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COMPLEXITY OF TOTAL SEARCH PROBLEMS

FNP: class of search problems whose decision version is in NP.

TFNP: class of total search problems of FNPD, i.e. a solution always exists.

Theorem [Johnson Papadimitriou Yannakakis '88, Megiddo Papadimitriou "91]:
If some problem L € TFNP is FNP-complete under deterministic reductions then NP = co-NP.

Theorem [Mahmoody Xiao ‘09]:
If some problem L € TFNP is FNP-complete under randomized reductions then SAT is checkable.




A COMPLEXITY THEORY OF TOTAL SEARCH PROBLEMS?

“Total search problems should be classified in terms of the profound
mathematical principles that are invoked to establish their totality.”

Papadimitriou “94



COMPLEXITY OF TOTAL SEARCH PROBLEMS

TFNP: class of total search problems of FNP, i.e. a PTTN £
solution always exists | Vegiddo Papadimitriou 91| / o oo
{L h
Subclasses of TENP introduced by | Johnson PLS / |
Papadimitriou Yannakakis 88], [Papadimitriou 94], PPADS
[Daskalakis Papadimitriou 11], [Jerabek 16] /
ppAD  PWPP
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Many applications in game theory, economics, social choice, t

(discrete / continuous) optimization PTFENP

e.g. [JYP88], [BCE+98], [EGGO06], [CDDT09], [DP11], [R15], !

[R16], [BIQ+17], [GP17], [DTZ18], [FG18] ... Pf PPTP
PLS /

Most celebrated result: PPADS

NASH is PPAD-complete /

[Daskalakis Goldberg Papadimitriou 06], [Chen Deng Teng 06] opAD PWPP

Many applications in Cryptography [B06], []16] CLS

[BPR15], [GPS16], [HY17], [CHKPRR19],[KNY17]... \
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NATURAL PROBLEMS ~ Naturat

Example:

INruT: Given the description M of a non-deterministic

Turing machine and an input x.
 Clo D
'l Theorem (Cook-Levin)
This problem is NP-complete. '
l

Output: The value M(x).
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COMPLEXITY OF TOTAL SEARCH PROBLEMS

Theorem :
The first natural complete problems for PPP and PWPP

There are natural collision-resistant hash functions that are CLS
universal in a worst-case sense based on generalizations of SIS. \



COMPLEXITY OF TOTAL SEARCH PROBLEMS

Theorem :
The first natural complete problems for PPA, for any prime p.

For some parameter range, SIS is no harder than the CLS
computational analogue of Chevalley-Warning Theorem. \



COMPLEXITY OF TOTAL SEARCH PROBLEMS

PPP, PWPP > Pigeonhole principle PTTNP
/ PP PPP
pLS /"
PPADS
PPAD/‘ FULEL>
Theorem ; /

The first natural complete problems for PPP and PWPP CLS




POLYNOMIAL PIGEONHOLE PRINCIPLE

PPP:
Given a circuit C : {0,1}" — {0,1}". Find:

1. Anxs.t. C(x) =0or

2. a collision, i.e. x # y s.t. C(x) = C(y).



POLYNOMIAL WEAK PIGEONHOLE PRINCIPLE

PWPP:
Given a circuit C : {0,1}" — {0,1}™, with m < n.
Find a collision, i.e. x # y s.t. C(x) = C(y).



PPP/PWPP AND CRYPTOGRAPHY

PPP

AN

One Way Permutation — OWP PWPP

|

Collision Resistance Hash Function — CRHF
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PPP & LATTICES

MINKOWSKI
INPUT: A basis B € Z"*".
OUTPUT: A vector x in the lattice £(B) such that ||x| < det'/"(B).

[S. Zampetakis Zirdelis "18, Ban Jain Papadimitiou Psomas Rubinstein “19]

MINKOWSKI is in PPP.




POLYNOMIAL PIGEONHOLE PRINCIPLE

PPP:
Given a circuit C : {0,1}" — {0,1}". Find:

1. Anxs.t. C(x) =0or

2. a collision, i.e. x # y s.t. C(x) = C(y).



MINKOWSKI IN PPP — PROOF




MINKOWSKI IN PPP — PROOF

x| < det'/2(£) = VB




MINKOWSKI IN PPP — PROOF

x| < det'/2(£) = VB




MINKOWSKI IN PPP — PROOF

| det'/?(B)]
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# of points = 9
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POLYNOMIAL PIGEONHOLE PRINCIPLE

PPP:
Given a circuit|C : [K] — K]} Find:

1. Anxs.t. C(x) =0or

2. a collision, i.e. x # y s.t. C(x) = C(y).
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MINKOWSKI IN PPP — PROOF

# of integer points in P(B) = |det(B)]

K = #of points =8

(Smith Normal Form ofB\

K] K]



SHORT INTEGER SOLUTION (SIS) PROBLEM

INPUT: € Zy ", with m > log(q)r.

(mod gq)

Ourtrut: |4 s.t. [|x]| < B,
0

X #
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SHORT INTEGER SOLUTION (SIS) PROBLEM

The problem is in PWPP!

INPUT: € Zy ", with 2™ > g".
OUTPUT: c {0,1}" S-t-

C(x) = Ax (mod g)

(mod g)




COMPLEXITY OF TOTAL SEARCH PROBLEMS

Theorem ;
The first natural complete problems for PPP and PWPP

Constrained-SIS is PWPP-complete
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INPUT: A c ngm’ G c 7dxm
' with m > log(q)(r + ) and(binary invertible

OUTPUT: € {0,1}" s.t.
problem total?

JAN (mod g)

Why is this

(mod 74)
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BINARY INVERTIBLE MATRIX

e.g.form=10,q=8

1 2430656 21
G=10 0012410 35
00000O0T12 40




BINARY INVERTIBLE MATRIX
8
- *x k% I
— g d

B — 2k < g

e.g.form=10,q=8

G =

o O




BINARY INVERTIBLE MATRIX

<€ >

m — dlog(q)




BINARY INVERTIBLE MATRIX

Lemma
For any b and binary z € {0,1}"~%198(4), we can efficiently compute a binary
solution of the form x = [x *---* z| for the equation Gx = b (mod 7).
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BINARY INVERTIBLE MATRIX

Example -

— (mod 8)
0000001240 1

— X > ¢
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Example -

— (mod 8)
00000O001 240 1

xr7 + 228 + 419 = 1 (mMod 8)
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CONSTRAINED SIS IS TOTAL

= flimer

<€ >

m — dlog(q)

# of solutions is 2™~ 410g4
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The problem is total!

m > log(q)(r + )



CONSTRAINED SIS IN PWPP

The problem is in PWPP!

C(z) = Find x such that Gx =0 (mod g) and x = [x *x z]
and output Ax (mod g).
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E Z?’Xﬂ’l

INPUT: (AN g
with m > log(q)(r +d)
OUTPUT: e {0,1}" s.t.
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and binary invertible

(mod )

(mod 74)




CONSTRAINED SIS IS PWPP-HARD

PWPP:
Given a circuit C : {0,1}" — {0,1}™, with m < n.
Find a collision, i.e x # y s.t. C(x) = C(y).



CONSTRAINED SIS IS PWPP-HARD

n — 1 outputs

n puts
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CONSTRAINED SIS IS PWPP-HARD

then use = (mod q) to find a collision!
X X
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>1-v—|—2-y—x1—x2:2 (mod 4)

O = = O
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CONSTRAINED SIS IS PWPP-HARD

Is G binary invertible?
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CONSTRAINED SIS IS PWPP-HARD

G is binary invertible

>
=)

(mod 4)




CONSTRAINED SIS IS PWPP-HARD

(mod 4)




CONSTRAINED SIS IS PWPP-HARD




CONSTRAINED SIS IS PWPP-HARD




PWPP-COMPLETE PROBLEM: CONSTRAINED SIS

m > log(q)(r + )
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Theorem ;
The first natural complete problems for PPP and PWPP

Constrained-SIS is PWPP-complete




CRHF FROM cSIS
— ngm, m > log(q)(r +4d)
KEY:

¢ binary invertible in Z*"
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Invut: | { € {0,1}o8(9)

X X

— (mod q)
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X

Invut: | { € {0,1}o8(9)

b S
OurpuT: A (mod gq) where

X
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Theorem :
The first natural complete problems for PPA, for any prime p.

SymmetricChevalley, is PPA -complete
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POLYNOMIAL PARITY ARGUMENT

A matching on an odd number of vertices has an isolated node.

Tolopogy:
I BORSUK-ULAM 1s PPA-complete | Aisenberga Bonet, Buss 15]
I Fair division:
Consensus Halving, Necklace Splitting are PPA-complete
I o— _— [Filos-Ratsikas Goldberg 18]

Computational Geometry:
Ham Sandwich is PPA-complete |Filos-Ratsikas Coldberg 19]



POLYNOMIAL MODULO p ARGUMENT

A p-dimensional matching on a non-multiple-of-p many vertices has an isolated node.

G
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POLYNOMIAL MODULO p ARGUMENT

A p-dimensional matching on a non-multiple-of-p many vertices has an isolated node.

p=3

Corresponding results: [Filos-Ratsikas Hollender S. Zampetakis ‘20]

Tolopogy:
o BSS THEOREM [Barany Shlosman Szucs ‘81118 PPAP—Complete

Fair division:
Consensus 1/p-Division, p-Necklace Splitting are in PPA,,
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FNP
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CHEVALLEY-WARNING THEOREM

For any prime p and a polynomial system

fl(ﬂ?l;--
fg(.ﬁ(}l,...

0 (mod p)

let Ve ={x|f(x) =0 (mod p)}.
(> deg(fi) < mYhen |[V¢| =0 (mod p).

Chevalley-Warning Condition



CHEVALLEY-WARNING THEOREM

For any prime p let f € IF,[xq,...,x,y|" be a system of polynomials
with zero constant terms satisfying Y "' ; deg(f;) < m, then f has
a non-zero solution.
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with @ero constant terms’satisfying Y "' ; deg(f;) < m, then f has




BI5, REDUCES TO CHEVALLEY,
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m
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BI5, REDUCES TO CHEVALLEY,

For any prime p and A € F*™, the linear system Ax = 0 (mod p) has a
non-trivial binary solution if m > n(p — 1).

Let f;(x) = ap;2b" "+ agjah " + - + am P!, j € [n], then

> deg(f;) = n(p—1) < m.

j=1




BI5, REDUCES TO CHEVALLEY,

For any prime p and A € F*™, the linear system Ax = 0 (mod p) has a
non-trivial binary solution if m > n(p — 1).

Proof:
Let f;(x) = ayab ™" 4 ag;ah ™"+ -+ amja?y L, j € [n], then

2 deg(f;) = n(p — 1) < m. [ Vel = 0 (mod p) ]

From CWTT, there exists a non-zero solution.



FUTURE DIRECTIONS - INCLUSIONS

FNP
TFNP
CSIS //. \\
\PPP PPA PPA,
MINKOWSKI ‘ \ /
/ g PPADS Mp PPAR

n-SVP
Ijé; ;:iVP PPQE\\\\\

CLS

FP



FUTURE DIRECTIONS - INCLUSIONS

1. nl2-SVP? FNP
TFNP
CSIS //. \\
\PPP PPA PPA,
MINKOWSKI™—_ ‘ \ /
/ g PPADS Mp PPAR

n-SVP
Ijé; ;:iVP PPQE\\\\\

CLS

FP



FUTURE DIRECTIONS - INCLUSIONS

1. nl2-SVP? FNP
2. Beyond PPP?




FUTURE DIRECTIONS - INCLUSIONS

1. nl2-SVP? FN P
2. Beyond PPP? TFN P
3. Other Assumptions? / \\

PPP PPA PPAp PLS «_
P

KPY
PPA
DLOC PADS ﬂp
PPAD
FACTORING

CLS,\IO

REPEATED SQUARING + FTP



FUTURE DIRECTIONS - INCLUSIONS

1. nl2SVP? by
2. Beyond PPP?
3. Other Assumptions?

CLS FACTORING/
1 DLOG



FUTURE DIRECTIONS - HARDNESS

FNP

CSIS TFNP
MINKOWSKI If//,/,/f’:;;;’K<:::““HEMM\\
PTP PPA PPA,
PPADS Mp PPAp
PPAD
CLS

1. MINKOWSKI ?

FP



FUTURE DIRECTIONS - HARDNESS

1. MINKOWSKI ? FN P
3. Beyond PPP? / ‘\‘-\
PTP PPA PPA,
PPADS //)ngPAp
PPAD
1/2 \
n'/~-CVP — CLS



FUTURE DIRECTIONS - HARDNESS

1. MINKOWSKI ? FN P

2. nl/z-CVP ? TFN P

3. Beyond PPP? //’ ‘\‘\
PTP PPA PPA,
PPADS Mp PPAR



FUTURE DIRECTIONS - HARDNESS

1. MINKOWSKI ? F'}' P
2. nl/z-CVP ? TENP
3. Beyond PPP? //’ ‘\‘\
4. n-SIVP?
PF‘>P PPA\ /P PA, PLS
PPADS /ﬂg PPAp

average-case SIS



FUTURE DIRECTIONS - HARDNESS

MINKOWSKI ? F N P

n'2-CVP? TFN P
Beyond PPP? \
n-SIVP ? H.SIVD / \\
n-SIVP vs PWPP? , PPP PPA PPA,
natural and universal CRHF \/ ‘ \ /

p

average-case SIS

AR




FUTURE DIRECTIONS

- TEFNP and Lattice Theory

Is MINKOWSKI PPP-complete? Is SIS PPP-complete? Is there a hardness of approximation for PPP? Is \/n-SVP in PPP? Is there a natural universal CRHF?



FUTURE DIRECTIONS

- TEFNP and Lattice Theory

Is MINKOWSKI PPP-complete? Is SIS PPP-complete? Is there a hardness of approximation for PPP? Is \/n-SVP in PPP? Is there a natural universal CRHF?

- TFNP and Cryptographic assumptions

Is SIS/DLOG/FACTORING PPAD-complete?



FUTURE DIRECTIONS

- TEFNP and Lattice Theory

Is MINKOWSKI PPP-complete? Is SIS PPP-complete? Is there a hardness of approximation for PPP? Is \/n-SVP in PPP? Is there a natural universal CRHF?

- TFNP and Cryptographic assumptions

Is SIS/DLOG/FACTORING PPAD-complete?

- Cryptography from TFNP

New cryptographic primitives from PPA? Is there a trapdoor for CHEVALLEY?



FUTURE DIRECTIONS

- TEFNP and Lattice Theory

Is MINKOWSKI PPP-complete? Is SIS PPP-complete? Is there a hardness of approximation for PPP? Is \/n-SVP in PPP? Is there a natural universal CRHF?

- TFNP and Cryptographic assumptions

Is SIS/DLOG/FACTORING PPAD-complete?

- Cryptography from TFNP

New cryptographic primitives from PPA? Is there a trapdoor for CHEVALLEY?

Thank you! ©



