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Compression and Error Tolerance

Current status: Quantum devices
@ have low qubit numbers,
@ are noisy.

Research challenges:
@ Can we design low qubit algorithms?
@ Are noisy quantum devices useful without error correction?
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Simon’s problem

Simon problem
Given: f:FJ] — Fjwithf(x)=1f(y) e ye{x,x+s}
Find:  period s € ]\ 0

@ Classically: Requires collision, Q(2"/2).
@ Many applications in symmetric cryptanalysis.
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Quantum circuit
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Figure: Simon’s circuit

@ After Us : |x) ly) — |x) |y + f(X)), we obtain
Y () + Ix +8)) [F(x))

xe{0,1}"

> ZIYIf

xe{0,1}" (y,s)=

@ Eventually:

@ After O(n) measurements: basis of the subspace s*.

@ Requires 2n qubits. (but we measure only n)
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Example Simon

Probability distribution of Simon and Hash-Simon
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Figure: Period s = 001.
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Even-Mansour application
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Attacking Even-Mansour
@ |dea of Kuwakado, Morii ('12):

f(x) = EM(x) + P(x) = P(x + k) + ko + P(x)
@ Observation:
f(x + k1) = f(x)
@ Period k1, but no Simon promise
f(x)=1f(y) #y € {x,x + ki }

@ Kaplan, Leurent, Leverrier, Naya-Plasencia ('16),
Santoli, Schaffner ('17), Leander, May (’17):

Missing promise (only) implies (some) more measurements.
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Our idea
Main idea for saving output qubits.
@ Let us hash f(x) downto some bits, e.g. to a single bit. Take
h:F5 — Fo, f(x) — h(f(x))
from some universal hash function family #.
@ Observation:

f(x) = f(y) = h(f(x)) = h(£(y))-

@ But many undesired collisions!

Our Oracle Model (for now):
@ We get Up.¢ for many h.
@ Not clear that ho f : F] — [F, can be realized memory efficient.
@ Not sufficient: Compute first f, then compute h.
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Hashing Simon’s algorithm

Hashed Simon

Input: 7 :F) — FJ, H :={h:F] — Fo}
Output: s

Q SetY =04.

© Repeat

@ y < Measure Q2" on |0") |0) for some freshly chosen h g H.
@ If y ¢ span(Y), then include y in Y.

© Until Y contains n — 1 linearly independent vectors
@ Compute {s} as Y+ via Gaussian elimination.
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Hashed Simon

Probability distribution of Simon and Hash-Simon
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Hashed Simon

Probability distribution of Simon and Hash-Simon
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Hashed Simon

Probability distribution of Simon and Hash-Simon
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Hashed Simon

Probability distribution of Simon and Hash-Simon
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Theorems

Theorem (Orthogonality)
Only states y with (y, s) = 0 have non-zero amplitude.

As in Simon.

Theorem (Amplitudes)

We measure each y #+ 0 with probability %

Compared to .

Theorem (Measurements)
Hashed-Simon succeeds with 2(n + 1) measurements. }

Compared to n+ 1, but we reduce qubits from 2nto n+ 1.
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Even-Mansour Application

Recall Even-Mansour function
f(x) = P(x) + EM(x).
We use a linear hash function family
H x> (x,r) forr € F1.
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Figure: HASHED-SIMON on Even-Mansour with n+ 1 qubits

Correctness:
h(P(x)) + h(EM(x)) = h(f(x))
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What about factoring?

Let f(x) = & mod N with n = log, N.
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Figure: Shor’s circuit

Input bit size:

Shor (1994): 2n

Seifert (2001): (1+o0(1))n

Ekerd, Hastad (2017): (% + o(1))n  (for RSA moduli)
Mosca, Ekert (1998): 1

Alex May 12/18



Shor Unhashed
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Hashed Shor
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Theorems

Theorem (Orthogonality)

Only y that are multiples of % have non-zero amplitude.

Just as before.

Theorem (Amplitudes)

We measure each y + 0 with probability 5.

Instead of 1.

Theorem (Measurements)
Hashed-Shor succeeds with 4 measurements. J

Instead of 2.

Question: Can we also instantiate Upof?
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Mosca-Ekert 1998
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Figure: Shor’s circuit.
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Figure: Mosca-Ekert circuit.
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Why not only 2 qubits?
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Figure: Quantum circuit with two bit.

@ Requires h(a') - h(&?) - h(a*) = h(a' - & - a*).
@ Well, take for instance

aX
h:Zy— {-1,1},a8 — () .
N
(Warning: Does not work!)
Theorem

If there exists an efficiently computable universal homomorphic hash

function family h : Zj, — {0, 1}! then we can factor with t + 1 qubits.
(in the oracle model only)
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Summary

@ Hashing preserves probability distribution (conditioned on y # 0).
@ Reduces output qubits significantly, basically at no cost.

@ Leads to clean results in oracle model for period finding.

@ |s useful for problems of interest (Even-Mansour).

@ Leads to interesting open problems (factoring, dlog).
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