction of uniform distribution to exponent vectors with similar norm statistics as ‘best conceivable’. Overall cost? Depth?
Open Questions

- **Key Question:** what is the complexity of the requisite CSIDH oracle?

- Existing estimates [BLMP'19] are for ‘best conceivable’ distributions; we need uniform distribution. Or do we?

- We have many short relations in class group [BKV'19], enabling fast reduction of uniform distribution to exponent vectors with similar norm statistics as ‘best conceivable’. Overall cost? Depth?

- More direct constructions of quantum CSIDH circuits?
Open Questions

- **Key Question:** what is the complexity of the requisite CSIDH oracle?
- Existing estimates [BLMP'19] are for ‘best conceivable’ distributions; we need uniform distribution. Or do we?

- We have many short relations in class group [BKV'19], enabling fast reduction of uniform distribution to exponent vectors with similar norm statistics as ‘best conceivable’. Overall cost? Depth?

- More direct constructions of quantum CSIDH circuits?

- **Amortize** the oracle computations? E.g., to get initial phase vectors?
Open Questions

- **Key Question:** what is the complexity of the requisite CSIDH oracle?
- Existing estimates [BLMP'19] are for ‘best conceivable’ distributions; we need uniform distribution. Or do we?

- We have many short relations in class group [BKV'19], enabling fast reduction of uniform distribution to exponent vectors with similar norm statistics as ‘best conceivable’. Overall cost? Depth?

- More direct constructions of quantum CSIDH circuits?

- Amortize the oracle computations? E.g., to get initial phase vectors?

- **Question 2:** break CSIDH using partial information about secret?
Open Questions

- **Key Question:** what is the complexity of the requisite CSIDH oracle?
- Existing estimates [BLMP’19] are for ‘best conceivable’ distributions; we need uniform distribution. Or do we?

- We have many short relations in class group [BKV’19], enabling fast reduction of uniform distribution to exponent vectors with similar norm statistics as ‘best conceivable’. Overall cost? Depth?

- More direct constructions of quantum CSIDH circuits?

- Amortize the oracle computations? E.g., to get initial phase vectors?

- **Question 2:** break CSIDH using partial information about secret?
Conclusions

1. Proposed CSIDH parameters have relatively little quantum security beyond the cost of quantum evaluation (on a uniform superposition).

2. CSIDH-512 key recovery costs, e.g., only $\approx 2^{16}$ evaluations using $\approx 2^{40}$ bits of quantum-accessible RAM (+ small other resources).

3. Assuming evaluation costs not much more than for the ‘best case’: CSIDH-512, -1024, and maybe even -1792 do not reach NIST level 1 quantum security.

Paper: ePrint 2019/725

Code: https://github.com/cpeikert/CollimationSieve