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Overview

Talks by Richard and Anupam: fast quantum algorithms for solving SDP, cone
programming, etc., with explicit matrix inputs stored in quantum data structures.

What if we don’t have explicit matrix inputs, but only implicit oracle access?

In particular, LP, SDP, and many others have convex feasible region K ⊆ Rn.
A common oracle access is membership oracle:

MEMK(x) = 1 if x ∈ K and MEMK(x) = 0 if x /∈ K.

Main topic today: What we can do on a convex body K with a quantum oracle

OK|x, 0〉 = |x,MEMK(x)〉 ∀x ∈ Rn.



First question about a convex body

Given a convex body K ⊂ Rn, a very first question may be to ask its volume:

Vol(K) :=

∫
x∈K

dx.

Assume 0 < ε < 1/2, the goal is to return a value ∈ [(1− ε) Vol(K), (1 + ε) Vol(K)]
with success probability at least 2/3.

Why do we study this problem?

I One of the most basic problems in geometry;

I Can be viewed as a continuous version of counting, and quantum counting is
widely applied in Grover-type algorithms.



Formulation

Input model: Quantum membership oracle.

OK|x, 0〉 = |x, δ[x ∈ K]〉 ∀x ∈ Rn.

Constraints on K: 0 ∈ K, and known inner and outer bounds on K:

B2(0, r) ⊆ K ⊆ B2(0, R),

where B2(x, l) is the ball of radius l in `2-norm centered at x ∈ Rn.

Classically, the best-known query complexity is Õ(n4) (Lovász and Vempala, 2003).



Main result

Main Theorem
There is a quantum algorithm that returns a value Ṽol(K) satisfying

(1− ε) Vol(K) ≤ Ṽol(K) ≤ (1 + ε) Vol(K)

using Õ(n3 + n2.5/ε) quantum queries to OK, where Õ omits poly-logarithm factors.

Classical bounds Quantum bounds (our result)

Query complexity Õ(n4 + n3/ε2), Ω̃(n2) Õ(n3 + n2.5/ε), Ω(
√
n)

Arithmetic complexity Õ(n6 + n5/ε2) Õ(n5 + n4.5/ε)



Classical volume estimation algorithm

Naive algorithm: Monte Carlo, brute-force counting.

Because Vol(K) takes an exponentially large range: [rn, Rn] (up to a constant), the
brute-force counting argument takes exponential cost.



Classical volume estimation algorithm

Instead, consider the parameterized value

Z(a) :=

∫
K
e−a‖x‖2 dx.

I On the one hand, Z(0) = Vol(K).

I On the other hand, because e−‖x‖2 decays exponentially fast with ‖x‖2, a
large enough a ensures that Z(a) is closed to a fixed value:

Z(a) ≈
∫

B2(0,r)
e−a‖x‖2 dx.



Classical volume estimation algorithm

Therefore, a natural strategy is simulated annealing (SA): consider a sequence
a0 > a1 > · · · > am with a0 sufficiently large and am close to 0. Iteratively changes
ai to ai+1 and estimates Vol(K) by the telescoping product

Vol(K) ≈ Z(am) = Z(a0)

m−1∏
i=0

Z(ai+1)

Z(ai)
.

How to estimate each telescoping ratio? Take i.i.d. samples and average.

Sampling: in the ith step, use a random walk to sample over K with density
∝ e−ai‖x‖2 . Denote the output as Xi, and let Vi := e(ai−ai+1)‖Xi‖2. Then

E[Vi] =

∫
K
e(ai−ai+1)‖x‖2 e

−ai‖x‖2

Z(ai)
dx =

∫
K

e−ai+1‖x‖2

Z(ai)
dx =

Z(ai+1)

Z(ai)
.



Hit-and-run walk

One particular random walk in a convex body: hit-and-run.

1. Pick a uniformly distributed random line ` through the current point p;

2. Move to a random point along the chord ` ∩K with density ∝ e−a‖x‖2 .

p1

p2
p3



Summary

The classical algorithm by Lovász and Vempala [LV06]:

I The simulated annealing algorithm goes through Õ(
√
n) iterations;

I Each iteration takes Õ(
√
n/ε2) i.i.d. samples;

I Each sample takes Õ(n3) steps of the hit-and-run walk if the convex body is
well-rounded (i.e., R/r = O(

√
n)).

R = rr

R



Summary

For any convex body, they construct an affine transformation K→ AK + b that
makes the convex body well-rounded, using Õ(n4) queries.

=⇒

In total, the query complexity is

Õ(n4) + Õ(
√
n) · Õ(

√
n/ε2) · Õ(n3) = Õ(n4/ε2).



Classical volume estimation algorithm

Three key factors of a successful volume estimation algorithm:

1) High level: The algorithm follows an SA framework, where the volume is
estimated by a telescoping product.

2) Middle level: The number of i.i.d. samples used to estimate each telescoping
ratio is small, in other words Var[Vi] is small.

3) Low level: The random walk converges fast so that we can take each i.i.d.
sample of Vi efficiently.



Quantum volume estimation algorithm

Three key factors of a successful volume estimation algorithm:

1) High level: The algorithm follows an SA framework, where the volume is
estimated by a telescoping product. A quantum SA framework?

2) Middle level: The number of i.i.d. samples used to estimate each telescoping
ratio is small, in other words Var[Vi] is small. Speedup by quantum counting?

3) Low level: The random walk converges fast so that we can take each i.i.d.
sample of Vi efficiently. Speedup by quantum walk?



Quantum volume estimation algorithm: low level

Previous quantum walks are mainly in discrete spaces. How about
continuous-space quantum walks?

Theorem. Szegedy’s theory can be generalized to the continuous case.
Furthermore, there is Cheeger’s inequality for continuous-space Markov chains:

Φp ≤
√

2∆p.

Error analysis: We also introduce a discretized hit-and-run walk with
conductance lower bound and implementation details.

Classical hit-and-run walk

converges in time Õ(n3)
=⇒ Quantum hit-and-run walk

has spectral gap Ω̃(n−1.5)

Next question: How to use the quantum hit-and-run walk in an SA procedure?



Quantum volume estimation algorithm: high level

We follow a quantum SA framework by Wocjan and Abeyesinghe:

Given quantum walk operators W1, . . . ,Wr with stationary states |π1〉, . . . , |πr〉.
Assume |〈πi|πi+1〉|2 ≥ p for all i ∈ [r − 1], and ∆ lower bounds the spectral gaps of
W1, . . . ,Wr. Question: Given |π1〉, how to prepare |πr〉?

Let Πi := |πi〉〈πi|, Π⊥i := I −Πi. π/3-amplitude amplification
(which gives fixed-point search):

Ri := ωΠi + Π⊥i where ω = ei
π
3 .

It can be shown that |〈π2|R1R2|π1〉|2 ≥ 1− (1− p)3.



Quantum volume estimation algorithm: high level

Recursively: U0 = I, Um+1 = UmRi U
†
mRi+1 Um. Then we have

|〈πi+1|Um|πi〉|2 ≥ 1− (1− p)3m ,

and the unitaries in {Ri, R
†
i , Ri+1, R

†
i+1} are used at most 3m times in Um.

Quantum SA: Apply π/3-am-am throughout: |π1〉 → |π2〉 → · · · → |πr〉. Take the
SA slow enough so that p = Ω(1), making m = Õ(1) in each iteration.

Total complexity: Õ(r/p∆) calls to the quantum walk operators W1, . . . ,Wr.



Quantum volume estimation algorithm: high level

In our quantum algorithm for volume estimation:

r : Õ(
√
n) iterations

Wi : Quantum hit-and-run walk with density ∝ e−ai‖x‖2

π0 : Easy to prepare, ≈ density ∝ e−2n‖x‖2 on the small ball

∆ : Spectral gaps at least Ω̃(n−1.5)

Remain question: How many copies of |πi〉 should we prepare, such that we give a
good estimate of each telescoping ratio by quantum counting?



Quantum volume estimation algorithm: middle level

Quantum counting: Estimate p within ε using O(1/ε) calls to U and U † where
U |0〉|0〉 =

√
p|0〉|φ〉+ |0⊥〉, quadratic speedup compared to classical O(1/ε2).

Quantum Chebyshev inequality: Assume that U is a unitary such that
U |0〉|0〉 =

∑
x∈Ω

√
px|ψx〉|x〉, where {|ψx〉 : x ∈ Ω} are unit vectors. Denote

µU :=
∑

x∈Ω pxx, σ2
U :=

∑
x∈Ω px(x− µU )2.

Then Hamoudi and Magniez can output an estimate µ̃U such that |µ̃U − µU | ≤ εµU
w.h.p. using Õ(σU/εµU ) calls to U and U †.

For volume estimation: σ2
U = O(1) · µ2

U (such process is called Chebyshev cooling).

Õ(
√
n/ε2) classical samples from πi
by Chebyshev inequality

=⇒ Õ(
√
n/ε) quantum copies of states |πi〉

by quantum Chebyshev inequality



Summary

I High level: We adopt a quantum SA framework proposed by [WA08], where
the volume is estimated by a telescoping product. # of iterations: Õ(

√
n).

I Middle level: We estimate each ratio in the telescoping product using the
nondestructive version of the quantum Chebyshev inequality. # of calls to the
quantum hit-and-run walk operator: Õ(

√
n/ε).

I Low level: # of queries to implement one step of quantum walk: Õ(n1.5).

We also give a rounding algorithm using Õ(n3) quantum queries.

Total query complexity: Õ(n3) + Õ(
√
n) · Õ(

√
n/ε) · Õ(n1.5) = Õ(n3 + n2.5/ε).

# of additional arithmetic operations: Õ(n3 + n2.5/ε) ·O(n2) = Õ(n5 + n4.5/ε) due
to the affine transformations for rounding (n-dim matrix-vector products).



Next question: convex optimization

Next, what if we are given a convex function f : Rn → R and we want to
optimize f on K? The goal is to return an x̃ ∈ K such that

f(x̃) ≤ min
x∈K

f(x) + ε.

The oracle for f is the evaluation oracle:

Of |x〉|0〉 = |x〉|f(x)〉 ∀x ∈ Rn.

Classically, it is well-known that such an x̃ can be found in polynomial time.
Currently, the state-of-the-art result by Lee, Sidford, and Vempala uses Õ(n2)
queries and runs in time Õ(n3).



Convex optimization: main result

Main result. Convex optimization takes

I Õ(n) and Ω(
√
n) quantum queries to OK;

I Õ(n) and Ω̃(
√
n) quantum queries to Of .

Furthermore, the quantum algorithm runs in time Õ(n3).1

Outcome:

I The first nontrivial quantum upper bound on general convex optimization.

I Impossibility of generic exponential quantum speedup of convex optimization!
The speedup is at most polynomial.

1Similar results are independently obtained by van Apeldoorn, Gilyén, Gribling, and de Wolf.



Convex optimization: reduction to a linear evaluation function

A common trick: reduce to a problem with a linear objective function

min
x′∈R, x∈K

x′ such that f(x) ≤ x′ ≤M.

Observe that a membership query to the new convex set

K′ := {(x′, x) ∈ R×K | f(x) ≤ x′ ≤M}

can be implemented with one query to the membership oracle OK and one query
to the evaluation oracle Of .



Convex optimization: reduction to a linear evaluation function

As a result, it suffices to optimize a linear function

min
x∈K

cTx

for c ∈ Rn and K ⊆ Rn, given membership oracle OK.

Two other oracles:

I Optimization oracle: Input c, solve the problem.

I Separation oracle: Input x ∈ Rn, return a hyperplane separating x from K if
x /∈ K, and return x ∈ K otherwise.



Convex optimization: oracle reductions

Lee-Sidford-Vempala gives classical oracle reductions:

MEM SEP OPT
Õ(n) Õ(n)

We give corresponding quantum oracle reductions:

MEM SEP OPT
Õ(1) Õ(n)

Both papers use the same cutting plane based reduction from OPT to SEP.
We show an improved upper bound by reducing the query complexity of the
reduction from SEP to MEM.



Separation to Membership

The reduction from SEP to MEM relies on the following geometric idea:

I For some y /∈ K, consider a line segment L in the direction y from 0.

I Let L intersect the boundary of K at p.

I Return a supporting hyperplane of K at p.

Such a hyperplane can be found from a subgradient at 0 of a height function:

hy(x) = −max
{
t | x+

ty

‖y‖2
∈ K

}
.

The problem thus reduces to one of finding approximate subgradients of an
arbitrary L-Lipschitz, convex function f .



Separation to Membership

Classically gradient computation takes Θ̃(n) evaluation queries. For the quantum
speedup, Jordan’s algorithm computes gradient using Õ(1) quantum queries:

I Given the oracle Of |x〉|0〉 = |x〉|f(x)〉, the state eif(x)|x〉 can be prepared by
one query to Of via phase kickback. WLOG we take the gradient at 0.

I Smooth functions have Taylor approximation f(x) ≈
∑n

k=1
∂f
∂xk

xk; hence

∑
x

eif(x)|x〉 ≈
∑
x

n⊗
k=1

e
i ∂f
∂xk

xk |xk〉.

Applying the QFT on all n coordinates reveals ∂f
∂x1

, . . . , ∂f
∂xn

.

Technical contribution: generalize Jordan’s algorithm to subgradient
computation using mollification of the convex function + a randomness trick.



Conclusions

Main result 1: an algorithm that gives ε-approx. to Vol(K) using Õ(n3 + n2.5/ε)
quantum queries to OK and Õ(n5 + n4.5/ε) additional arithmetic operations.

Main result 2: an algorithm that gives ε-approx. to minx∈K c
Tx using Õ(n)

quantum queries to OK and Õ(n3) additional arithmetic operations.

Open questions:

I Can we apply our simulated annealing framework to solve other problems,
such as partition function estimation?

I Can we give fast quantum algorithms for other types of optimization
problems, in particular some kind of nonconvex optimization problems?

I Can we prove better quantum lower bounds? For both problems, the current
bound Ω(

√
n) is due to Grover search.
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