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FNP: class of search problems whose decision version is in NP.

TFNP: class of total search problems of FNP, i.e. a solution always exists.

COMPLEXITY OF TOTAL SEARCH PROBLEMS

Theorem [Johnson Papadimitriou Yannakakis ’88, Megiddo Papadimitriou ’91]: 
If some problem 𝐿 ∈ TFNP is FNP-complete under deterministic reductions then NP = co-NP.

Theorem [Mahmoody Xiao ‘09]: 
If some problem 𝐿 ∈ TFNP is FNP-complete under randomized reductions then SAT is checkable.



A COMPLEXITY THEORY OF TOTAL SEARCH PROBLEMS?

“Total search problems should be classified in terms of the profound
mathematical principles that are invoked to establish their totality.”

Papadimitriou ‘94



TFNP: class of total search problems of FNP, i.e. a 
solution always exists [Megiddo Papadimitriou 91]

Subclasses of TFNP introduced by [Johnson 
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[Daskalakis Papadimitriou 11], [Jerabek 16]
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Many applications in game theory, economics, social choice, 
(discrete / continuous) optimization
e.g. [JYP88], [BCE+98], [EGG06], [CDDT09], [DP11], [R15], 
[R16], [BIQ+17], [GP17], [DTZ18], [FG18] …

Most celebrated result:
NASH is PPAD-complete 

[Daskalakis Goldberg Papadimitriou 06], [Chen Deng Teng 06]

Many applications in Cryptography [B06], [J16]
[BPR15], [GPS16], [HY17], [CHKPRR19],[KNY17]…



Natural: a problem that does not explicitly contain a
circuit or a Turing machine as part of the input.

Are there natural complete problems for TFNP subclasses?
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COMPLEXITY OF TOTAL SEARCH PROBLEMS

Theorem [S Zampetakis Zirdelis 18]:
The first natural complete problems for PPP and PWPP

There are natural collision-resistant hash functions that are 
universal in a worst-case sense based on generalizations of SIS.



COMPLEXITY OF TOTAL SEARCH PROBLEMS

Theorem [Göös Kamath S Zampetakis 19] :
The first natural complete problems for PPAp for any prime p.

For some parameter range, SIS is no harder than the 
computational analogue of Chevalley-Warning Theorem. 
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PPP, PWPP Pigeonhole principle
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PPP/PWPP AND CRYPTOGRAPHY



PPP & LATTICES



PPP & LATTICES



PPP & LATTICES



PPP & LATTICES

Theorem [S. Zampetakis Zirdelis ’18, Ban Jain Papadimitiou Psomas Rubinstein ‘19]

MINKOWSKI is in PPP.
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MINKOWSKI IN PPP – PROOF 

(Smith Normal Form of B)
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The problem is in PWPP!
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Constrained-SIS is PWPP-complete
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CRHF FROM cSIS

cSIS defines a worst-case universal collision-resistant hash function family.
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PPAp Modulo p arguments

Theorem [Göös Kamath S Zampetakis 19] :
The first natural complete problems for PPAp for any prime p.



COMPLEXITY OF TOTAL SEARCH PROBLEMS

SymmetricChevalleyp is PPAp-complete

Theorem [Göös Kamath S Zampetakis 19] :
The first natural complete problems for PPAp for any prime p.
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A matching on an odd number of vertices has an isolated node.

POLYNOMIAL PARITY ARGUMENT

Tolopogy: 
BORSUK-ULAM is PPA-complete [Aisenberga Bonet, Buss 15] 

Fair division: 
Consensus Halving, Necklace Splitting are PPA-complete 
[Filos-Ratsikas Goldberg 18]

Computational Geometry: 
Ham Sandwich is PPA-complete [Filos-Ratsikas Goldberg 19]
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A p-dimensional matching on a non-multiple-of-p many vertices has an isolated node.

p = 3

POLYNOMIAL MODULO p ARGUMENT

Corresponding results: [Filos-Ratsikas Hollender S. Zampetakis ‘20]

Tolopogy: 
BSS THEOREM [Bárány Shlosman Szucs ‘81] is PPAp-complete

Fair division: 
Consensus 1/p-Division, p-Necklace Splitting are in PPAp.
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3. Beyond PPP?
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5. n-SIVP VS PWPP? 

natural and universal CRHF
?
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- TFNP and Lattice Theory
Is MINKOWSKI PPP-complete? Is SIS PPP-complete? Is there a hardness of approximation for PPP? Is 𝑛-SVP in PPP? Is there a natural universal CRHF?

- TFNP and Cryptographic assumptions
Is SIS/DLOG/FACTORING PPAD-complete? 

- Cryptography from TFNP
New cryptographic primitives from PPA? Is there a trapdoor for CHEVALLEY?

Thank you! 


