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Round 3

one message through each edge per round (in each direction) 

what size?

CONGEST model: only O(log n) bits per message 

LOCAL model: no restriction on the size of each message

motivation: communication 
is fast/cheap
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Now qubits can be sent instead of bits

Quantum distributed computing

Quantum Advantage in the CONGEST model

(no prior entanglement between nodes)

CONGEST model: only O(log n) qubits per message 

The diameter of the network can be computed in Θ( 𝑛𝑛) rounds in 
the quantum CONGEST model but requires Θ(𝑛𝑛) rounds in the 
classical CONGEST model (when the diameter is constant)

[LG, Magniez 18]

n: number of nodes of the network
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Diameter and Eccentricity

Consider an undirected and unweighted graph G = (V,E)

a

c
b d

e
f

g D = 4

D = max {d(u,v)}
u,v ∈ 𝑉𝑉

The diameter of the graph is the maximum distance between two nodes

The eccentricity of a node u is defined as  

ecc (u) = max {d(u,v)}
v ∈ 𝑉𝑉

d(u,v) = distance between u and v= max {ecc (u)}
u ∈ 𝑉𝑉

ecc (a) = 3
ecc (b) = 3
ecc (c) = 2
ecc (d) = 3
ecc (e) = 3
ecc (f ) = 4
ecc (g) = 4
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Classical Distributed Computing: Computing Distances
The distances from node 1 can be computed using the Breadth-First Search algorithm

 for any fixed node u, the distances from u can be computed in D rounds 
by the Breadth-First Search algorithm (starting at u)

 but computing the diameter (i.e., the maximum eccentricity) 
requires Θ(n) rounds even for constant D  
[Frischknecht+12, Holzer+12, Peleg+12, Abboud+16]

In classical distributed computing (CONGEST model):

Complexity: ecc(1) rounds  (≤ D rounds)

We show that we can do better in the quantum setting

 for any fixed node u, the eccentricity ecc(u) can be computed in O(D) 
rounds by propagating back the information to u

D: diameter of the network
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Quantum Distributed Computation of the Diameter

Given an integer d, decide if diameter ≥ d

Computation of the diameter (decision version)

there is a vertex u such that ecc (u) ≥ d

This is a search problem
Idea: try to use Grover search

There is a quantum algorithm for this search problem 
using 𝑂𝑂( 𝑛𝑛) calls to a black box evaluating f 

Quantum search
[Grover 96]

Define the function f: V → {0,1} such that f(u) = 1 if ecc (u) ≥ d
0 otherwise 

Goal: find u such that f(u) = 1 (or report that no such vertex exists)

u f(u)𝑛𝑛 = |V|  (number of nodes)
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Quantum Distributed Computation of the Diameter: Summary

There is a quantum algorithm for this search problem 
using 𝑂𝑂( 𝑛𝑛) calls to a black box evaluating f 

Quantum search
[Grover 96]

u f(u)

Quantum distributed algorithm computing the diameter

O(D)-round classical 
distributed algorithm for the 

eccentricity 

Complexity: 𝑂𝑂( 𝑛𝑛 × D) rounds 

Define the function f: V → {0,1} such that f(u) = 1 if ecc (u) ≥ d
0 otherwise 

Goal: find u such that f(u) = 1 (or report that no such vertex exist)

 The network elects a leader
 The leader locally implements Grover algorithm. Each call to the 

black box is implemented by using the standard O(D)-round 
classical algorithm computing the eccentricity.

converted into a 
quantum version
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With further work, the complexity 
can be reduced to 𝑂𝑂( 𝑛𝑛𝑛𝑛) rounds 

Complexity: 𝑂𝑂( 𝑛𝑛 × D) rounds 

Define the function f: V → {0,1} such that f(u) = 1 if ecc (u) ≥ d
0 otherwise 

Goal: find u such that f(u) = 1 (or report that no such vertex exist)

 The network elects a leader
 The leader locally implements Grover algorithm. Each call to the 

black box is implemented by using the standard O(D)-round 
classical algorithm computing the eccentricity.

Classically in O(D) rounds it is possible to simultaneously compute the 
eccentricities of D vertices [Peleg+12]

Thus we can instead do a Grover search over groups of D 
vertices (there are n/D groups) in 

𝑂𝑂( 𝑛𝑛/𝑛𝑛 × D) = 𝑂𝑂( 𝑛𝑛𝑛𝑛) rounds 

converted into a 
quantum version



Summary of the first part

Classical Quantum (our results)

Exact computation (upper bounds) 𝑂𝑂(𝑛𝑛)
[Holzer+12, Peleg+12]

𝑂𝑂( 𝑛𝑛𝑛𝑛)

~

Exact computation (lower bounds) �Ω(𝑛𝑛)
[Frischknecht+12]

�Ω( 𝑛𝑛 + 𝑛𝑛) [unconditional]
�Ω( 𝑛𝑛𝑛𝑛) [conditional]

number of rounds needed to compute the diameter (n: number of nodes, D: diameter)

sublinear-round quantum computation of the diameter whenever D=o(n)

Main result [LG, Magniez 2018]

~

 Prove an unconditional lower bound of  �Ω( 𝑛𝑛𝑛𝑛) rounds
OPEN PROBLEM:

very recent result [Magniez, Nayak 2020]

�Ω( 𝑛𝑛 + 𝑛𝑛1/3𝑛𝑛2/3)    [unconditional]



Summary of the first part

sublinear-round quantum computation of the diameter whenever D=o(n)

Main result [LG, Magniez 2018]

Our upper bound is obtained by showing how to implement quantum search 
in a distributed setting

PROMISING RESEARCH DIRECTION: find other applications of this technique



Summary of the first part

sublinear-round quantum computation of the diameter whenever D=o(n)

Main result [LG, Magniez 2018]

Our upper bound is obtained by showing how to implement quantum search 
in a distributed setting

PROMISING RESEARCH DIRECTION: find other applications of this technique

[Izumi, LG 2019]: quantum distributed algorithm for the All-Pairs Shortest 
Paths Problem faster than the best classical algorithms

[Izumi, LG, 
Magniez 2020]:

quantum distributed algorithm for triangle finding faster 
than the best classical algorithms

 idea: implement simultaneously Θ(n2) quantum distributed 
searches 

 significant work needed to avoid congestions in the checking 
procedures



Now qubits can be sent instead of bits

Quantum distributed computing

Quantum Distributed Computing

Q

(no prior entanglement between nodes)

CONGEST model: only O(log n) qubits per message 

LOCAL model: no restriction on the size of each message

n: number of nodes of the network

Quantum can be useful for some problems
[LG, Magniez 2018] [Izumi, LG 2019] [Izumi et al. 2020]
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Now qubits can be sent instead of bits

Quantum distributed computing

Quantum Distributed Computing

Q

(no prior entanglement between nodes)

CONGEST model: only O(log n) qubits per message 

LOCAL model: no restriction on the size of each message

There is a computational problem that can be solved in 2 rounds in the 
quantum LOCAL model but requires Ω(n) rounds classically.

n: number of nodes of the network

There is a computational problem that can be solved in 1 round in the 
quantum LOCAL model but requires 2 rounds classically.

[Gavoille et 
al. 09]

[LG, Nishimura, 
Rosmanis 2019]

Quantum can be useful for some problems
[LG, Magniez 2018] [Izumi, LG 2019] [Izumi et al. 2020]



Superiority of the Quantum LOCAL model

There is a computational problem that can be solved in 2 rounds in the 
quantum LOCAL model but requires Ω(n) rounds classically.[LG, Nishimura, 

Rosmanis 2019]



Superiority of the Quantum LOCAL model

There is a computational problem that can be solved in 2 rounds in the 
quantum LOCAL model but requires Ω(n) rounds classically.

We use a construction from [Barrett, Caves, Eastin, Elliot, Pironio 2007]

[LG, Nishimura, 
Rosmanis 2019]



Superiority of the Quantum LOCAL model

There is a computational problem that can be solved in 2 rounds in the 
quantum LOCAL model but requires Ω(n) rounds classically.

We use a construction from [Barrett, Caves, Eastin, Elliot, Pironio 2007]

Also used in some of the recent results on quantum shallow circuits 
[Bravyi, Gosset, König 2018]

[LG, Nishimura, 
Rosmanis 2019]
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Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input

b1

b2b3

z1

z2

z3

z4

z5

z6

z7

z8z9z10z11z12

z13

z14

z15

z16

z17

z18

n=18

Each node will output one bit

multiple of 3

Each non-corner node measures its 
qubit in the X basis and then outputs 
the bit corresponding to the 
measurement outcome

Each corner node measures its qubit 
in the X basis if its input bit is 0, or 
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Remarks

There is a computational problem that can be solved in 2 rounds 
in the quantum LOCAL model but requires Ω(n) rounds in the 
classical LOCAL model.

 Since our quantum distributed algorithm only uses short messages 
(1 qubit in each message) we get the following stronger statement:

There is a computational problem that can be solved in 2 rounds in 
the quantum CONGEST model but requires Ω(n) rounds in the 
classical LOCAL model.

“simulate the outcome distribution of a measurement of the graph state”

 A similar separation can be shown for a relation (“output any outcome 
that appears with non-zero probability as an outcome of the 
measurement of the graph state”)

 A similar separation can also be shown for a sampling problem without 
any input (“simulate the outcome distribution of the measurement when 
the bits b1, b2 and b3 are taken uniformly at random”)

[LG, Nishimura, 
Rosmanis 2019]



Conclusion

We now know that quantum distributed algorithms can be faster than 
classical distributed algorithms for several problems, in both the CONGEST 
model and the LOCAL model

Interesting research directions:

 Develop lower bounds techniques, especially in the quantum LOCAL 
model

 Prove the superiority of quantum distributed algorithms in other models

advantage for distributed interactive proofs Recent result:
[Fraigniaud, LG, 
Nishimura, Paz 2020]

Designing quantum distributed algorithms in these models poses new 
algorithmic challenges since we have to focus on the round complexity 
(instead of time/query complexity or total communication complexity)

 Construct other quantum distributed algorithms, for important problems

Can we show a nontrivial lower bound for graph coloring?
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