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Channel coding versus cryptography

Criterion Channel Coding Cryptography
or Parameter (Information Theory) (Computer Science)

Space type Cn, Rn, Zn Zn
q (Crypto.), Rn (CS)

Random lattices Channel models, coding Encryption
and for analysis and for analysis

Probability of Error For Bob only For Bob and for Eve
10−2, 10−6, 10−9, 10−15 0 for Bob (2−256, 10−128)

No 0 error rate! Anything for Eve is fine!
Dimension Up to 1 million, Up to 8000,

n → ∞ for analysis n → ∞ for analysis
Proofs Shannon capacity Proof of security

Signal-to-noise ratio Energy or power, Threshold on noise level
finite lattice constellations in hom. encryption

Linearity Geometrically uniform Homomorphic encryption
Multiple access CDMA, OFDMA, SDMA Ciphers being added!
Complexity Limited computational power Infinite for Eve,

for Alice and Bob. limited for Alice and Bob.
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Transmitting information via lattice encoding/decoding

Simplified model for information transmission:
A lattice Λ of rank n in Rn undergoing an additive white Gaussian noise (AWGN).

Encoder

Gaussian Channel

Decoder
GΛ

η

x̂
yx

z

Λ

z ∈ Zn: information vector.
x = zGΛ ∈ Λ: lattice point, infinite constellation..
y = x+ η ∈ Rn: channel output, ηi ∼ N (0, σ2).
AWGN: the {ηi} are i.i.d.

Probability of error: Pe = P{x 6= x̂} (WER), Pes = P{xi 6= x̂i} (SER).

Joseph J. Boutros Lattices 2020, the Simons Institute, UC Berkeley February 21, 2020 2 / 33



Design criteria Algebraic constructions Poltyrev limit LDA/GLD lattices GLD goodness Conclusions

Challenge in coding/communication theory

Take into account the volume of the Voronoi/Dirichlet cell, vol(Λ) = | det(GΛ)|.

What is the maximal σ2 such that limn→∞ Pe = 0?

Can we build a family of lattices Λn achieving σ2
max?

Can we build a decoder for Λn for n ≫ 1?
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Leech & Sloane’s Construction A (1)

Building lattices out of error-correcting codes: Leech and Sloane (1971).

Lattices as coset codes (Forney 1988):

The lattice pZn has pn cosets in Zn.

A subset of size pk cosets is selected among the pn cosets via a code C.

A coset code in Forney’s terminology with the formula

Λ = C[n, k]p + pZn.

The ring can be Z (relative integers), Z[i] (Gaussian integers),
Z[ω] (Eisenstein integers), H (Hurwitz quaternionic integers),
I (icosian ring), and OK (algebraic integers).

C[n, k]p should be correctly embedded in the ring (via a group homomorphism Φ).
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Leech & Sloane’s Construction A (2)

pZn ⊂ Λ = C[n, k]p + pZn ⊂ Zn.

Construction A can be thought of as

drawing pk points representing the codewords of C inside the cube [0, p[n

then paving the whole space Rn by translating the cube by multiples of p in
all directions.

The theta series of Λ coincides with the theta series of C inside the ball of radius
(p− 1)/2 centered on the origin.

A number field K. Consider the canonical embedding σ : OK → R[K:Q], the
homomorphism Φ : Fp → ΛOK

, ΛOK
= σ(OK), and ΛI = σ(I),

for I ideal in OK where p = |OK/I|,

Λ = Φ(C[m, k]p) + Λm
I , m = n/[K : Q].
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Construction A from quadratic number fields

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2  0  2  4  6

a=2

a=1

a=0

a=-1

a=-2

b=0

b=-1

b=1

The bidimensional real lattices ΛOK
and ΛI built from the field K = Q(

√
5) and

OK/I shown on the first three shells (p = 11), I = (−1 + 3φ)OK.
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Leech & Sloane’s Construction A (3)

The even unimodular Gosset lattice E8 (one of the most beautiful lattices!) is built
via Construction A with different rings (SPLAG, Conway and Sloane, 1999)

E8 = [8, 4, 4]2 + 2Z8 over Z

E8 = [4, 1, 4]2 + φ[4, 3, 2]2 + φ2Z[i]4 Construction B over Z[i] with φ = 1 + i

E8 = [4, 3, 2]3 + πZ[ω]4 over Z[ω] with π =
√
−3

E8 = [2, 1, 2]4 + φH
2 over H with φ = 1 + i

E8 = I over I (1-dimensional over the icosian)

E8 = σ(I) canonical embedding of the ideal (5, θ − 2) in Q(θ = ei2π/20)

E8 is the densest lattice in R8, Hermite constant is 2, and kissing number is 240.
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Leech & Sloane’s Construction A (4)

A lattice point can be written as x = zGΛ ∈ Λ, where z ∈ Zn and the n× n
generator matrix is GΛ in the form

GΛ =

(
U P
0 pIn−k

)

.

Here GC = (U |P ), U is unimodular, e.g. U = Ik.

Λ is the union of pk cosets, then its fundamental volume is

vol(Λ) = | det(GΛ)| = pn−k.

The minimum Euclidean distance of Λ satisfies:

min{p2, dHmin(C)} ≤ d2Emin(Λ) ≤ p2.

An upper bound on Hermite constant γ(Λ) =
d2
Emin

vol2/n
=≤ p2

n/2
√

pn−k
= p2R,

where R = k/n. γ(Λ) is also referred to as the fundamental gain.
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Poltyrev limit for infinite constellations (1)

Theorem (Poltyrev 1994)

Given the AWGN channel with channel noise variance σ2, there exists a sequence
of n-dimensional lattices of constant volume V for which the decoding probability
can be made as small as wanted for a sufficiently large value of n, if and only if

σ2 < σ2
max =

V
2
n

2πe
.

σ2
max is often referred to as Poltyrev limit/capacity.

For Construction A lattices with a p-ary code

σ2
max =

p2(1−R)

2πe
.

Our aim is to achieve a vanishing decoding probability with any δ > 0 for

σ2 = σ2
max(1− δ)2.
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Poltyrev limit for infinite constellations (2)

Lemma (Typical Norm of Gaussian Noise)

Consider n i.i.d. random Gaussian variables X1, . . . , Xn, Xi ∼ N (0, σ2). Let
ρ =

√∑n
i=1 X

2
i . Then, for every ε > 0,

lim
n→∞

P
{
σ
√
n (1− ε) ≤ ρ ≤ σ

√
n (1 + ε)

}
= 1.

Simple proof based on Chebyshev’s inequality, take ζ = logn:

P
{

|ρ2 − nσ2| > ζ
√
2nσ2

}

≤ 1

ζ2
, then lim

n→∞
P
{

ρ2 ≤ σ2n

(

1 + ζ

√

2

n

)}

= 1.

In high dimensions

n ≫ 1
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Poltyrev limit for infinite constellations (3)

Geometrical interpretation of Poltyrev limit.

packing radius

covering radius

Voronoi cell 
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Poltyrev limit for infinite constellations (3)

Geometrical interpretation of Poltyrev limit. Vnρ
n
eff = vol(Λ).

effective radius

Voronoi cell 
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Poltyrev limit for infinite constellations (3)

Geometrical interpretation of Poltyrev limit. Small noise variance.
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Poltyrev limit for infinite constellations (3)

Geometrical interpretation of Poltyrev limit. Larger noise variance.
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Poltyrev limit for infinite constellations (3)

Geometrical interpretation. Limit is reached, σ2
max = 1

2πe for vol = 1.
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Lemma on counting points and inequalities (1)

Lemma (Number of Integer Points in a Ball)

Let Bc,n(ρ) denotes the n−dimensional ball centered at c of radius ρ. Then,

|Zn ∩ Bc,n(ρ)| ≤
1√
πn

(√
2πeρ√
n

(

1 +

√
n

2ρ

))n

.

Proof:
For z ∈ Zn, let Cz be the cube of volume 1 centered at z.
The diagonal of Cz is

√
n. Then a ball centered at c of radius ρ+

√
n
2 will include

all cubes of integer points z inside Bc,n(ρ),

|Zn ∩Bc,n(ρ)| ≤ Vol

(

Bc,n

(

ρ+

√
n

2

))

= Vol (Bc,n(ρ))

(

1 +

√
n

2ρ

)n

.

and by Stirling’s formula we have

Vol(Bc,n(ρ)) =
(
√
πρ)n

Γ
(
n
2 + 1

) ∼ 1√
πn

(√
2πeρ√
n

)n

.
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Lemma on counting points and inequalities (2)

Take σ2 = σ2
max(1− δ)2 = p2(1−R)

2πe (1− δ)2.

Lemma (Integer Points to be Excluded)

Let z = (z1, . . . , zn) ∈ Zn such that zi ∈ pZ \ {0} for some i. Then

lim
n→∞

P{‖η‖2 ≥ ‖η − z‖2} = 0.

Proof:
Force to zero all components of z which are not multiple of p to get z̃ ∈ pZn \ {0}.

P{‖η‖2 ≥ ‖η − z‖2} ≤ P{‖η‖2 ≥ ‖η − z̃‖2}
≤ P{|ηi| ≥ p/2, ∃i ∈ {1, 2, . . . , n}}
≤ 2nQ

( p

2σ

)

≤ 2n exp

(
πep2R

4(1− δ)2

)

,

where Q(x) ≤ exp(−x2/2) is the Gaussian tail function. The upper bound
decreases to 0 if p = (logn)a and 2aR ≥ 1.
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Lemma on counting points and inequalities (3)

Lemma (Bounds of the binomial coefficient)

Let n be a natural number and let 0 < θ < 1 be any rational number such that θn
is natural, too. If H(x) = −x log(x)− (1− x) log(1− x) is the binary entropy
function, then:

1
√

8nθ(1− θ)
2nH(θ) ≤

(
n

θn

)

≤ 1
√

2πnθ(1 − θ)
2nH(θ).

I spare you the proof :-),
see the book “The Theory of Error-Correcting Codes”, by MacWillams and Sloane,
1977, page 309.

Other classical upper bounds of the binomial coefficient, useful in the sequel, for
k ∈ N smaller than n,

(
n

k

)

≤ min

{

nk, nn−k,
(n · e

k

)k
}

.
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LDA Algebraic Construction (1)

A linear binary [n = 7, k = 4]2 code.
The k × n generator matrix:

G =







1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1







The (n− k)× n parity-check matrix:

H =





1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1





Consider the parity-check matrix H as
the incidence matrix of a bipartite graph,
the (Tanner graph) of the code.

Tanner Graph

3

1

2

c1

c2

c3

c4

c5

c6

c7

Joseph J. Boutros Lattices 2020, the Simons Institute, UC Berkeley February 21, 2020 15 / 33



Design criteria Algebraic constructions Poltyrev limit LDA/GLD lattices GLD goodness Conclusions

LDA Algebraic Construction (2)

3

1

2

(variable nodes) (check nodes)

c1

c2

c3

c4

c5

c6

c7

n vertices

columns of H

n− k vertices

rows of H
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LDA Algebraic Construction (3)

An LDPC code is defined by a sparse parity-check matrix H .
Let Λ = C[n, k]p + pZn, where p is an odd prime.
You may build a sparse H from units in a ring for p non-prime.

Definition

If C[n, k]p is a low-density parity-check (LDPC) code defined over Fp, then Λ is
called an LDA lattice.

LDA lattices studied by J.J. Boutros, L. Brunel, N. di Pietro, Y.-C. Huang,
N. Kashyap, K. Narayanan, and G. Zémor, since 2011 for the Gaussian channel and
for physical-layer network coding.

LDA ensemble achieves Poltyrev limit σ2
max = 1

2πe (infinite constellations).

LDA ensemble achieves Shannon capacity 1
2 log(1 +

P
σ2 ) (finite constellations).

See di Pietro, Zémor, Boutros, IEEE-IT-2018 and references therein.
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GLD Algebraic Construction

Definition

• Let Λ0 ⊂ Rn0 be a rank-n0 real lattice (n0 small). Consider the direct sum Λ⊕L
0 .

Then, a rank-n GLD lattice is Λ =
⋂J

i=1 πi

(
Λ⊕L
0

)
, for n = L× n0, J ≥ 2, and

{πi}Ji=1 are random permutations uniformly selected from Sn.

• If C[n, k]p =
⋂J

i=1 πi

(
C⊕L

0

)
is a GLD code, then its associated GLD lattice is

Λ = C[n, k] + pZn, with Λ0 = C0[n0, k0]p + pZn0 .

GLD lattices studied by M. Bollauf, J.J. Boutros, N. di Pietro, Y.-C. Huang, and
N. Mir, since 2014 for the Gaussian channel and for fading channels.

GLD ensemble achieves Poltyrev limit (infinite constellations).

Alphabet size is p = (logn)a for GLD, but p = nλ for LDA.

See Bollauf, Boutros, Mir, IEEE-ITW-2019 Sweden and references therein.
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GLD Tanner graphs, Cgld = C⊕L
0

⋂
π(C⊕L

0
)

Tanner graphs, used for iterative decoding and analyzing cycles and weight.

Identity

1

2

1

2

c6

c5

c4

c3

c2

c1

Permutation π

C0

C0

C0

C0

C⊕L
0

n0 = 3

J = 2

C⊕L
0

L = 2 check nodes

L = 2 check nodes

1

2

1

2

C0L

n0

L check nodes L check nodes

C0
n0

Sockets matching is defined by π

n = n0 × L edges

C0

L

C0

C0

C0

C⊕L
0 C⊕L

0
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Remarks - LDA versus GLD

The capacity theorems for LDA lattices are proven using graph expansion
properties. These expansion properties are usually pessimistic (here, for a high
enough expansion factor D the check nodes degree increases at least as D2). The
complete LDA proof is extremely long, see Lemma 12 and Theorem 3 in di Pietro,
Zémor, Boutros 2018.

In the sequel we are going to show the Poltyrev goodness of GLD lattices via a new
technique called the buckets approach. We also rely on the asymptotic goodness of
the constituent p-ary code.
More details in Bollauf, Boutros, Mir 2019.
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GLD lattices achieve Poltyrev limit (1)

Theorem (Bollauf, Boutros, Mir 2019)

Consider a random GLD lattices ensemble over
Fp. Suppose that p = (log n)a for some exponent
a > 1

2R . Moreover, assume that the minimum
Hamming distance of the random GLD codes
underlying the GLD lattices is lower bounded by
∆n for some constant ∆ > 0. Then a random
lattice of the family can be ML decoded with
vanishing error probability for every channel noise
variance σ2 < σ2

max.
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GLD lattices achieve Poltyrev limit (2)

Proof of GLD Poltyrev goodness:

Lattice symmetry, y = 0 + η. Λ admits a closest-point decoder (maximum
likelihood decoder).

GLD coding rate is R = k/n = 1− J((1−R0), R0 is the coding rate of the
elementary code C0[n0, k0, d0].

Lemma on typical norm of Gaussian noise,

ρ = σ
√
n(1 + ε) = pJ(1−R0)

√
2πe

√
n(1− δ)(1 + ε) = pJ(1−R0)

√
2πe

√
nκ.

The decoding ball is B = By,n(ρ), centered on y with radius ρ.

Let ℵ be the number of non-zero lattice points in B, then

Pe ≤ P(ℵ ≥ 1) ≤ E[ℵ]

Sum inside the noise sphere (remember the lemma on the excluded points)

E[ℵ] =
∑

x∈Zn∩B
E[1[x∈Λ]] =

∑

x∈Zn∩B
P{x ∈ Λ}.
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GLD lattices achieve Poltyrev limit (3)

Introduce the Hamming weight ℓ of x. The error probability is upper-bounded
as

Pe ≤
∑

x∈Zn∩B
P{x ∈ Λ} ≤

n∑

ℓ=⌈∆n⌉

∑

x∈Zn∩B:
W (x)=ℓ

P{x ∈ Λ}

=

n∑

ℓ=⌈∆n⌉

∑

x∈Zn∩B:
W (x)=ℓ

(P{x mod p ∈ C⊕L
0 })J

For a weight ℓ, there are b active buckets in the direct sum C⊕L
0 ,

Pe ≤
n∑

ℓ=⌈∆n⌉

∑

x∈Zn∩B:
W (x)=ℓ

(
bmax∑

b=bmin

P{B = b}
pb(n0−k0)

)J

.

We used the fact that one active bucket C0 has its parity-check satisfied with
probability 1

pn0−k0
. We just need to find P{B = b} to complete the proof!
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Probability of active buckets (1)

1

2

1

2
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Probability of active buckets (2)

P{B = b} =

(
n/n0

b

)

(
n
ℓ

)

∑

{ℓi}:
∑b

i=1 ℓi=ℓ

b∏

i=1

(
n0

ℓi

)

,

for b ∈ [bmin, bmax], where bmin = ⌈ ℓ
n0

⌉ and bmax = min(⌊ ℓ
d0
⌋, n

n0
).

Corollary (Upper Bound of the Probability of Active Buckets)

The probability of b active buckets after throwing ℓ apples is bounded from above
as

P{B = b} ≤

(
n/n0

b

)

(
n
ℓ

) × c(ℓ, b)×min
{

nℓ
0, n

bn0−ℓ
0 , (n0e

d0
)ℓ
}

.

c(ℓ, b) is the number of restricted compositions of ℓ with b parts solved via a
saddle-point technique (Daniels-Good 1954-1957). See Bollauf, Boutros, Mir 2019.
Exercise: Think about c(5, 2) and c(10, 3) for n0 = 4.
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GLD lattices achieve Poltyrev limit (5)

After using the lemma on the number of integer points in Bc,n and the
previous corollary, where we denote r = ℓ/b, ω = ℓ/n ∈ [∆, 1], and
c(ℓ, b)1/ℓ ∼ C(t0, r), we get

Pe ≤
n∑

ℓ=⌈∆n⌉

(
n
ℓ

)

|Zℓ ∩ By,ℓ(ρ)|
(

bmax∑

b=bmin

P{B = b}
pb(n0−k0)

)J

≤
n∑

ℓ=∆n










bmax∑

b=bmin










e
H(ωn0/r)

ωn0 C(t0, r)min

{

n0, n
n0

r −1

0

}

p
(n0−k0)

(

1
r−

1
n0

)

ω
1
2J e

H(ω)
ω

J−1
J

︸ ︷︷ ︸

Fp(ω,r)

κ










ℓ








J

→ 0.

�

Note: F1(ω, r) < 1 for rc(ω) < r ≤ n0 and bounded from above by a
constant for r ≤ rc(ω).
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AWGN performance (LDA, regular-(2,5) LDPC, p = 11)
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AWGN ensemble performance (GLD, C0[3, 2]p, p = 11)
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Conclusions

In presence of Gaussian noise, in order to decode lattice points with a
vanishing error probability, the noise variance per dimension must not exceed
1

2πe (Poltyrev limit).

We showed how GLD lattices can achieve this limit, with n → ∞ and
p = (log n)a, under maximum-likelihood decoding (closest-point!).

True computer performance showed here for dimensions between 1000 and
100000 is obtained via iterative probabilistic decoding on the lattice/code
Tanner graph, with complexity O(n× pn0−k0+1).

Application of such lattices from p-ary codes in cryptography?
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Screen copy of the live demo (1)

Iterative decoding of a GLD lattice in 1 million dimensions.
The Linux operating system has 6GB of RAM and 2 Intel CPU cores.
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Screen copy of the live demo (2)

Iterative decoding of a GLD lattice in 1 million dimensions.
The Linux operating system has 6GB of RAM and 2 Intel CPU cores.
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