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Hash functions

Definition: Function (family) H : {0,1}* — {0,1}"

Defining intuition: Hash functions “look random”

Security properties informed by this intuition:

® One-wayness

® Collision resistance
® Collapsingness
® Correlation intractability

® Bernoulli preservingness
® ..

Random function has all of these properties

—(Quantum) Random Oracle Model
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S Q(mg) / \ ?

A||ce

m

O = Signsk(H(m)) e Ver k(m o) = accept



Example application: Hash-and-sign

O
S @ (m 0) / \ Q
A||ce
5= Signsk(m)) coIIision resistance .« Ver,,(m, 6) = accept

suffices
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(Quantum) random oracle model

Model hash function as random function H : {0,1}* — {0,1}"

Public oracle acess to H

Post-quantum security: need to allow quantum oracle access

—>Quantum random oracle model (QROM), Boneh et al.

Allows public oracle access to |x)|y) = |x) |y @ H(x))

+ Has enabled security proofs for more efficient cryptographic schemes
- It's not the real world!
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{0,1}" Fasier: [: {0,1}k — {O,I}Z’ﬂ

N But with the same security properties
Infinite set!

We want: H {O,l }

Domain extension scheme &: compute y = H(x) by

f
1
x e {0,1}*
~— — D — y € {0,1}"

Such that H inherits the security properties of f
SHA-1 SHA-2, SHA-3 work like this.
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Example: the sponge construction

A particular domain extension scheme used e.g. in SHA-3

output
H: split input X into chunks X{, . .., X; of ¥ bits each and do J
T1 T2 T3 Tk y = H(x)
0" $ f % f % e $ f |
¢ ...
In SHA3-512:
r =576

c = 1024
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Hash functions in the NIST competition

Digital signature schemes:

® All: “hash and sign”.

® Some: Fiat-Shamir Transformation
® Some: hash-based

Key encapsulation schemes
® All: hash-based key derivation
® Some: Fujisaki-Okamoto Transformation
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How to attack hash functions?

Cryptographic Sheme

4

Attack the domain extension “H _ @(f)“

Domain Extension
scheme

4

Fixed-length hash
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How to attack hash functions?

Cryptographic Sheme

4

Domain Extension

4

Fixed-length hash
function

Attack cryptographic scheme «
via its use of H H=H

Attack the domain extension “H _ 9(]”)“

scheme

Attack using the structure of SE= o fenanijes 8

. cc = le ol ;
the fixed length hash Hx)=9(._"__
function SRR
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How to attack hash functions?

Attack using the structure of the
fixed length hash function

Finding Hash Collisions with Quantum
Computers by Using Differential Trails with
Smaller Probability than Birthday Bound

Akinori Hosoyamada'? and Yu Sasaki®

1 NTT Secure Platform Laboratories, Tokyo, Japan,
{akinori.hosoyamada.bh,yu.sasaki.sk}@hco.ntt.co. jp
2 Nagoya University, Nagoya, Japan, hosoyamada.akinori@nagoya-u. jp

Hosoyamada, A. And Sasaki, Y. “Finding Hash Collisions with Quantum Computers by Using Differential Trails with Smaller Probability than Birthday
Bound”, EUROCRYPT 2020
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Theorem 16. Let S ;¢ pad,n(m) be a sponge construction with arbitrary block
function £. There exists a quantum algorithm COLL-RO making at most q¢ quan-
tum queries to £ and g quantum queries to a random oracle H. COLL-RO out-

puts colliding messages m # ™ such that S¢ ;£ pad.n(M) = Scr £ pad.n(M) with
probability at least 1/8, where g := 2kpmp - min{ &E8E2rc/3 2n4043r9n/3Y - o g
qH = 2kAmp - min{QC/ 3 on/ 31 + 2, where kamp 15 the constant from Theorem 1/
and pad is any padding function which appends at most 2r bits.

Czajkowski, J., Bruinderink, L. G., Hulsing, A., Schaffner, C., & Unruh, D. “Post-quantum security of the sponge construction”, PQCrypto 2018



How to attack hash functions?

Attack the domain extension T T2 T3
scheme 0" % $ $

OC I —

y = H(z)
|

D

Theorem 16. Let S ;¢ pad,n(m) be a sponge construction with arbitrary block
function £. There exists a quantum algorithm COLL-RO making at most q¢ quan-
tum queries to £ and g quantum queries to a random oracle H. COLL-RO out-

puts colliding messages m # m such that Sc r £ pad n (M=

probability at least 1/8, where g := 2kamp - min{ c+6r , T
gH = 2kAmb min{QC/ 3. on/ 3} + 2, where kamp 1S tant from Theorem 1/

and pad is any padding function which u. most 2r bits.

Finds collision for sponge
by finding collision of f

Czajkowski, J., Bruinderink, L. G., Hulsing, A., Schaffner, C., & Unruh, D. “Post-quantum security of the sponge construction”, PQCrypto 2018
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Attack cryptographic scheme
via its use of H

Remainder of this balk:
2 Examples
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Fiat-Shamir transformation

X IS truD <Prove Q
a >

c = H(x, a)
r >

Verifier

Prover

Now | believe

Hash HEMV\@&QOM that x is true...
reptaaes thteraction




Fiat-Shamir signature scheme

D=

n comes .
Prove it!
o from me
e - .
d >

c = H(x,a,m)
r >

——

Verifier

Prover

Now | believe
that you sent m...
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Fujisaki-Okamoto transformation

Upgrades weak security to chosen-ciphertext security for key encapsulation

"Derandomize, Hash&reincrypt”

“"Derandomize”

"Hash&reincrypt”

y ——»

Enc
nm ——»

» C

¢ —| Dec,,

_>m

Enc , > C
m , P
C—> Decy;, —> m

Encaps

> C

> K = H'(m)

Decaps,

— K

else

H(m) c= Encpk(m, H(m))

k=1
1



Attacks and attack
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Fiat-Shamir transformation in the QROM

Theorem (Don, Fehr, M, Schaffner '19):

An dishonest prover making g quantum queries to the random

oracle can prove a wrong statement in the Fiat-Shamir

Transformation FS(X) of a sigma protocol 2 with probability at most
5Fs(z)(CI) < (2q+ 1)282,

Where &5 is the soundness error of X.

Don, J., Fehr, S., Majenz, C., & Schaffner, C., “Security of the Fiat-Shamir transformation in the quantum random-oracle model”, Crypto 2019
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Fiat-Shamir transformation in the QROM

Theorem (Don, Fehr, M, Schaffner '19):

An dishonest prover making g quantum queries to the random

oracle can prove a wrong statement in the Fiat-Shamir

Transformation FS(X) of a sigma protocol 2 with probability at most
5Fs(z)(CI) < (2q+ 1)282,

Where &5 is the soundness error of X.

(Independent work:
Liu&Zhandry, Crypto
Can we find a matching attack? 2019, less tight...)

Don, J., Fehr, S., Majenz, C., & Schaffner, C., “Security of the Fiat-Shamir transformation in the quantum random-oracle model”, Crypto 2019

Liu, Q. and Zhandry, M., “Revisiting Post-Quantum Fiat-Shamir”, Crypto 2019
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Zero knowledge

Verifier learns something from (a, c, r)

At least “x is true”!

Zero knowledge: Verifier learns nothing else.

Formally: (a, ¢, r) can be simulated

Definition (Honest-verifier zero knowledge, informal):
A sigma protocol 2 is honest-verifier zero knowledge (HVZK) if there

exists a simulator & such that for all true statements x, (a, c,r) <« &(x)

is indistinguishable from a transcript from the protocol.
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How can & even exist for X with soundness?

&' (x) can choose (a, ¢, r) in any order!

(a,c,r) <« &(x) such that H(x,a) = c hassmallp > 0
Uses ohe query to H

|dea: Grover-search for such a transcript!

& is a public, randomized algorit

fH( if 8'(x;p) = (a,c,r) such that H(x,a) = c

0 else

Theorem (informal; Don, Fehr, M '20):
Let X be a sigma protocol that is perfectly HVZK and has special
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Attack

Theorem (informal, Don, Fehr, M '20):

Let 2 be a sigma protocol that is perfectly HVZK and has special
soundness + some mild additional properties. Then there exists a
quantum polynomial-time attacker making g queries to H that succeeds

with probability &gg5)(q) = g’es.

How relevant is the attack?

Sigma protocols for Fiat-Shamir signatures
® are HVZK
® Have special soundness or similar
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The QROM is uninstantiable

Did we figure out Fiat-Shamir?

In the QROM: yes.

Theorem (Canetti, Goldreich, Halevi ‘98):

There exists a digital signature scheme IT1" using a hash function H,

such that
i) I1 is secure in the ROM

ii) ITY is insecure for any efficient H

Theorem (Eaton and Song '19):

The digital signature scheme IT! from above is secure in the QROM.

Better attacks possible, but likely using structure of H.

Canetti, R., Goldreich, O., Halevi, S., “The random oracle methodology, revisited”, STOC 1998

Eaton, E. and Song, F., “A Note on the Instantiability of the Quantum Random Oracle”, eprint 2019
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Fujisaki-Okamoto transformation

Upgrades weak security to chosen-ciphertext security for key encapsulation

“Derandomize, then Hash”

"Derandomize”

y ——»

Enc
nm ——»

» C

¢ —| Dec,,

_>m

I1

Enc > C
m , P
C—> Decy;, —> m

H/

Encaps

> C

> K = H'(m)

Decaps,

— K

H//

For proving post-quantum security, model H, H as random oracles (QROM)
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Tight in the flassical ROM!
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Reductions in the QROM
No attack known that exploits this gap
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Other algorithms?
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Fujisaki-Okamoto transformation in the QROM

T Ut
IT IND-CPA Sl IT" OW-CPA » II” IND-CCA
Lossy redFetre Tight re®uction

Multiplicative loss g

Qeciua&io ‘ Ehe QROM

No attack known that exploits this gap = same ""\suﬂ:‘*mm’\ﬂj as for FS

Vanilla approach (Grover)? Probably not...

Other algorithms?
(This is the
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Fujisaki-Okamoto transformation in the QROM

Upgrades weak security to chosen-ciphertext security for key encapsulation

“Derandomize, then Hash”

"Derandomize”
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Fujisaki-Okamoto transformation in the QROM

Upgrades weak security to chosen-ciphertext security for key encapsulation

“Derandomize, then Hash”

"Derandomize”

Y ——» H(Wl)—»
Enc,; > C Enc,; > C
n —— m ———
C —» Decsk — 71 C — DGCSk — M
IT IND-CPA ? » [I' OW-CPA

Tight reguction



Summary

Hash functions are used everywhere. =We need to subject them to quantum
cryptanalysis!

Attacks possible at different levels

Hash function application in schemes: some open questions regarding attacks

Polynomial improvements over trivial, but: important for parameter choice
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