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The closest vector problem

Input: Lattice L = { S by € Z} C R"™ given by basis by, ..., b,
and vector x € R" (wlog x € span L)

Output: lattice vector u € L with |z — u| = miil lz — v
(IS

Geometric interpretation:  Voronoi cell

V(L)={z e R": |z| < |x —v| for v € L}
V(L) tiles R™ by lattice translates v 4+ V(L)

CVP: In which tile u + V(L) does x lie?




Some words about algorithms and complexity

CVP has been studied intensively. Collection of important results:

CVP is NP-hard (van Emde Boas, 1981)

CVP is NP-hard to approximate within a factor n¢/ 1981987 for ¢ > (
(Dinur, Kindler, Raz, Safra, 2003)

Approximating CVP within a factor of y/n lies in NP N co-NP.
(Aharonov, Regev, 2005)

O(4™)-time, O(2")-space algorithm for exact CVP
(Micciancio, Voulgaris, 2013)

onto(l)_time and space algorithm for exact CVP
(Aggarwal, Dadush, Stephens-Davidowitz, 2015)

If V(L) compactly representable: reduced space complexity of MV algorithm
(Hunkenschroéder, Reuland, Schymura, 2019)



Special cases

Polynomial time algorithms for special classes of lattices:

lattices of Voronoi’s first kind both based on network flows
(McKilliam, Grant, Clarkson, 2014)

tensor products A4, ® A,,
(Ducas, van Woerden, 2018)
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Goal: Unity and generalize these two cases.




Lattices and zonotopes - Setup

Consider zonotopal lattices: lattices L where V(L) is a zonotope

zonotope = projection of regular cube [—1,+1]™

= Minkowski sum of line segments » " [—s;, +5;]

L C R™ linear subspace

for x € L define supp x = {7 : x; # 0} _

x € L\ {0} is called elementary <= (i) ¢ has minimal support in L
(i) 2 € {~1,0,+1}™

L is called regular <= for all y € £\ {0} with minimal support
there is @ € R and = € L elementary
so that y = ax



Lattices and zonotopes - Main examples

come from digraphs D = (V, A)

M € {-1,0,+1}V*4 incidence matrix

graphical case
L(D) ={x € R*: Mz = 0} is regular

elementary vectors = circuits (unoriented)

cographical case
L(D)t ={ycRA: 2Ty =0 for all z € £L(D)} is also regular

elementary vectors = minimal cuts (cocircuits)



Lattices and zonotopes - Voronoi cells

Regular subspaces define lattices L =LNZ™

™m
Positive vector g € R7, defined Euclidean structure on L (z,y), = 231 ;i TiV;
1=

Facts about Voronoi cell of L:

{Voronoi vectors} = {facet normals of V (L)} = {elementary vectors}

V(L) =m([—-1/2,1/2]") & :R™ — L orthogonal projection

(1,0, -

L is zonotopal lattice; if V(L) is zonotope, then L comes by this construction



Lattices and zonotopes - All examples

(a) Lattices of Voronoi’s first kind

defined by obtuse superbasis bi,...,b5,b511
where by, ...,b, forms a lattlce basis
where b, b; <O1fz7é] and Z b; = 0.

This defines a graph D with vertices bq,...,0,11
and weighted edges (b;, ;) if i < j with weight g;; = —b/ b;.

Then: L(D)* ~ L

In particular: L(Cp4q1)t = A, and L(K,41)+ = A*

n



3-dimensional lattices
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(b) tensor products

Am & An — L(Km—l—l,n—l—l)

(c) Seymour (1980)

Classification: Every zonotopal lattice is 1-,2-,3-sum of

cographical, graphical lattices or R1y (exceptional 5-dim. lattice)



Minimum mean cycle canceling

Karzanov, McCormick (1997):

Can solve the following problem in polynomial time
M € {—1,0,4+1}"*"™ totally unimodular matrix L ={v &€ Z™ : Mv = 0}

w; : R — R convex functions, 1 =1,...,m

m
minimize )  w;(v;) subject to v € L

=1
Z \ separable convex objective function
Observation: That is a perfect fit for the CVP of zonotopal lattices.

For (L, g) zonotopal lattice and x € R™ set

2

w; (v;) = g;(v; — x;)° convex quadratic

Then: ) w;(v;) =(z —v, 2 —v)g = |z — U‘?J



ldea of algorithm

For v € L and for elementary vector u € L

define cost of u at v by

cv,u) = 3 ()= X ¢ (v)

1u;—+1 U, ——1

where cj(vi) = qullwy — 3 - 1)* — galwy — @)

c; (vi) = gi(vi — 2:)* — gi(vi — z; — 1)*

If cost c(u,v) is negative then v + u is closer to x than v:

vtu—z,vtu—z);=wW—2,v—x)5 + c(v,u)



)\(v):max{oj_ - C(v,u)}

u elementary \Supp U|

minimizer v defines “minimum mean cycle at v”
1. AM(v) =0 <= v is closest vector to x

2. Can determine A(v) and u elementary attaining minimum by LP

3. Pivot: v < v + eu for suitable step size €

4. A-value descreases geometrically

—> polynomial time algorithm for CVP
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