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I d : dimension of the lattice
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Fundamental Parallelepiped

P(B) = {Bx : x ∈ Rn, ∀i 0 ≤ xi < 1}

I Depends on the basis

I For any z ∈ Rn, there exists a unique y ∈P(B) such that z− y ∈ L (B).
y ≡ z mod B .

I Translates P(B) + v where v ∈ L form a partition of span(B).
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Successive Minimum

i th successive minimum = λi (L ) =
Smallest r > 0 such that L contains at
least i linearly independent vectors of
length at most r .

First minimum = λ1(L ) = Length of
the shortest non-zero lattice vector =
Smallest distance between any two
lattice vectors
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Shortest Vector Problem (SVP(p)
c )

Input : A lattice specified by a basis B

Output : Find a non-zero lattice vector
of smallest norm upto some
approximation factor c.
i.e. Find v ∈ L \ {0} such that
‖v‖ ≤ c‖u‖ for any other u ∈ L \ {0}.
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Closest Vector Problem (CVP(p)
c )

Input : (i) A lattice specified by a basis
B, (ii) Target vector t

Output : Find a lattice vector closest to
t upto some approximation factor c.
i.e. Find v ∈ L such that
‖v − t‖p ≤ c‖w − t‖p for any other
w ∈ L .
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`p norm and `p ball

`p norm of a vector x ∈ Rn = ‖x‖p
=
(∑n

i=1 |xi |
p
)1/p

for 1 ≤ p <∞
= max{|xi | : i = 1, . . . , n} for p =∞

Ball : Set of all points within a fixed
distance or radius (r) (defined by a
metric) from a fixed point or centre (v).

I Closed ball B
(p)
n (v, r)

= {x ∈ Rn : ‖x− v‖p ≤ r}
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Applications of SVP and CVP

I Factoring polynomials over rationals.

I Checking the solvability by radicals.

I Solving low-density subset-sum problems.

I Cryptanalysis.

I Security of some powerful cryptographic primitives based on the worst-case
hardness of these or related lattice problems.

I CVP in the `∞ norm is equivalent to integer programming.
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Prior Works : Sieving algorithms for SVP and CVP

Euclidean norm

I Ajtai,Kumar,Sivakumar(20001, 20022) solved SVP and approximate CVP
in 2cn time using randomized sieving.

I Fastest algorithm3 for SVPc (c a constant) runs in time 20.802n+o(n) (Liu,
Wang, Xu, Zheng, 2011).

I Provable algorithms for SVP and CVP based on Discrete Gaussian
sampling4 run in time 2n+o(n) (Aggarwal, Dadush, Regev,
Stephens-Davidowitz, 2015).

I Heuristic algorithms5 for SVP run in time (3/2)n/2 (Becker, Ducas, Gama,
Laarhoven, 2016).

1M.Ajtai,R.Kumar and D.Sivakumar, A sieve algorithm for the shortest lattice vector problem,STOC,2001.
2M.Ajtai,R.Kumar and D.Sivakumar, Sampling short lattice vectors and the closest vector problem,CCC,2002.
3M.Liu,X.Wang,G.Xu and X.Zheng, Shortest lattice vectors in the presence of gaps, IACR Cryptology ePrint

Archive,2011.
4D.Aggarwal, D.Dadush, O.Regev and N.Stephens-Davidowitz,Solving the shortest vector problem in 2n time

using Discrete Gaussian sampling, STOC, 2015.
5A.Becker,L.Ducas,N.Gama and T.Laarhoven,New directions in nearest neighbor searching with applications to

lattice sieving,ACM Symp. on Discrete Algo.,2016.
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Prior Works : Sieving algorithms for SVP and CVP

Other norms

I (Blömer and Naewe,2009)1 and (Arvind and Joglekar,2008)2 generalized
the AKS algorithm to give exact and approximate algorithms for SVP(p)

and CVP
(p)
1+ε with running time 2O(n).

I Eisenbrand et.al.(2011)3 gave a 2O(n)(̇ log(1/ε))n algorithm for CVP
(∞)
1+ε .

I Aggarwal and Mukhopadhyay (2018)4 improved the running time for exact

and approximate SVP(∞) and CVP
(∞)
c .

1J.Blömer,S.Naewe,Sampling methods for shortest vectors,closest vectors and successive minima,Theoretical
Computer Science, 2009.

2V.Arvind and P.S.Joglekar, Some sieving algorithms for lattice problems,FSTTCS, 2008.
3F.Eisenbrand,N.Hähnle and M.Niemeier, Covering cubes and the closest vector problem, Annual.Symp. on

Computational Geometry, 2011.
4D.Aggarwal and P.Mukhopadhyay, Improved algorithms for the shortest vector problem and the closest vector

problem in the infinity norm, ISAAC, 2018.
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3F.Eisenbrand,N.Hähnle and M.Niemeier, Covering cubes and the closest vector problem, Annual.Symp. on

Computational Geometry, 2011.
4D.Aggarwal and P.Mukhopadhyay, Improved algorithms for the shortest vector problem and the closest vector

problem in the infinity norm, ISAAC, 2018.



Hardness results for SVP and CVP

I The first NP hardness result for CVP(p) and SVP(∞) was given by van
Emde Boas (1981)1.

I NP hardness of CVP(p) and SVP(∞) upto a factor of nc/ log log n (Dinur et
al.,2003)2, (Dinur,2002)3.

I Hardness of SVP(p) upto a factor of 2(log n)1−ε

assuming
NP * RTIME(npoly(log n)) (Haviv and Regev, 2007)4.

I Hardness of CVP(p) and SVP(∞) upto factor nc (c < 1
2
) assuming the

Projection Games Conjecture (Mukhopadhyay, 2019)5.

1P. van Emde Boas, Another NP-complete partition problem and the complexity of computing short vectors in a
lattice, Technical report, 1981.

2I.Dinur,G.Kindler,R.Raz,S.Safra,Approximating CVP to within almost-polynomial factors is
NP-hard,Combinatorica,2003.

3I.Dinur, Approximating SVP(∞) to within almost-polynomial factors is NP-hard, Theoretical Computer
Science, 2002.

4I.Haviv and O.Regev, Tensor-based hardness of the shortest vector problem to within almost polynomial
factors, STOC, 2007.

5P.Mukhopadhyay, The projection games conjecture and the hardness of approximation of SSAT and related
problems, arXiv:1907.05548, 2019.



Hardness results for SVP and CVP

I The first NP hardness result for CVP(p) and SVP(∞) was given by van
Emde Boas (1981)1.

I NP hardness of CVP(p) and SVP(∞) upto a factor of nc/ log log n (Dinur et
al.,2003)2, (Dinur,2002)3.

I Hardness of SVP(p) upto a factor of 2(log n)1−ε

assuming
NP * RTIME(npoly(log n)) (Haviv and Regev, 2007)4.

I Hardness of CVP(p) and SVP(∞) upto factor nc (c < 1
2
) assuming the

Projection Games Conjecture (Mukhopadhyay, 2019)5.

1P. van Emde Boas, Another NP-complete partition problem and the complexity of computing short vectors in a
lattice, Technical report, 1981.

2I.Dinur,G.Kindler,R.Raz,S.Safra,Approximating CVP to within almost-polynomial factors is
NP-hard,Combinatorica,2003.

3I.Dinur, Approximating SVP(∞) to within almost-polynomial factors is NP-hard, Theoretical Computer
Science, 2002.

4I.Haviv and O.Regev, Tensor-based hardness of the shortest vector problem to within almost polynomial
factors, STOC, 2007.

5P.Mukhopadhyay, The projection games conjecture and the hardness of approximation of SSAT and related
problems, arXiv:1907.05548, 2019.



Hardness results for SVP and CVP

I The first NP hardness result for CVP(p) and SVP(∞) was given by van
Emde Boas (1981)1.

I NP hardness of CVP(p) and SVP(∞) upto a factor of nc/ log log n (Dinur et
al.,2003)2, (Dinur,2002)3.

I Hardness of SVP(p) upto a factor of 2(log n)1−ε

assuming
NP * RTIME(npoly(log n)) (Haviv and Regev, 2007)4.

I Hardness of CVP(p) and SVP(∞) upto factor nc (c < 1
2
) assuming the

Projection Games Conjecture (Mukhopadhyay, 2019)5.

1P. van Emde Boas, Another NP-complete partition problem and the complexity of computing short vectors in a
lattice, Technical report, 1981.

2I.Dinur,G.Kindler,R.Raz,S.Safra,Approximating CVP to within almost-polynomial factors is
NP-hard,Combinatorica,2003.

3I.Dinur, Approximating SVP(∞) to within almost-polynomial factors is NP-hard, Theoretical Computer
Science, 2002.

4I.Haviv and O.Regev, Tensor-based hardness of the shortest vector problem to within almost polynomial
factors, STOC, 2007.

5P.Mukhopadhyay, The projection games conjecture and the hardness of approximation of SSAT and related
problems, arXiv:1907.05548, 2019.



Hardness results for SVP and CVP

I The first NP hardness result for CVP(p) and SVP(∞) was given by van
Emde Boas (1981)1.

I NP hardness of CVP(p) and SVP(∞) upto a factor of nc/ log log n (Dinur et
al.,2003)2, (Dinur,2002)3.

I Hardness of SVP(p) upto a factor of 2(log n)1−ε

assuming
NP * RTIME(npoly(log n)) (Haviv and Regev, 2007)4.

I Hardness of CVP(p) and SVP(∞) upto factor nc (c < 1
2
) assuming the

Projection Games Conjecture (Mukhopadhyay, 2019)5.

1P. van Emde Boas, Another NP-complete partition problem and the complexity of computing short vectors in a
lattice, Technical report, 1981.

2I.Dinur,G.Kindler,R.Raz,S.Safra,Approximating CVP to within almost-polynomial factors is
NP-hard,Combinatorica,2003.

3I.Dinur, Approximating SVP(∞) to within almost-polynomial factors is NP-hard, Theoretical Computer
Science, 2002.

4I.Haviv and O.Regev, Tensor-based hardness of the shortest vector problem to within almost polynomial
factors, STOC, 2007.

5P.Mukhopadhyay, The projection games conjecture and the hardness of approximation of SSAT and related
problems, arXiv:1907.05548, 2019.



Hardness results for SVP and CVP

I The first NP hardness result for CVP(p) and SVP(∞) was given by van
Emde Boas (1981)1.

I NP hardness of CVP(p) and SVP(∞) upto a factor of nc/ log log n (Dinur et
al.,2003)2, (Dinur,2002)3.

I Hardness of SVP(p) upto a factor of 2(log n)1−ε

assuming
NP * RTIME(npoly(log n)) (Haviv and Regev, 2007)4.

I Hardness of CVP(p) and SVP(∞) upto factor nc (c < 1
2
) assuming the

Projection Games Conjecture (Mukhopadhyay, 2019)5.

1P. van Emde Boas, Another NP-complete partition problem and the complexity of computing short vectors in a
lattice, Technical report, 1981.

2I.Dinur,G.Kindler,R.Raz,S.Safra,Approximating CVP to within almost-polynomial factors is
NP-hard,Combinatorica,2003.

3I.Dinur, Approximating SVP(∞) to within almost-polynomial factors is NP-hard, Theoretical Computer
Science, 2002.

4I.Haviv and O.Regev, Tensor-based hardness of the shortest vector problem to within almost polynomial
factors, STOC, 2007.

5P.Mukhopadhyay, The projection games conjecture and the hardness of approximation of SSAT and related
problems, arXiv:1907.05548, 2019.



Hardness results for SVP and CVP

I The first NP hardness result for CVP(p) and SVP(∞) was given by van
Emde Boas (1981)1.

I NP hardness of CVP(p) and SVP(∞) upto a factor of nc/ log log n (Dinur et
al.,2003)2, (Dinur,2002)3.

I Hardness of SVP(p) upto a factor of 2(log n)1−ε

assuming
NP * RTIME(npoly(log n)) (Haviv and Regev, 2007)4.

I Hardness of CVP(p) and SVP(∞) upto factor nc (c < 1
2
) assuming the

Projection Games Conjecture (Mukhopadhyay, 2019)5.

1P. van Emde Boas, Another NP-complete partition problem and the complexity of computing short vectors in a
lattice, Technical report, 1981.

2I.Dinur,G.Kindler,R.Raz,S.Safra,Approximating CVP to within almost-polynomial factors is
NP-hard,Combinatorica,2003.

3I.Dinur, Approximating SVP(∞) to within almost-polynomial factors is NP-hard, Theoretical Computer
Science, 2002.

4I.Haviv and O.Regev, Tensor-based hardness of the shortest vector problem to within almost polynomial
factors, STOC, 2007.

5P.Mukhopadhyay, The projection games conjecture and the hardness of approximation of SSAT and related
problems, arXiv:1907.05548, 2019.



Sieving algorithm in the `p norm : AKS sieve
(Blömer and Naewe, 2009)

I S : Set of N lattice vectors sampled in a
ball of radius R.

Figure: S



Sieving algorithm in the `p norm : AKS sieve
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that
– |C | is not too large.
– ∀u ∈ S \ C , there exists v ∈ C such that
‖u− v‖ ≤ γR.

Figure: S



AKS sieving algorithm in the `p norm : AKS sieve
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I Polynomial number of sieve operations gives lattice vectors of norm at
most r0λ1(L ) for some constant r0.



AKS sieving algorithm in the `p norm : AKS sieve
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AKS sieving algorithm in the `p norm : AKS sieve
(Blömer and Naewe, 2009)

Issues !!

I Cannot ensure the distribution of the vectors after sieving step.

I May end up with all zero vectors.

Solution

I For each sampled vector, add a randomly chosen perturbation vector.
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AKS sieving algorithm in the `p norm
(Blömer and Naewe, 2009)

I. Initial Sampling

I Sample N perturbation vectors {ei} uniformly from a ball of radius R0.

I Calculate yi ≡ ei mod P(B) (perturbed vectors).

II. AKS Sieve

I Polynomial number of sieving operations.

I Sieve function makes test only on yi .

I Same operations get reflected on the corresponding lattice vectors.

III. Pair-wise difference

I Take pair-wise difference of the vectors in the final set and output the
one with the smallest norm.
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Complexity of AKS sieve
(Blömer and Naewe, 2009)

I Quadratic sieve : Usually the most expensive part in the algorithm.

I Space complexity : O(N) where N = 2cn, for some constant c.

I Time complexity : O(N2), i.e. 22cn.
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(Blömer and Naewe, 2009)

I Quadratic sieve : Usually the most expensive part in the algorithm.

I Space complexity : O(N) where N = 2cn, for some constant c.

I Time complexity : O(N2), i.e. 22cn.



Complexity of AKS sieve
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Faster sieving algorithms in the `p norm : Linear
sieve
(Mukhopadhyay, 2019)

I Partition B(R) into hypercubes such
that their longest diagonal has
length r .
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(Mukhopadhyay, 2019)

I Partition B(R) into hypercubes such

that their longest diagonal has

length r .
I ‖u− v‖ ≤ r for any u, v in

same region.
I Map each vector to a region

by looking at the co-ordinates :
n + o(1) time.

I At most one centre in each
hypercube.

I Take difference.

P.Mukhopadhyay, Faster provable sieving algorithms for the Shortest Vector Problem and the Closest Vector
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number of sampled vectors.

I O
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)n)
if r = γR.

I Depends on how each axis is divided
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I O
(⌈

2
γ

⌉n )
1.

1D.Aggarwal and P.Mukhopadhyay, Improved algorithms for the shortest vector problem and the closest vector
problem in the infinity norm, ISAAC, 2018.
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p =∞
ALGORITHM SPACE TIME

Mukhopadhyay,2019 22.443n+o(n) 22.443n+o(n)

1G.Hanrot,X.Pujol,D.Stehle,Algorithms for the shortest and closest lattice vector problems.,International
Conference on Coding and Cryptology,2011.
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Comparison of space and time complexity
(Mixed sieve)

p = 2

ALGORITHM SPACE TIME

List sieve,20112 21.233n+o(n) 22.465n+o(n)

Mukhopadhyay,2019 22.25n+o(n) 22.25n+o(n)

Aggarwal et al.,20153 2n 2n

1D.Micciancio, P.Voulgaris, Faster exponential time algorithms for the shortest vector problem., SODA, 2010.
2G.Hanrot,X.Pujol,D.Stehle,Algorithms for the shortest and closest lattice vector problems.,International

Conference on Coding and Cryptology,2011.
3D.Aggarwal, D.Dadush, O.Regev and N.Stephens-Davidowitz,Solving the shortest vector problem in 2n time

using Discrete Gaussian sampling, STOC, 2015.



Approximation algorithms for large constant
approximation factor

I SVP
I Skip the last step of exact algorithm.
I Sample – Sieve – Return a non-zero vector.

I CVP
I Reduction from approximate CVP to approximate SVP (Blömer and

Naewe,2009).
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Comparison of space and time complexity
(Approximation algorithm)

1 ≤ p ≤ ∞
ALGORITHM SPACE TIME

Blömer and Naewe,2009 21.586n+o(n) 23.169n+o(n)

Mukhopadhyay,2019 22.001n+o(n) 22.001n+o(n)
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Comparison of space and time complexity
(Approximation algorithm)

1 ≤ p ≤ ∞
ALGORITHM SPACE TIME

Blömer and Naewe,2009 21.586n+o(n) 23.169n+o(n)

Mukhopadhyay,2019 22.001n+o(n) 22.001n+o(n)

p = 2

ALGORITHM SPACE TIME

Liu,Wang,Xu and Zheng,20111 20.401n+o(n) 20.802n+o(n)

Mukhopadhyay,2019 21.73n+o(n) 21.73n+o(n)

1M.Liu,X.Wang,G.Xu and X.Zheng, Shortest lattice vectors in the presence of gaps, IACR Cryptology ePrint
Archive,2011.



Comparison of space and time complexity
(Approximation algorithm)

1 ≤ p ≤ ∞
ALGORITHM SPACE TIME

Blömer and Naewe,2009 21.586n+o(n) 23.169n+o(n)

Mukhopadhyay,2019 22.001n+o(n) 22.001n+o(n)

p = 2

ALGORITHM SPACE TIME

Liu,Wang,Xu and Zheng,20111 20.401n+o(n) 20.802n+o(n)

Mukhopadhyay,2019 21.73n+o(n) 21.73n+o(n)

p =∞
ALGORITHM SPACE TIME

Aggarwal and Mukhopadhyay,20182 21.585n+o(n) 21.585n+o(n)

1M.Liu,X.Wang,G.Xu and X.Zheng, Shortest lattice vectors in the presence of gaps, IACR Cryptology ePrint
Archive,2011.

2D.Aggarwal and P.Mukhopadhyay, Improved algorithms for the shortest vector problem and the closest vector
problem in the infinity norm, ISAAC, 2018.
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