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• Bernoulli preservingness 
• …

Hash functions

Definition: Function (family) H : {0,1}* → {0,1}n

Security properties informed by this intuition:

Defining intuition: Hash functions “look random”

      (Quantum) Random Oracle Model⟹

Random function has all of these properties
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Example application: Hash-and-sign 

• Verpk(m, σ) = accept

(m, σ)

Alice Bob

sk

pk

σ = Signsk(H(m))

m
collision resistance 

suffices
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(Quantum) random oracle model

Model hash function as random function H : {0,1}* → {0,1}n

Post-quantum security: need to allow quantum oracle access

Public oracle acess to H

Quantum random oracle model (QROM), Boneh et al.⟹

Allows public oracle access to |x⟩ |y⟩ ↦ |x⟩ |y ⊕ H(x)⟩

+Has enabled security proofs for more efficient cryptographic schemes 
- It’s not the real world!
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We want: H : {0,1}* → {0,1}n Easier: f : {0,1}k → {0,1}ℓ

But with the same security properties

Domain extension scheme : compute  by 𝒟 y = H(x)

𝒟

f

x ∈ {0,1}*

y ∈ {0,1}n

Such that      inherits the security properties of H f

SHA-1 SHA-2, SHA-3 work like this.

Infinite set!
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Example: the sponge construction

A particular domain extension scheme used e.g. in SHA-3

    : split input    into chunks                    of    bits eachx x1, . . . , xkH r and do

output

In SHA3-512: 
r = 576
c = 1024

0r

0c

x1

f

x2

f

x3

f

. . .

. . .

xk

f

y = H(x)
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Hash functions in the NIST competition

Digital signature schemes:

• All: “hash and sign”.

• Some: Fiat-Shamir Transformation

• Some: hash-based

Key encapsulation schemes
• All: hash-based key derivation
• Some: Fujisaki-Okamoto Transformation
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How to attack hash functions?

Attack using the structure of the 
fixed length hash function

Hosoyamada, A. And Sasaki, Y. “Finding Hash Collisions with Quantum Computers by Using Differential Trails with Smaller Probability than Birthday 
Bound”, EUROCRYPT 2020
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How to attack hash functions?

Attack the domain extension 
scheme 0r

0c

x1

f

x2

f

x3

f

. . .

. . .

xk

f

y = H(x)

Finds collision for sponge 
by finding collision of f

Czajkowski, J., Bruinderink, L. G., Hülsing, A., Schaffner, C., & Unruh, D. “Post-quantum security of the sponge construction”, PQCrypto 2018
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Attack cryptographic scheme 
via its use of H

Remainder of this talk: 
2 Examples
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Fiat-Shamir transformation

Hash function 
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c = H(x, a, m)

Now I believe 
that you sent …m

r

Fiat-Shamir signature scheme

w

x



Fujisaki-Okamoto transformation

Upgrades weak security to chosen-ciphertext security for key encapsulation

“Derandomize, Hash&reincrypt”



Fujisaki-Okamoto transformation

Upgrades weak security to chosen-ciphertext security for key encapsulation

“Derandomize, Hash&reincrypt”

Encpkm
r

c

Decsk mc



Fujisaki-Okamoto transformation

Upgrades weak security to chosen-ciphertext security for key encapsulation

“Derandomize, Hash&reincrypt”

Encpkm
r

c

Decsk mc

“Derandomize”

Encpkm
H(m)

c

Decskc m

T



Fujisaki-Okamoto transformation

Upgrades weak security to chosen-ciphertext security for key encapsulation

“Derandomize, Hash&reincrypt”

Encpkm
r

c

Decsk mc

“Derandomize”

Encpkm
H(m)

c

Decskc m

Encapspkm
H(m) c

Decapssk K′ c

K = H′ (m)

K′ = {H′ (m) c = Encpk(m, H(m))
⊥ else

“Hash&reincrypt”

T U⊥



Attacks and attack 
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Fiat-Shamir transformation in the QROM

Theorem (Don, Fehr, M, Schaffner ’19): 

An dishonest prover making  quantum queries to the random 

oracle can prove a wrong statement in the Fiat-Shamir 

Transformation  of a sigma protocol  with probability at most 

, 

Where  is the soundness error of .

q

𝖥𝖲(Σ) Σ
ε𝖥𝖲(Σ)(q) ≤ (2q + 1)2εΣ
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Fiat-Shamir transformation in the QROM

Theorem (Don, Fehr, M, Schaffner ’19): 

An dishonest prover making  quantum queries to the random 

oracle can prove a wrong statement in the Fiat-Shamir 

Transformation  of a sigma protocol  with probability at most 

, 

Where  is the soundness error of .

q

𝖥𝖲(Σ) Σ
ε𝖥𝖲(Σ)(q) ≤ (2q + 1)2εΣ

εΣ Σ

Don, J., Fehr, S., Majenz, C., & Schaffner, C., “Security of the Fiat-Shamir transformation in the quantum random-oracle model”, Crypto 2019

(Independent work: 
Liu&Zhandry, Crypto 
2019, less tight…)

Liu, Q. and Zhandry, M., “Revisiting Post-Quantum Fiat-Shamir”, Crypto 2019



Fiat-Shamir transformation in the QROM

Theorem (Don, Fehr, M, Schaffner ’19): 

An dishonest prover making  quantum queries to the random 

oracle can prove a wrong statement in the Fiat-Shamir 

Transformation  of a sigma protocol  with probability at most 

, 

Where  is the soundness error of .

q

𝖥𝖲(Σ) Σ
ε𝖥𝖲(Σ)(q) ≤ (2q + 1)2εΣ

εΣ Σ

Can we find a matching attack?

Don, J., Fehr, S., Majenz, C., & Schaffner, C., “Security of the Fiat-Shamir transformation in the quantum random-oracle model”, Crypto 2019

(Independent work: 
Liu&Zhandry, Crypto 
2019, less tight…)

Liu, Q. and Zhandry, M., “Revisiting Post-Quantum Fiat-Shamir”, Crypto 2019
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Verifier learns something from (a, c, r)

At least “  is true”!x

Zero knowledge: Verifier learns nothing else.

Formally:  can be simulated(a, c, r)

Definition (Honest-verifier zero knowledge, informal): 

A sigma protocol  is honest-verifier zero knowledge (HVZK) if there 

exists a simulator   such that for all true statements ,  

is indistinguishable from a transcript from the protocol.

Σ
𝒮 x (a, c, r) ← 𝒮(x)
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Theorem (informal, Don, Fehr, M ’20): 

Let  be a sigma protocol that is perfectly HVZK and has special 

soundness + some mild additional properties. Then there exists a 

quantum polynomial-time attacker making  queries to  that succeeds 

with probability .

Σ

q H
ε𝖥𝖲(Σ)(q) ≥ q2εΣ

How relevant is the attack?

Sigma protocols for Fiat-Shamir signatures  

• are HVZK  

• Have special soundness or similar
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The QROM is uninstantiable

Did we figure out Fiat-Shamir?

In the QROM: yes.

Theorem (Canetti, Goldreich, Halevi ’98): 

There exists a digital signature scheme  using a hash function , 

such that 

i)  is secure in the ROM 

ii)  is insecure for any efficient 

ΠH H

ΠH

ΠH H

Theorem (Eaton and Song ’19): 

The digital signature scheme  from above is secure in the QROM.ΠH

Better attacks possible, but likely using structure of .H

Canetti, R., Goldreich, O., Halevi, S., “The random oracle methodology, revisited”, STOC 1998

Eaton, E. and Song, F., “A Note on the Instantiability of the Quantum Random Oracle”, eprint 2019
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Fujisaki-Okamoto transformation

Upgrades weak security to chosen-ciphertext security for key encapsulation

“Derandomize, then Hash”

Encpkm
r

c

Decsk mc

“Derandomize”

Encpkm
H(m)

c

Decskc m

Encapspkm
H(m) c

Decapssk K′ c

K = H′ (m)

“Hash”

T U⊥

Π Π′ Π′ ′ 

For proving post-quantum security, model  as random oracles (QROM)H, H′ 
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Fujisaki-Okamoto transformation in the QROM
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Lossy reduction

Multiplicative loss q

No attack known that exploits this gap

Vanilla approach (Grover)? Probably not…

Other algorithms?
(This is the 

question from 
Dan’s email)

Reductions in the QROM
same insufficiency as for FS⇒



Upgrades weak security to chosen-ciphertext security for key encapsulation

“Derandomize, then Hash”
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Summary

Hash functions are used everywhere. We need to subject them to quantum 
cryptanalysis!

⇒

Attacks possible at different levels

Hash function application in schemes: some open questions regarding attacks

Polynomial improvements over trivial, but: important for parameter choice



Thanks!


