
Quantum Distributed Computing: 
Recent Results

François Le Gall
Nagoya University

Simons Institute
27 February 2020



Outline: Our ContributionDoes quantum help for distributed computing? 



Outline: Our Contribution

 anonymous networks: quantum leader election [Tani et al. 2007]
 faulty networks: quantum Byzantine agreement [Ben-Or, Hassidim 2005]
 quantum multiparty communication complexity

Does quantum help for distributed computing? 
Positive answers known in some models: 



Outline: Our Contribution

Two other models are very popular recently in the classical 
distributed computing community:

CONGEST model

LOCAL model

(limited bandwidth)

(unlimited bandwidth)

 anonymous networks: quantum leader election [Tani et al. 2007]
 faulty networks: quantum Byzantine agreement [Ben-Or, Hassidim 2005]
 quantum multiparty communication complexity

Does quantum help for distributed computing? 
Positive answers known in some models: 



Outline: Our Contribution

Two other models are very popular recently in the classical 
distributed computing community:

CONGEST model

LOCAL model

(limited bandwidth)

(unlimited bandwidth)

[Gavoille, Kosowski, Markiewicz 2009] [Elkin et al. 2014]

negative results: show impossibility of quantum 
distributed computing faster than classical 
distributed computing for many important problems 
(shortest paths, minimum spanning tree,…)

 anonymous networks: quantum leader election [Tani et al. 2007]
 faulty networks: quantum Byzantine agreement [Ben-Or, Hassidim 2005]
 quantum multiparty communication complexity

Does quantum help for distributed computing? 
Positive answers known in some models: 



Outline: Our Contribution

Two other models are very popular recently in the classical 
distributed computing community:

Quantum can be useful for some problems 
[LG, Nishimura, Rosmanis 2019]

Quantum can be useful for some problems
[LG, Magniez 2018] [Izumi, LG 2019] [Izumi, LG, Magniez 2020]CONGEST model

LOCAL model

(limited bandwidth)

(unlimited bandwidth)

[Gavoille, Kosowski, Markiewicz 2009] [Elkin et al. 2014]

negative results: show impossibility of quantum 
distributed computing faster than classical 
distributed computing for many important problems 
(shortest paths, minimum spanning tree,…)

 anonymous networks: quantum leader election [Tani et al. 2007]
 faulty networks: quantum Byzantine agreement [Ben-Or, Hassidim 2005]
 quantum multiparty communication complexity

Does quantum help for distributed computing? 
Positive answers known in some models: 



Classical Distributed Computing: CONGEST and LOCAL
Basic setting: non-faulty, non-anonymous, synchronous

 network G=(V,E) of n nodes (all nodes have distinct identifiers)

1
4

3
2

5
6



Classical Distributed Computing: CONGEST and LOCAL
Basic setting: non-faulty, non-anonymous, synchronous

 network G=(V,E) of n nodes (all nodes have distinct identifiers)
 each node initially knows only the identifiers of all its neighbors (and knows n)

1
4

3
2

5
6



Classical Distributed Computing: CONGEST and LOCAL
Basic setting: non-faulty, non-anonymous, synchronous

 network G=(V,E) of n nodes (all nodes have distinct identifiers)
 each node initially knows only the identifiers of all its neighbors (and knows n)

1
4

3
2

5
6

1 4

3
6



Classical Distributed Computing: CONGEST and LOCAL
Basic setting: non-faulty, non-anonymous, synchronous

 network G=(V,E) of n nodes (all nodes have distinct identifiers)
 each node initially knows only the identifiers of all its neighbors (and knows n)
 synchronous communication between adjacent nodes:         

1
4

3
2

5
6

1 4

3
6

one message through each edge per round (in each direction) 



Classical Distributed Computing: CONGEST and LOCAL
Basic setting: non-faulty, non-anonymous, synchronous

 network G=(V,E) of n nodes (all nodes have distinct identifiers)
 each node initially knows only the identifiers of all its neighbors (and knows n)
 synchronous communication between adjacent nodes:         

1
4

3
2

5
6

1 4

3
6

Round 1

one message through each edge per round (in each direction) 



Classical Distributed Computing: CONGEST and LOCAL
Basic setting: non-faulty, non-anonymous, synchronous

 network G=(V,E) of n nodes (all nodes have distinct identifiers)
 each node initially knows only the identifiers of all its neighbors (and knows n)
 synchronous communication between adjacent nodes:         

1
4

3
2

5
6

local 
computation

local 
computation

local 
computation

local 
computation

local 
computation

local 
computation

at the end of Round 1:

one message through each edge per round (in each direction) 



Classical Distributed Computing: CONGEST and LOCAL
Basic setting: non-faulty, non-anonymous, synchronous

 network G=(V,E) of n nodes (all nodes have distinct identifiers)
 each node initially knows only the identifiers of all its neighbors (and knows n)
 synchronous communication between adjacent nodes:         

1
4

3
2

5
6

Round 2

one message through each edge per round (in each direction) 



Classical Distributed Computing: CONGEST and LOCAL
Basic setting: non-faulty, non-anonymous, synchronous

 network G=(V,E) of n nodes (all nodes have distinct identifiers)
 each node initially knows only the identifiers of all its neighbors (and knows n)
 synchronous communication between adjacent nodes:         

1
4

3
2

5
6

local 
computation

local 
computation

local 
computation

local 
computation

local 
computation

local 
computation

at the end of Round 2:

one message through each edge per round (in each direction) 



Classical Distributed Computing: CONGEST and LOCAL
Basic setting: non-faulty, non-anonymous, synchronous

 network G=(V,E) of n nodes (all nodes have distinct identifiers)
 each node initially knows only the identifiers of all its neighbors (and knows n)
 synchronous communication between adjacent nodes:         

1
4

3
2

5
6

Round 3

one message through each edge per round (in each direction) 



Classical Distributed Computing: CONGEST and LOCAL
Basic setting: non-faulty, non-anonymous, synchronous

 network G=(V,E) of n nodes (all nodes have distinct identifiers)
 each node initially knows only the identifiers of all its neighbors (and knows n)
 synchronous communication between adjacent nodes:         

Complexity: the number of rounds used

1
4

3
2

5
6

Round 3

one message through each edge per round (in each direction) 



Classical Distributed Computing: CONGEST and LOCAL
Basic setting: non-faulty, non-anonymous, synchronous

 network G=(V,E) of n nodes (all nodes have distinct identifiers)
 each node initially knows only the identifiers of all its neighbors (and knows n)
 synchronous communication between adjacent nodes:         

Complexity: the number of rounds used

1
4

3
2

5
6

Round 3

one message through each edge per round (in each direction) 

what size?



Classical Distributed Computing: CONGEST and LOCAL
Basic setting: non-faulty, non-anonymous, synchronous

 network G=(V,E) of n nodes (all nodes have distinct identifiers)
 each node initially knows only the identifiers of all its neighbors (and knows n)
 synchronous communication between adjacent nodes:         

Complexity: the number of rounds used

1
4

3
2

5
6

Round 3

one message through each edge per round (in each direction) 

what size?

CONGEST model: only O(log n) bits per message 

LOCAL model: no restriction on the size of each message



Classical Distributed Computing: CONGEST and LOCAL
Basic setting: non-faulty, non-anonymous, synchronous

 network G=(V,E) of n nodes (all nodes have distinct identifiers)
 each node initially knows only the identifiers of all its neighbors (and knows n)
 synchronous communication between adjacent nodes:         

Complexity: the number of rounds used

1
4

3
2

5
6

Round 3

one message through each edge per round (in each direction) 

what size?

CONGEST model: only O(log n) bits per message 

LOCAL model: no restriction on the size of each message

motivation: communication 
is fast/cheap



Now qubits can be sent instead of bits

Quantum distributed computing

Quantum Distributed Computing: CONGEST and LOCAL

1
4

3
2

5
6

Q

Q

Q

Q

Q

Q

Q Q
Q

Q

Q

Q

Q

Q

Q

Q

Q
Q

(no prior entanglement between nodes)



Now qubits can be sent instead of bits

Quantum distributed computing

Quantum Distributed Computing: CONGEST and LOCAL

 network G=(V,E) of n nodes (all nodes have distinct identifiers)
 each node only knows the identifiers of all its neighbors (and knows n)
 synchronous communication between adjacent nodes:         

one message of qubits through each edge per round (in each direction) 

Complexity: the number of rounds needed for the computation
 each node is a quantum processor

more formally:

1
4

3
2

5
6

Q

Q

Q

Q

Q

Q

Q Q
Q

Q

Q

Q

Q

Q

Q

Q

Q
Q

(no prior entanglement between nodes)



Now qubits can be sent instead of bits

Quantum distributed computing

Quantum Distributed Computing: CONGEST and LOCAL

 network G=(V,E) of n nodes (all nodes have distinct identifiers)
 each node only knows the identifiers of all its neighbors (and knows n)
 synchronous communication between adjacent nodes:         

one message of qubits through each edge per round (in each direction) 

Complexity: the number of rounds needed for the computation
 each node is a quantum processor

more formally:

1
4

3
2

5
6

Q

Q

Q

Q

Q

Q

Q Q
Q

Q

Q

Q

Q

Q

Q

Q

Q
Q

(no prior entanglement between nodes)

CONGEST model: only O(log n) qubits per message 

LOCAL model: no restriction on the size of each message



Now qubits can be sent instead of bits

Quantum distributed computing

Quantum Advantage in the CONGEST model

(no prior entanglement between nodes)

CONGEST model: only O(log n) qubits per message 

The diameter of the network can be computed in Θ( 𝑛𝑛) rounds in 
the quantum CONGEST model but requires Θ(𝑛𝑛) rounds in the 
classical CONGEST model (when the diameter is constant)

[LG, Magniez 18]

n: number of nodes of the network



Diameter and Eccentricity

Consider an undirected and unweighted graph G = (V,E)

a

c
b d

e
f

g

D = max {d(u,v)}
u,v ∈ 𝑉𝑉

The diameter of the graph is the maximum distance between two nodes

d(u,v) = distance between u and v



Diameter and Eccentricity

Consider an undirected and unweighted graph G = (V,E)

a

c
b d

e
f

g D = 4

D = max {d(u,v)}
u,v ∈ 𝑉𝑉

The diameter of the graph is the maximum distance between two nodes

d(u,v) = distance between u and v



Diameter and Eccentricity

Consider an undirected and unweighted graph G = (V,E)

a

c
b d

e
f

g D = 4

D = max {d(u,v)}
u,v ∈ 𝑉𝑉

The diameter of the graph is the maximum distance between two nodes

The eccentricity of a node u is defined as  

ecc (u) = max {d(u,v)}
v ∈ 𝑉𝑉

d(u,v) = distance between u and v= max {ecc (u)}
u ∈ 𝑉𝑉

ecc (a) = 3
ecc (b) = 3
ecc (c) = 2
ecc (d) = 3
ecc (e) = 3
ecc (f ) = 4
ecc (g) = 4



Classical Distributed Computing: Computing Distances

1
4

3
2

5
6

Distance from node 1 = ?



6
Distance from node 1 = ?

Classical Distributed Computing: Computing Distances

1
4

3
2

5

The distances from node 1 can be computed using the Breadth-First Search algorithm



6
Distance from node 1 = ?

Classical Distributed Computing: Computing Distances

1
4

3
2

5

dist = 0

Round 1 the source node sends a message to its neighbors

The distances from node 1 can be computed using the Breadth-First Search algorithm



6
Distance from node 1 = ?

Classical Distributed Computing: Computing Distances

1
4

3
2

5

dist = 0

Round 1

at the end of Round 1: each node updates its distance

dist = 1

dist = 1

dist = 1

the source node sends a message to its neighbors

The distances from node 1 can be computed using the Breadth-First Search algorithm

(nodes that received a message at Round 1 set “dist = 1”)



6
Distance from node 1 = ?

Classical Distributed Computing: Computing Distances

1
4

3
2

5

dist = 0

Round 1

at the end of Round 1: each node updates its distance

dist = 1

dist = 1

dist = 1

the source node sends a message to its neighbors

The distances from node 1 can be computed using the Breadth-First Search algorithm

(nodes that received a message at Round 1 set “dist = 1”)



6
Distance from node 1 = ?

Classical Distributed Computing: Computing Distances

1
4

3
2

5

dist = 0

Round 1

at the end of Round 1: each node updates its distance

dist = 1

dist = 1

dist = 1

Round 2

the source node sends a message to its neighbors

nodes tell new knowledge to neighbors

The distances from node 1 can be computed using the Breadth-First Search algorithm

(nodes that received a message at Round 1 set “dist = 1”)



6
Distance from node 1 = ?

Classical Distributed Computing: Computing Distances

1
4

3
2

5

dist = 0

Round 1

at the end of Round 1: each node updates its distance

dist = 1

dist = 1

dist = 1

Round 2

at the end of Round 2: each node updates its distance

dist = 2
dist = 2

the source node sends a message to its neighbors

nodes tell new knowledge to neighbors

Distance from node 1 = 2

The distances from node 1 can be computed using the Breadth-First Search algorithm

(nodes that received a message at Round 1 set “dist = 1”)



6
Distance from node 1 = ?

Classical Distributed Computing: Computing Distances

1
4

3
2

5

dist = 0

Round 1

at the end of Round 1: each node updates its distance

dist = 1

dist = 1

dist = 1

Round 2

at the end of Round 2: each node updates its distance

dist = 2
dist = 2

the source node sends a message to its neighbors

nodes tell new knowledge to neighbors

Distance from node 1 = 2

The distances from node 1 can be computed using the Breadth-First Search algorithm
Complexity: ecc(1) rounds  (≤ D rounds)

(nodes that received a message at Round 1 set “dist = 1”)

D: diameter of the network



Classical Distributed Computing: Computing Distances
The distances from node 1 can be computed using the Breadth-First Search algorithm

 for any fixed node u, the distances from u can be computed in D rounds 
by the Breadth-First Search algorithm (starting at u)

In classical distributed computing (CONGEST model):

Complexity: ecc(1) rounds  (≤ D rounds) D: diameter of the network



Classical Distributed Computing: Computing Distances
The distances from node 1 can be computed using the Breadth-First Search algorithm

 for any fixed node u, the distances from u can be computed in D rounds 
by the Breadth-First Search algorithm (starting at u)

In classical distributed computing (CONGEST model):

Complexity: ecc(1) rounds  (≤ D rounds)

 for any fixed node u, the eccentricity ecc(u) can be computed in O(D) 
rounds by propagating back the information to u

D: diameter of the network



Classical Distributed Computing: Computing Distances
The distances from node 1 can be computed using the Breadth-First Search algorithm

 for any fixed node u, the distances from u can be computed in D rounds 
by the Breadth-First Search algorithm (starting at u)

 but computing the diameter (i.e., the maximum eccentricity) 
requires Θ(n) rounds even for constant D  
[Frischknecht+12, Holzer+12, Peleg+12, Abboud+16]

In classical distributed computing (CONGEST model):

Complexity: ecc(1) rounds  (≤ D rounds)

 for any fixed node u, the eccentricity ecc(u) can be computed in O(D) 
rounds by propagating back the information to u

D: diameter of the network



Classical Distributed Computing: Computing Distances
The distances from node 1 can be computed using the Breadth-First Search algorithm

 for any fixed node u, the distances from u can be computed in D rounds 
by the Breadth-First Search algorithm (starting at u)

 but computing the diameter (i.e., the maximum eccentricity) 
requires Θ(n) rounds even for constant D  
[Frischknecht+12, Holzer+12, Peleg+12, Abboud+16]

In classical distributed computing (CONGEST model):

Complexity: ecc(1) rounds  (≤ D rounds)

We show that we can do better in the quantum setting

 for any fixed node u, the eccentricity ecc(u) can be computed in O(D) 
rounds by propagating back the information to u

D: diameter of the network



Computation of the Diameter in the CONGEST model

Classical Quantum

Exact computation (upper bounds) 𝑂𝑂(𝑛𝑛)
[Holzer+12, Peleg+12]

𝑂𝑂( 𝑛𝑛𝑛𝑛)

~

Exact computation (lower bounds) �Ω(𝑛𝑛)
[Frischknecht+12]

�Ω( 𝑛𝑛 + 𝑛𝑛) [unconditional]

sublinear-round quantum computation of the diameter whenever D=o(n)

number of rounds needed to compute the diameter (n: number of nodes,     D: diameter)

Main result [LG, Magniez 2018]



Computation of the Diameter in the CONGEST model

Classical Quantum

Exact computation (upper bounds) 𝑂𝑂(𝑛𝑛)
[Holzer+12, Peleg+12]

𝑂𝑂( 𝑛𝑛𝑛𝑛)

~

Exact computation (lower bounds) �Ω(𝑛𝑛)
[Frischknecht+12]

�Ω( 𝑛𝑛 + 𝑛𝑛) [unconditional]

sublinear-round quantum computation of the diameter whenever D=o(n)

number of rounds needed to compute the diameter (n: number of nodes,     D: diameter)

Main result [LG, Magniez 2018]



Computation of the Diameter in the CONGEST model

Classical Quantum

Exact computation (upper bounds) 𝑂𝑂(𝑛𝑛)
[Holzer+12, Peleg+12]

𝑂𝑂( 𝑛𝑛𝑛𝑛)

~

Exact computation (lower bounds) �Ω(𝑛𝑛)
[Frischknecht+12]

�Ω( 𝑛𝑛 + 𝑛𝑛) [unconditional]

condition: holds for quantum distributed algorithms 
using only polylog(n) qubits of memory per node

sublinear-round quantum computation of the diameter whenever D=o(n)

�Ω( 𝑛𝑛𝑛𝑛) [conditional]

number of rounds needed to compute the diameter (n: number of nodes,     D: diameter)

Main result [LG, Magniez 2018]



Computation of the Diameter in the CONGEST model

Classical Quantum

Exact computation (upper bounds) 𝑂𝑂(𝑛𝑛)
[Holzer+12, Peleg+12]

𝑂𝑂( 𝑛𝑛𝑛𝑛)

~

Exact computation (lower bounds) �Ω(𝑛𝑛)
[Frischknecht+12]

�Ω( 𝑛𝑛 + 𝑛𝑛) [unconditional]

condition: holds for quantum distributed algorithms 
using only polylog(n) qubits of memory per node

sublinear-round quantum computation of the diameter whenever D=o(n)

�Ω( 𝑛𝑛𝑛𝑛) [conditional]

number of rounds needed to compute the diameter (n: number of nodes,     D: diameter)

Main result [LG, Magniez 2018]

lower bounds proved using reductions from the 2-party communication 
complexity of the Disjointness function



Computation of the Diameter in the CONGEST model

Classical Quantum

Exact computation (upper bounds) 𝑂𝑂(𝑛𝑛)
[Holzer+12, Peleg+12]

𝑂𝑂( 𝑛𝑛𝑛𝑛)

~

Exact computation (lower bounds) �Ω(𝑛𝑛)
[Frischknecht+12]

�Ω( 𝑛𝑛 + 𝑛𝑛) [unconditional]

condition: holds for quantum distributed algorithms 
using only polylog(n) qubits of memory per node

sublinear-round quantum computation of the diameter whenever D=o(n)

�Ω( 𝑛𝑛𝑛𝑛) [conditional]

number of rounds needed to compute the diameter (n: number of nodes,     D: diameter)

Main result [LG, Magniez 2018]

very recent result [Magniez, Nayak 2020]

lower bounds proved using reductions from the 2-party communication 
complexity of the Disjointness function

�Ω( 𝑛𝑛 + 𝑛𝑛1/3𝑛𝑛2/3)    [unconditional]



Computation of the Diameter in the CONGEST model

Classical Quantum

Exact computation (upper bounds) 𝑂𝑂(𝑛𝑛)
[Holzer+12, Peleg+12]

𝑂𝑂( 𝑛𝑛𝑛𝑛)

~

Exact computation (lower bounds) �Ω(𝑛𝑛)
[Frischknecht+12]

�Ω( 𝑛𝑛 + 𝑛𝑛) [unconditional]

condition: holds for quantum distributed algorithms 
using only polylog(n) qubits of memory per node

sublinear-round quantum computation of the diameter whenever D=o(n)

�Ω( 𝑛𝑛𝑛𝑛) [conditional]

number of rounds needed to compute the diameter (n: number of nodes,     D: diameter)

Main result [LG, Magniez 2018]

very recent result [Magniez, Nayak 2020]

lower bounds proved using reductions from the 2-party communication 
complexity of the Disjointness function

�Ω( 𝑛𝑛 + 𝑛𝑛1/3𝑛𝑛2/3)    [unconditional]



Quantum Distributed Computation of the Diameter

Given an integer d, decide if diameter ≥ d

Computation of the diameter (decision version)



Quantum Distributed Computation of the Diameter

Given an integer d, decide if diameter ≥ d

Computation of the diameter (decision version)

there is a vertex u such that ecc (u) ≥ d



Quantum Distributed Computation of the Diameter

Given an integer d, decide if diameter ≥ d

Computation of the diameter (decision version)

there is a vertex u such that ecc (u) ≥ d

This is a search problem
Idea: try to use Grover search



Quantum Distributed Computation of the Diameter

Given an integer d, decide if diameter ≥ d

Computation of the diameter (decision version)

there is a vertex u such that ecc (u) ≥ d

This is a search problem
Idea: try to use Grover search

Define the function f: V → {0,1} such that f(u) = 1 if ecc (u) ≥ d
0 otherwise 

Goal: find u such that f(u) = 1 (or report that no such vertex exists)



Quantum Distributed Computation of the Diameter

Given an integer d, decide if diameter ≥ d

Computation of the diameter (decision version)

there is a vertex u such that ecc (u) ≥ d

This is a search problem
Idea: try to use Grover search

There is a quantum algorithm for this search problem 
using 𝑂𝑂( 𝑛𝑛) calls to a black box evaluating f 

Quantum search
[Grover 96]

Define the function f: V → {0,1} such that f(u) = 1 if ecc (u) ≥ d
0 otherwise 

Goal: find u such that f(u) = 1 (or report that no such vertex exists)

u f(u)𝑛𝑛 = |V|  (number of nodes)



Recap: Grover Algorithm

O( n) timesm = O(log n)

solution
(w.h.p.)

G G G

H  m⨂m 
qubits

oracle 
workspace

⟩|0



Recap: Grover Algorithm

O( n) timesm = O(log n)

solution
(w.h.p.)

G G G

H  m⨂m 
qubits

oracle 
workspace

⟩|0

G ≡
oracle

⟩|𝑥𝑥 → (−1)𝑓𝑓 𝑥𝑥 ⟩|𝑥𝑥

m 
qubits

oracle 
workspace

H  m⨂ H  m⨂

phase:
⟩|0 → ⟩|0
⟩|𝑥𝑥 → ⟩−|𝑥𝑥

for x>0
f



Recap: Grover Algorithm

O( n) timesm = O(log n)

independent of f

depends on f
(depends on the network)

solution
(w.h.p.)

G G G

H  m⨂m 
qubits

oracle 
workspace

⟩|0

G ≡
oracle

⟩|𝑥𝑥 → (−1)𝑓𝑓 𝑥𝑥 ⟩|𝑥𝑥

m 
qubits

oracle 
workspace

H  m⨂ H  m⨂

phase:
⟩|0 → ⟩|0
⟩|𝑥𝑥 → ⟩−|𝑥𝑥

for x>0
f



Recap: Grover Algorithm

O( n) timesm = O(log n)

independent of f

depends on f
(depends on the network)

solution
(w.h.p.)

G G G

H  m⨂m 
qubits

oracle 
workspace

⟩|0

G ≡
oracle

⟩|𝑥𝑥 → (−1)𝑓𝑓 𝑥𝑥 ⟩|𝑥𝑥

m 
qubits

oracle 
workspace

H  m⨂ H  m⨂

phase:
⟩|0 → ⟩|0
⟩|𝑥𝑥 → ⟩−|𝑥𝑥

for x>0

We compute the diameter by implementing 
this circuit in the distributed setting:
One arbitrary node (the “leader”) will 
implement this circuit

f



Recap: Grover Algorithm

O( n) timesm = O(log n)

independent of f

depends on f
(depends on the network)

solution
(w.h.p.)

G G G

H  m⨂m 
qubits

oracle 
workspace

⟩|0

G ≡
oracle

⟩|𝑥𝑥 → (−1)𝑓𝑓 𝑥𝑥 ⟩|𝑥𝑥

m 
qubits

oracle 
workspace

H  m⨂ H  m⨂

phase:
⟩|0 → ⟩|0
⟩|𝑥𝑥 → ⟩−|𝑥𝑥

for x>0

can be done locally
(i.e., without communication)

We compute the diameter by implementing 
this circuit in the distributed setting:
One arbitrary node (the “leader”) will 
implement this circuit

f



can be done locally
(i.e., without communication)

Recap: Grover Algorithm

O( n) times

independent of f

depends on f
(depends on the network)

solution
(w.h.p.)

G G G

H  m⨂m 
qubits

oracle 
workspace

⟩|0

G ≡
oracle

⟩|𝑥𝑥 → (−1)𝑓𝑓 𝑥𝑥 ⟩|𝑥𝑥

m 
qubits

oracle 
workspace

H  m⨂ H  m⨂

phase:
⟩|0 → ⟩|0
⟩|𝑥𝑥 → ⟩−|𝑥𝑥

for x>0

can be done locally
(i.e., without communication)

(i.e., without communication)
can be done locally

We compute the diameter by implementing 
this circuit in the distributed setting:
One arbitrary node (the “leader”) will 
implement this circuit

f



can be done locally
(i.e., without communication)

Recap: Grover Algorithm

O( n) times

independent of f

depends on f
(depends on the network)

solution
(w.h.p.)

G G G

H  m⨂m 
qubits

oracle 
workspace

⟩|0

G ≡
oracle

⟩|𝑥𝑥 → (−1)𝑓𝑓 𝑥𝑥 ⟩|𝑥𝑥

m 
qubits

oracle 
workspace

H  m⨂ H  m⨂

phase:
⟩|0 → ⟩|0
⟩|𝑥𝑥 → ⟩−|𝑥𝑥

for x>0

(i.e., without communication)
can be done locally

We compute the diameter by implementing 
this circuit in the distributed setting:
One arbitrary node (the “leader”) will 
implement this circuit

To implement the oracle, the leader node needs to communicate with the other nodes

f



can be done locally
(i.e., without communication)

Recap: Grover Algorithm

O( n) times

independent of f

depends on f
(depends on the network)

solution
(w.h.p.)

G G G

H  m⨂m 
qubits

oracle 
workspace

⟩|0

G ≡
oracle

⟩|𝑥𝑥 → (−1)𝑓𝑓 𝑥𝑥 ⟩|𝑥𝑥

m 
qubits

oracle 
workspace

H  m⨂ H  m⨂

phase:
⟩|0 → ⟩|0
⟩|𝑥𝑥 → ⟩−|𝑥𝑥

for x>0

(i.e., without communication)
can be done locally

We compute the diameter by implementing 
this circuit in the distributed setting:
One arbitrary node (the “leader”) will 
implement this circuit

To implement the oracle, the leader node needs to communicate with the other nodes
Total number of rounds of communication = O( n x number of rounds to implement the oracle) 

f



Implementation of the Oracle in O(D) rounds

oracle⟩|𝑢𝑢 ⟩|0 ⟩|𝑢𝑢 ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢)

a

c

b d

e
f

g

V={a,b,c,d,e,f,g}
here leader = node a

Example:



Implementation of the Oracle in O(D) rounds

oracle�
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|0 �
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢)

a

c

b d

e
f

g

V={a,b,c,d,e,f,g}
here leader = node a

Example:



Implementation of the Oracle in O(D) rounds

oracle�
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|0 �
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢)

a

c

b d

e
f

g

V={a,b,c,d,e,f,g} Initially node a owns �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a

a

here leader = node a

Example:



Implementation of the Oracle in O(D) rounds

oracle�
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|0 �
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢)

a

c

b d

e
f

g

V={a,b,c,d,e,f,g}

1. “Broadcast” this state, which gives

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g

Initially node a owns �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a

a

here leader = node a

Example:



Implementation of the Oracle in O(D) rounds

oracle�
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|0 �
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢)

a

c

b d

e
f

g

V={a,b,c,d,e,f,g}

1. “Broadcast” this state, which gives

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g

Initially node a owns �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a

a

here leader = node a

Example:



Implementation of the Oracle in O(D) rounds

oracle�
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|0 �
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢)

a

c

b d

e
f

g

V={a,b,c,d,e,f,g}

1. “Broadcast” this state, which gives

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g

Initially node a owns �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a

a

Node a introduces 1 register �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|0

here leader = node a

Example:



Implementation of the Oracle in O(D) rounds

oracle�
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|0 �
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢)

a

c

b d

e
f

g

V={a,b,c,d,e,f,g}

1. “Broadcast” this state, which gives

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g

Initially node a owns �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a

a

Node a introduces 1 register �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|0

Node a applies CNOTS �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢

here leader = node a

Example:



Implementation of the Oracle in O(D) rounds

oracle�
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|0 �
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢)

a

c

b d

e
f

g

V={a,b,c,d,e,f,g}

1. “Broadcast” this state, which gives

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g

Initially node a owns �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a

a

Node a introduces 1 register �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|0

Node a applies CNOTS �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢

Node a sends the second register to c �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c

here leader = node a

Example:



Implementation of the Oracle in O(D) rounds

oracle�
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|0 �
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢)

a

c

b d

e
f

g

V={a,b,c,d,e,f,g}

1. “Broadcast” this state, which gives

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g

Initially node a owns �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a

a

c

Node a introduces 1 register �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|0

Node a applies CNOTS �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢

Node a sends the second register to c �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c

here leader = node a

Example:



Implementation of the Oracle in O(D) rounds

oracle�
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|0 �
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢)

a

c

b d

e
f

g

V={a,b,c,d,e,f,g}

1. “Broadcast” this state, which gives

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g

Initially node a owns �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a

a

c

Node a introduces 1 register �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|0

Node a applies CNOTS �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢

Node a sends the second register to c �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|0 ⟩|0 ⟩|0Node c introduces 3 registers

here leader = node a

Example:



Implementation of the Oracle in O(D) rounds

oracle�
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|0 �
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢)

a

c

b d

e
f

g

V={a,b,c,d,e,f,g}

1. “Broadcast” this state, which gives

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g

Initially node a owns �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a

a

c

Node a introduces 1 register �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|0

Node a applies CNOTS �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢

Node a sends the second register to c �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|0 ⟩|0 ⟩|0Node c introduces 3 registers

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|𝑢𝑢 ⟩|𝑢𝑢 ⟩|𝑢𝑢Node c applies CNOTS

here leader = node a

Example:



Implementation of the Oracle in O(D) rounds

oracle�
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|0 �
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢)

a

c

b d

e
f

g

V={a,b,c,d,e,f,g}

1. “Broadcast” this state, which gives

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g

Initially node a owns �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a

a

c

Node a introduces 1 register �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|0

Node a applies CNOTS �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢

Node a sends the second register to c �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|0 ⟩|0 ⟩|0Node c introduces 3 registers

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|𝑢𝑢 ⟩|𝑢𝑢 ⟩|𝑢𝑢Node c applies CNOTS

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|𝑢𝑢 b ⟩|𝑢𝑢 e ⟩|𝑢𝑢 dNode c sends the registers to b,e,d

here leader = node a

Example:



Implementation of the Oracle in O(D) rounds

oracle�
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|0 �
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢)

a

c

b d

e
f

g

V={a,b,c,d,e,f,g}

1. “Broadcast” this state, which gives

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g

Initially node a owns �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a

a

c

b d

e

Node a introduces 1 register �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|0

Node a applies CNOTS �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢

Node a sends the second register to c �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|0 ⟩|0 ⟩|0Node c introduces 3 registers

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|𝑢𝑢 ⟩|𝑢𝑢 ⟩|𝑢𝑢Node c applies CNOTS

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|𝑢𝑢 b ⟩|𝑢𝑢 e ⟩|𝑢𝑢 dNode c sends the registers to b,e,d

here leader = node a

Example:



Implementation of the Oracle in O(D) rounds

oracle�
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|0 �
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢)

a

c

b d

e
f

g

V={a,b,c,d,e,f,g}

1. “Broadcast” this state, which gives

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g

Initially node a owns �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a

a

c

b d

e

Node a introduces 1 register �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|0

Node a applies CNOTS �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢

Node a sends the second register to c �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|0 ⟩|0 ⟩|0Node c introduces 3 registers

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|𝑢𝑢 ⟩|𝑢𝑢 ⟩|𝑢𝑢Node c applies CNOTS

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|𝑢𝑢 b ⟩|𝑢𝑢 e ⟩|𝑢𝑢 dNode c sends the registers to b,e,d
……

here leader = node a

Example:



Implementation of the Oracle in O(D) rounds

oracle�
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|0 �
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢)

a

c

b d

e
f

g

V={a,b,c,d,e,f,g}

1. “Broadcast” this state, which gives

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g

Initially node a owns �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a

a

c

b d

e

g

f

Node a introduces 1 register �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|0

Node a applies CNOTS �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢

Node a sends the second register to c �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|0 ⟩|0 ⟩|0Node c introduces 3 registers

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|𝑢𝑢 ⟩|𝑢𝑢 ⟩|𝑢𝑢Node c applies CNOTS

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|𝑢𝑢 b ⟩|𝑢𝑢 e ⟩|𝑢𝑢 dNode c sends the registers to b,e,d
……

here leader = node a

Example:



Implementation of the Oracle in O(D) rounds

oracle�
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|0 �
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢)

a

c

b d

e
f

g

V={a,b,c,d,e,f,g}

1. “Broadcast” this state, which gives

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g

[ecc(a) ≤ D rounds] 

Initially node a owns �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a

a

c

b d

e

g

f

Node a introduces 1 register �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|0

Node a applies CNOTS �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢

Node a sends the second register to c �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|0 ⟩|0 ⟩|0Node c introduces 3 registers

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|𝑢𝑢 ⟩|𝑢𝑢 ⟩|𝑢𝑢Node c applies CNOTS

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|𝑢𝑢 b ⟩|𝑢𝑢 e ⟩|𝑢𝑢 dNode c sends the registers to b,e,d
……

here leader = node a

Example:



Implementation of the Oracle in O(D) rounds

oracle�
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|0 �
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢)

a

c

b d

e
f

g

V={a,b,c,d,e,f,g}

1. “Broadcast” this state, which gives

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g

The nodes implement the classical protocol  
for computing the eccentricity of u, which gives 

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢) a

2. 

[ecc(a) ≤ D rounds] 

[O(D) rounds]

Initially node a owns �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a

a

c

b d

e

g

f

Node a introduces 1 register �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|0

Node a applies CNOTS �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢

Node a sends the second register to c �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|0 ⟩|0 ⟩|0Node c introduces 3 registers

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|𝑢𝑢 ⟩|𝑢𝑢 ⟩|𝑢𝑢Node c applies CNOTS

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|𝑢𝑢 b ⟩|𝑢𝑢 e ⟩|𝑢𝑢 dNode c sends the registers to b,e,d
……

here leader = node a

Example:



Implementation of the Oracle in O(D) rounds

oracle

a

c

b d

e
f

g

V={a,b,c,d,e,f,g}
1. “Broadcast” this state, which gives

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g

The nodes implement the classical protocol   
for computing the eccentricity of u, which gives 

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢) a

2. 

[ecc(a) ≤ D rounds] 

3. The nodes revert Step 1 [ecc(a) ≤ D rounds] 

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|0 a �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢) a

Initially node a owns �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a

[O(D) rounds]



Quantum Distributed Computation of the Diameter: Summary

There is a quantum algorithm for this search problem 
using 𝑂𝑂( 𝑛𝑛) calls to a black box evaluating f 

Quantum search
[Grover 96]

u f(u)

Quantum distributed algorithm computing the diameter

O(D)-round classical 
distributed algorithm for the 

eccentricity 

Complexity: 𝑂𝑂( 𝑛𝑛 × D) rounds 

Define the function f: V → {0,1} such that f(u) = 1 if ecc (u) ≥ d
0 otherwise 

Goal: find u such that f(u) = 1 (or report that no such vertex exist)

 The network elects a leader
 The leader locally implements Grover algorithm. Each call to the 

black box is implemented by using the standard O(D)-round 
classical algorithm computing the eccentricity.

converted into a 
quantum version



Quantum Distributed Computation of the Diameter: Summary

There is a quantum algorithm for this search problem 
using 𝑂𝑂( 𝑛𝑛) calls to a black box evaluating f 

Quantum search
[Grover 96]

u f(u)

Quantum distributed algorithm computing the diameter

O(D)-round classical 
distributed algorithm for the 

eccentricity 

With further work, the complexity 
can be reduced to 𝑂𝑂( 𝑛𝑛𝑛𝑛) rounds 

Complexity: 𝑂𝑂( 𝑛𝑛 × D) rounds 

Define the function f: V → {0,1} such that f(u) = 1 if ecc (u) ≥ d
0 otherwise 

Goal: find u such that f(u) = 1 (or report that no such vertex exist)

 The network elects a leader
 The leader locally implements Grover algorithm. Each call to the 

black box is implemented by using the standard O(D)-round 
classical algorithm computing the eccentricity.

converted into a 
quantum version



Quantum Distributed Computation of the Diameter: Summary

There is a quantum algorithm for this search problem 
using 𝑂𝑂( 𝑛𝑛) calls to a black box evaluating f 

Quantum search
[Grover 96]

u f(u)

Quantum distributed algorithm computing the diameter

O(D)-round classical 
distributed algorithm for the 

eccentricity 

With further work, the complexity 
can be reduced to 𝑂𝑂( 𝑛𝑛𝑛𝑛) rounds 

Complexity: 𝑂𝑂( 𝑛𝑛 × D) rounds 

Define the function f: V → {0,1} such that f(u) = 1 if ecc (u) ≥ d
0 otherwise 

Goal: find u such that f(u) = 1 (or report that no such vertex exist)

 The network elects a leader
 The leader locally implements Grover algorithm. Each call to the 

black box is implemented by using the standard O(D)-round 
classical algorithm computing the eccentricity.

Classically in O(D) rounds it is possible to simultaneously compute the 
eccentricities of D vertices [Peleg+12]

Thus we can instead do a Grover search over groups of D 
vertices (there are n/D groups) in 

𝑂𝑂( 𝑛𝑛/𝑛𝑛 × D) = 𝑂𝑂( 𝑛𝑛𝑛𝑛) rounds 

converted into a 
quantum version



Summary of the first part

Classical Quantum (our results)

Exact computation (upper bounds) 𝑂𝑂(𝑛𝑛)
[Holzer+12, Peleg+12]

𝑂𝑂( 𝑛𝑛𝑛𝑛)

~

Exact computation (lower bounds) �Ω(𝑛𝑛)
[Frischknecht+12]

�Ω( 𝑛𝑛 + 𝑛𝑛) [unconditional]
�Ω( 𝑛𝑛𝑛𝑛) [conditional]

number of rounds needed to compute the diameter (n: number of nodes, D: diameter)

sublinear-round quantum computation of the diameter whenever D=o(n)

Main result [LG, Magniez 2018]

~

 Prove an unconditional lower bound of  �Ω( 𝑛𝑛𝑛𝑛) rounds
OPEN PROBLEM:

very recent result [Magniez, Nayak 2020]

�Ω( 𝑛𝑛 + 𝑛𝑛1/3𝑛𝑛2/3)    [unconditional]



Summary of the first part

sublinear-round quantum computation of the diameter whenever D=o(n)

Main result [LG, Magniez 2018]

Our upper bound is obtained by showing how to implement quantum search 
in a distributed setting

PROMISING RESEARCH DIRECTION: find other applications of this technique



Summary of the first part

sublinear-round quantum computation of the diameter whenever D=o(n)

Main result [LG, Magniez 2018]

Our upper bound is obtained by showing how to implement quantum search 
in a distributed setting

PROMISING RESEARCH DIRECTION: find other applications of this technique

[Izumi, LG 2019]: quantum distributed algorithm for the All-Pairs Shortest 
Paths Problem faster than the best classical algorithms

[Izumi, LG, 
Magniez 2020]:

quantum distributed algorithm for triangle finding faster 
than the best classical algorithms

 idea: implement simultaneously Θ(n2) quantum distributed 
searches 

 significant work needed to avoid congestions in the checking 
procedures



Now qubits can be sent instead of bits

Quantum distributed computing

Quantum Distributed Computing

Q

(no prior entanglement between nodes)

CONGEST model: only O(log n) qubits per message 

LOCAL model: no restriction on the size of each message

n: number of nodes of the network

Quantum can be useful for some problems
[LG, Magniez 2018] [Izumi, LG 2019] [Izumi et al. 2020]



Now qubits can be sent instead of bits

Quantum distributed computing

Quantum Distributed Computing

Q

(no prior entanglement between nodes)

CONGEST model: only O(log n) qubits per message 

LOCAL model: no restriction on the size of each message

n: number of nodes of the network

unbounded amount of quantum communication 
vs.

unbounded amount of classical communication

Quantum can be useful for some problems
[LG, Magniez 2018] [Izumi, LG 2019] [Izumi et al. 2020]



Now qubits can be sent instead of bits

Quantum distributed computing

Quantum Distributed Computing

Q

(no prior entanglement between nodes)

CONGEST model: only O(log n) qubits per message 

LOCAL model: no restriction on the size of each message

n: number of nodes of the network

There is a computational problem that can be solved in 1 round in the 
quantum LOCAL model but requires 2 rounds classically.

[Gavoille et 
al. 09]

Quantum can be useful for some problems
[LG, Magniez 2018] [Izumi, LG 2019] [Izumi et al. 2020]



Now qubits can be sent instead of bits

Quantum distributed computing

Quantum Distributed Computing

Q

(no prior entanglement between nodes)

CONGEST model: only O(log n) qubits per message 

LOCAL model: no restriction on the size of each message

There is a computational problem that can be solved in 2 rounds in the 
quantum LOCAL model but requires Ω(n) rounds classically.

n: number of nodes of the network

There is a computational problem that can be solved in 1 round in the 
quantum LOCAL model but requires 2 rounds classically.

[Gavoille et 
al. 09]

[LG, Nishimura, 
Rosmanis 2019]

Quantum can be useful for some problems
[LG, Magniez 2018] [Izumi, LG 2019] [Izumi et al. 2020]



Superiority of the Quantum LOCAL model

There is a computational problem that can be solved in 2 rounds in the 
quantum LOCAL model but requires Ω(n) rounds classically.[LG, Nishimura, 

Rosmanis 2019]



Superiority of the Quantum LOCAL model

There is a computational problem that can be solved in 2 rounds in the 
quantum LOCAL model but requires Ω(n) rounds classically.

We use a construction from [Barrett, Caves, Eastin, Elliot, Pironio 2007]

[LG, Nishimura, 
Rosmanis 2019]



Superiority of the Quantum LOCAL model

There is a computational problem that can be solved in 2 rounds in the 
quantum LOCAL model but requires Ω(n) rounds classically.

We use a construction from [Barrett, Caves, Eastin, Elliot, Pironio 2007]

Also used in some of the recent results on quantum shallow circuits 
[Bravyi, Gosset, König 2018]

[LG, Nishimura, 
Rosmanis 2019]



Superiority of the Quantum LOCAL model

Consider a ring of size n (seen as a triangle)
multiple of 3 n=18

There is a computational problem that can be solved in 2 rounds in the 
quantum LOCAL model but requires Ω(n) rounds classically.

We use a construction from [Barrett, Caves, Eastin, Elliot, Pironio 2007]

[LG, Nishimura, 
Rosmanis 2019]



Superiority of the Quantum LOCAL model

Consider a ring of size n (seen as a triangle)
multiple of 3 n=18

n/3 nodes

n/3 nodes
n/3 nodes

There is a computational problem that can be solved in 2 rounds in the 
quantum LOCAL model but requires Ω(n) rounds classically.

We use a construction from [Barrett, Caves, Eastin, Elliot, Pironio 2007]

[LG, Nishimura, 
Rosmanis 2019]



Superiority of the Quantum LOCAL model

Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input

multiple of 3 n=18

n/3 nodes

n/3 nodes
n/3 nodes

There is a computational problem that can be solved in 2 rounds in the 
quantum LOCAL model but requires Ω(n) rounds classically.

We use a construction from [Barrett, Caves, Eastin, Elliot, Pironio 2007]

[LG, Nishimura, 
Rosmanis 2019]



Superiority of the Quantum LOCAL model

Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input

b1

b2b3

multiple of 3 n=18

n/3 nodes

n/3 nodes
n/3 nodes

There is a computational problem that can be solved in 2 rounds in the 
quantum LOCAL model but requires Ω(n) rounds classically.

We use a construction from [Barrett, Caves, Eastin, Elliot, Pironio 2007]

[LG, Nishimura, 
Rosmanis 2019]



Superiority of the Quantum LOCAL model

Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input

b1

b2b3

multiple of 3

Each node will output one bit

n=18

n/3 nodes

n/3 nodes
n/3 nodes

There is a computational problem that can be solved in 2 rounds in the 
quantum LOCAL model but requires Ω(n) rounds classically.

We use a construction from [Barrett, Caves, Eastin, Elliot, Pironio 2007]

[LG, Nishimura, 
Rosmanis 2019]



Superiority of the Quantum LOCAL model

Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input

b1

b2b3

z1

z2

z3

z4

z5

z6

z7

z8z9z10z11z12

z13

z14

z15

z16

z17

z18

n=18

Each node will output one bit

multiple of 3



Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input

b1

b2b3

z1

z2

z3

z4

z5

z6

z7

z8z9z10z11z12

z13

z14

z15

z16

z17

z18

n=18

Each node will output one bit

multiple of 3

Each non-corner node measures its 
qubit in the X basis and then outputs 
the bit corresponding to the 
measurement outcome

Each corner node measures its qubit 
in the X basis if its input bit is 0, or 
measures it in the Y basis if its input 
bit is 1, and then outputs the bit 
corresponding to the measurement 
outcome

1. The nodes prepare the graph state 
corresponding to the whole triangle

2.

3.

Consider the following process:



Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input

b1

b2b3

z1

z2

z3

z4

z5

z6

z7

z8z9z10z11z12

z13

z14

z15

z16

z17

z18

n=18

Each node will output one bit

multiple of 3

Each non-corner node measures its 
qubit in the X basis and then outputs 
the bit corresponding to the 
measurement outcome

Each corner node measures its qubit 
in the X basis if its input bit is 0, or 
measures it in the Y basis if its input 
bit is 1, and then outputs the bit 
corresponding to the measurement 
outcome

1. The nodes prepare the graph state 
corresponding to the whole triangle

2.

3.

Consider the following process:

(no communication)

(no communication)

(this can be done in 2 rounds of 
quantum communication)



Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input

b1

b2b3

z1

z2

z3

z4

z5

z6

z7

z8z9z10z11z12

z13

z14

z15

z16

z17

z18

n=18

Each node will output one bit

multiple of 3

Each non-corner node measures its 
qubit in the X basis and then outputs 
the bit corresponding to the 
measurement outcome

Each corner node measures its qubit 
in the X basis if its input bit is 0, or 
measures it in the Y basis if its input 
bit is 1, and then outputs the bit 
corresponding to the measurement 
outcome

1. The nodes prepare the graph state 
corresponding to the whole triangle

2.

3.

Claim: In the LOCAL model, any classical algorithm that samples (even 
approximately) from the same distribution must use at least n/6 rounds.

Consider the following process:

(no communication)

(no communication)

(this can be done in 2 rounds of 
quantum communication)

[Barrett et al. 2007]



Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input

b1

b2b3

z1

z2

z3

z4

z5

z6

z7

z8z9z10z11z12

z13

z14

z15

z16

z17

z18

n=18

Each node will output one bit

multiple of 3

Each non-corner node measures its 
qubit in the X basis and then outputs 
the bit corresponding to the 
measurement outcome

Each corner node measures its qubit 
in the X basis if its input bit is 0, or 
measures it in the Y basis if its input 
bit is 1, and then outputs the bit 
corresponding to the measurement 
outcome

1. The nodes prepare the graph state 
corresponding to the whole triangle

2.

3.

Claim: In the LOCAL model, any classical algorithm that samples (even 
approximately) from the same distribution must use at least n/6 rounds.

Consider the following process:

(no communication)

(no communication)

(this can be done in 2 rounds of 
quantum communication)

[Barrett et al. 2007]



Remarks

There is a computational problem that can be solved in 2 rounds 
in the quantum LOCAL model but requires Ω(n) rounds in the 
classical LOCAL model.

“simulate the outcome distribution of a measurement of the graph state”

[LG, Nishimura, 
Rosmanis 2019]



Remarks

There is a computational problem that can be solved in 2 rounds 
in the quantum LOCAL model but requires Ω(n) rounds in the 
classical LOCAL model.

 Since our quantum distributed algorithm only uses short messages 
(1 qubit in each message) we get the following stronger statement:

There is a computational problem that can be solved in 2 rounds in 
the quantum CONGEST model but requires Ω(n) rounds in the 
classical LOCAL model.

“simulate the outcome distribution of a measurement of the graph state”

[LG, Nishimura, 
Rosmanis 2019]



Remarks

There is a computational problem that can be solved in 2 rounds 
in the quantum LOCAL model but requires Ω(n) rounds in the 
classical LOCAL model.

 Since our quantum distributed algorithm only uses short messages 
(1 qubit in each message) we get the following stronger statement:

There is a computational problem that can be solved in 2 rounds in 
the quantum CONGEST model but requires Ω(n) rounds in the 
classical LOCAL model.

“simulate the outcome distribution of a measurement of the graph state”

 A similar separation can be shown for a relation (“output any outcome 
that appears with non-zero probability as an outcome of the 
measurement of the graph state”)

[LG, Nishimura, 
Rosmanis 2019]



Remarks

There is a computational problem that can be solved in 2 rounds 
in the quantum LOCAL model but requires Ω(n) rounds in the 
classical LOCAL model.

 Since our quantum distributed algorithm only uses short messages 
(1 qubit in each message) we get the following stronger statement:

There is a computational problem that can be solved in 2 rounds in 
the quantum CONGEST model but requires Ω(n) rounds in the 
classical LOCAL model.

“simulate the outcome distribution of a measurement of the graph state”

 A similar separation can be shown for a relation (“output any outcome 
that appears with non-zero probability as an outcome of the 
measurement of the graph state”)

 A similar separation can also be shown for a sampling problem without 
any input (“simulate the outcome distribution of the measurement when 
the bits b1, b2 and b3 are taken uniformly at random”)

[LG, Nishimura, 
Rosmanis 2019]



Conclusion

We now know that quantum distributed algorithms can be faster than 
classical distributed algorithms for several problems, in both the CONGEST 
model and the LOCAL model

Interesting research directions:

 Develop lower bounds techniques, especially in the quantum LOCAL 
model

 Prove the superiority of quantum distributed algorithms in other models

advantage for distributed interactive proofs Recent result:
[Fraigniaud, LG, 
Nishimura, Paz 2020]

Designing quantum distributed algorithms in these models poses new 
algorithmic challenges since we have to focus on the round complexity 
(instead of time/query complexity or total communication complexity)

 Construct other quantum distributed algorithms, for important problems

Can we show a nontrivial lower bound for graph coloring?


	Quantum Distributed Computing: �Recent Results
	Outline: Our Contribution
	Outline: Our Contribution
	Outline: Our Contribution
	Outline: Our Contribution
	Outline: Our Contribution
	Classical Distributed Computing: CONGEST and LOCAL
	Classical Distributed Computing: CONGEST and LOCAL
	Classical Distributed Computing: CONGEST and LOCAL
	Classical Distributed Computing: CONGEST and LOCAL
	Classical Distributed Computing: CONGEST and LOCAL
	Classical Distributed Computing: CONGEST and LOCAL
	Classical Distributed Computing: CONGEST and LOCAL
	Classical Distributed Computing: CONGEST and LOCAL
	Classical Distributed Computing: CONGEST and LOCAL
	Classical Distributed Computing: CONGEST and LOCAL
	Classical Distributed Computing: CONGEST and LOCAL
	Classical Distributed Computing: CONGEST and LOCAL
	Classical Distributed Computing: CONGEST and LOCAL
	Quantum Distributed Computing: CONGEST and LOCAL
	Quantum Distributed Computing: CONGEST and LOCAL
	Quantum Distributed Computing: CONGEST and LOCAL
	Quantum Advantage in the CONGEST model
	Diameter and Eccentricity
	Diameter and Eccentricity
	Diameter and Eccentricity
	Classical Distributed Computing: Computing Distances
	Classical Distributed Computing: Computing Distances
	Classical Distributed Computing: Computing Distances
	Classical Distributed Computing: Computing Distances
	Classical Distributed Computing: Computing Distances
	Classical Distributed Computing: Computing Distances
	Classical Distributed Computing: Computing Distances
	Classical Distributed Computing: Computing Distances
	Classical Distributed Computing: Computing Distances
	Classical Distributed Computing: Computing Distances
	Classical Distributed Computing: Computing Distances
	Classical Distributed Computing: Computing Distances
	Computation of the Diameter in the CONGEST model
	Computation of the Diameter in the CONGEST model
	Computation of the Diameter in the CONGEST model
	Computation of the Diameter in the CONGEST model
	Computation of the Diameter in the CONGEST model
	Computation of the Diameter in the CONGEST model
	Quantum Distributed Computation of the Diameter
	Quantum Distributed Computation of the Diameter
	Quantum Distributed Computation of the Diameter
	Quantum Distributed Computation of the Diameter
	Quantum Distributed Computation of the Diameter
	Recap: Grover Algorithm
	Recap: Grover Algorithm
	Recap: Grover Algorithm
	Recap: Grover Algorithm
	Recap: Grover Algorithm
	Recap: Grover Algorithm
	Recap: Grover Algorithm
	Recap: Grover Algorithm
	Implementation of the Oracle in O(D) rounds
	Implementation of the Oracle in O(D) rounds
	Implementation of the Oracle in O(D) rounds
	Implementation of the Oracle in O(D) rounds
	Implementation of the Oracle in O(D) rounds
	Implementation of the Oracle in O(D) rounds
	Implementation of the Oracle in O(D) rounds
	Implementation of the Oracle in O(D) rounds
	Implementation of the Oracle in O(D) rounds
	Implementation of the Oracle in O(D) rounds
	Implementation of the Oracle in O(D) rounds
	Implementation of the Oracle in O(D) rounds
	Implementation of the Oracle in O(D) rounds
	Implementation of the Oracle in O(D) rounds
	Implementation of the Oracle in O(D) rounds
	Implementation of the Oracle in O(D) rounds
	Implementation of the Oracle in O(D) rounds
	Implementation of the Oracle in O(D) rounds
	Quantum Distributed Computation of the Diameter: Summary
	Quantum Distributed Computation of the Diameter: Summary
	Quantum Distributed Computation of the Diameter: Summary
	Summary of the first part
	Summary of the first part
	Summary of the first part
	Quantum Distributed Computing
	Quantum Distributed Computing
	Quantum Distributed Computing
	Quantum Distributed Computing
	Superiority of the Quantum LOCAL model
	Superiority of the Quantum LOCAL model
	Superiority of the Quantum LOCAL model
	Superiority of the Quantum LOCAL model
	Superiority of the Quantum LOCAL model
	Superiority of the Quantum LOCAL model
	Superiority of the Quantum LOCAL model
	Superiority of the Quantum LOCAL model
	Superiority of the Quantum LOCAL model
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Remarks
	Remarks
	Remarks
	Remarks
	Conclusion

