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Integer Linear Programming c|alu

Standard Form

max CTX

Ax=0>b
XEZ%O

where Ac Z™*" be Z™, c e Z".
Considered case
m (#constraints) is a fixed constant, entries of A are small (< A).

Applications
Knapsack and scheduling problems, configuration IPs,. ..



Pseudo-polynomial Algorithms

Papadimitrou 1981
IP can be solved in time (m(A + [[bl0)) ™).

Eisenbrand & Weismantel 2018
IP can be solved in time n- O(mA)?™ - ||b||%.



Pseudo-polynomial Algorithms

Papadimitrou 1981
IP can be solved in time (m(A + [[bl0)) ™).

Eisenbrand & Weismantel 2018
IP can be solved in time n- O(mA)?™ - ||b||%.

This talk
IP can be solved in time O(mA)>™ - log(||bl|sc) + O(nm).



Pseudo-polynomial Algorithms

Papadimitrou 1981
IP can be solved in time (m(A + [[bl0)) ™).

Eisenbrand & Weismantel 2018
IP can be solved in time n- O(mA)?™ - ||b||%.

This talk

IP can be solved in time O(mA)>™ - log(||bl|sc) + O(nm).
Moreover, for every m and § > 0 improving the exponent to

2m — ¢ is equivalent to finding a truly subquadratic algorithm for
(min, +)-convolution.



Other results

Feasibility problem

Our algorithm: O(mA)™ - log(A) - log(A + ||b||s) + O(nm).
Improving exponent to m — § would contradict the Strong
Exponential Time Hypothesis (SETH).

Previous best result (Eisenbrand, Weismantel 2018):
n- O(mA)™ - ||b||co-



Other results

Knapsack problems with small weights
Running time  Previous
UNBOUNDED KNAPSACK — O(A?) O(nC), O(nA?)
UNBOUNDED SUBSET-SUM  O(Alog?(A))  O(Clog(C))
(A = maximum weight; C = capacity)



Other results

Knapsack problems with small weights
Running time  Previous
UNBOUNDED KNAPSACK — O(A?) O(nC), O(nA?)
UNBOUNDED SUBSET-SUM  O(Alog?(A))  O(Clog(C))
(A = maximum weight; C = capacity)

Scheduling on identical machines P||Cpax
Previous EPTAS  20(/¢log*(1/9) 1 O(N log N)
New EPTAS 20(1/clog’(1/9) 4 O(N)
(N = number of jobs, M = number of machines with M < N)



Steinitz Lemma

Let ||-|| be a norm in R™ and let vV, ... v(t) € R™ such that
[vD|| <1 forall iand v(¥) 4 ... 4+ v(t) = 0. Then there exists a
permutation m € S; such that for all j € {1,...,t}

J
sz(ﬂ(i))u < m.
i=1




Steinitz for IP

Consider an optimal solution x* of (IP)
and the sequence of column vectors

A A A A max CTX
Tyeon 1, A2, ... 2y
M M M ) b ) AX —_ b (IP)
x; times x5 times n
X € Z>0

Recall that ||Ai]|ec < A.
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Consider an optimal solution x* of (IP)
and the sequence of column vectors

T
max € X
AL, AL Ass . As
Ax=b (IP)
x; times x5 times n
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Recall that ||Ai]|ec < A.



Steinitz for IP

Consider an optimal solution x* of (IP)
and the sequence of column vectors

A A A A max € X
1" M 17 27"‘7 27"‘
Ax = (IP)
x; times x5 times n
X € Z>0

Recall that ||Ai]|ec < A.




Steinitz for IP clalu

More formally,

Corollary
Let v, ..., v(®) denote columns of A with Zle v() = b, Then
there exists a permutation m € S; such that for all j € {1,...,t}

< 2mA.

J
HZ V0 _ e
i=1

o

i i e () —
This follows easily from the Steinitz Lemma: Insert vectors 4 ZAb/t,

i €{1,...,t}, in the Steinitz Lemma. Note that || b/t||oo <1




Eisenbrand & Weismantel c|alu

csTTTTT

Pr I
RARERRLCSNY > Every 0 — b path gives a
L feasible solution
R > Longest path is optimal
Ll solution
P e
ERes U X » O(mA)™ - ||b||« vertices
/,’./I SLITIIIIIIT L > n-O(mA)™ - ||b]|e edges
:,,’lfv_u:A,|sco|umn’>R . time:
D10k weight ¢ e e 112
SRS n- O(mA)=" - ||b[|5,
Lo - ’

Observation: There is an optimal solution of bounded norm, i.e.,
Ix[l < O(mA)™ - || b o
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b  columns corresponding to an
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Our Approach

Let v 4 ... 4 v(t) = b be
columns corresponding to an
optimal solution of (IP).

Equivalent:
v 4+ v(t/2) s optimal for

{maxcTx,Ax = b/,x € Z%}

and v(t/2+1) 1 4 (1) s for

0 {maxc"x,Ax = b—b,x € Z%4}-

If ordered via Steinitz Lemma, b’ and b — b’ are not far from %b.
Also, t cut in half in subproblems.



Dynamic Program

Assume w.l.o.g. there is an optimal solution x with ||x||; = 2K,
where K € log(O(mA)™ - ||b||oc) = O(mlog(mA) + log(]|bl|ec))



Dynamic Program

Assume w.l.o.g. there is an optimal solution x with ||x||; = 2K,
where K € log(O(mA)™ - ||b||oc) = O(mlog(mA) + log(]|bl|ec))

Solve for every i = K, K —1,...,0 and every b’ with
1
b — bH < 4mA
2[
(o]

the problem

max CTX

Ax = b

Ixfly = 25

X € ZgO.

Solution for original problem at i =0
and b’ = b.



lterative calculation c|Alu

Let i < K and b" with ||b' — 1/2' - b||s < 4mA.
Let v(D, ..., VO correspond to a solution of
max{c x,Ax = b, |||y =27 x e Zh},

ordered via Steinitz Lemma.



Iterative calculation

Let i < K and b" with ||b' — 1/2' - b||s < 4mA.
Let v(D, ..., VO correspond to a solution of
max{c x,Ax = b, |||y =27 x e Zh},

ordered via Steinitz Lemma. Set b" := v(1) 4 . £ 7).

1 1 1
b — — bH <|[p' =¥ +Hb’— . bH <4mA
‘ 2:+1 ~ 2 - 2 2:+1 o
<2mA <1/2-4mA
Similarly,
/ /!
-y ko] <ama

o



Iterative calculation

Let i < K and b" with ||b' — 1/2' - b||s < 4mA.
Let v(D, ..., VO correspond to a solution of
max{c x,Ax = b, |||y =27 x e Zh},

ordered via Steinitz Lemma. Set b" := v(1) 4 . £ 7).

1

1 1
b — — bH <|[p' =¥ +Hb’— . bH <4mA
‘ 2:+1 ~ 2 - 2 2:+1 o
<2mA <1/2-4mA
Similarly,
1
/ /!
'(b—b)—ziHbH < 4mA.
oo

Guess b” (O(mA)™ candidates), look up solutions for (i + 1, b")
and (i + 1,6 — b"), and take the best.



Merging solutions

(MAX, +)-CONVOLUTION

n, ,ré- 1 ré-, r,+1,...,r,-,1
Input: r,...,ry € R,
st,...,sn €R 1,7 351 15 Siy Sii1s.-3Si-1
. 2 21 2
Output: t1,...,ty € R with K
t = maxJ-[rj + S,',_,'] t;

For m = 1, merging solutions directly corresponds to solving
(MAX, +)-CONVOLUTION of size N = O(A).

For general m, we can cast the problem to an instance of
(MAX, +)-CONVOLUTION of size N = O(mA)™.



Merging solutions

(MAX, +)-CONVOLUTION

rn,.. 7,%—1’ ré’ r’+17‘ y li—1
Input: r,...,ry € R,
St,...,sn ER 1,7 -25i_ 1y Siy Siiq1s..5Si-1
. 2 21
Output: t1,...,ty € R with K
t = maxJ-[rJ- + S,',_,'] t;

For m = 1, merging solutions directly corresponds to solving
(MAX, +)-CONVOLUTION of size N = O(A).

For general m, we can cast the problem to an instance of
(MAX, +)-CONVOLUTION of size N = O(mA)™.

T(N) time algorithm for (min, +)-convolution =
T(O(mA)™) - O(mlog(mA) + log(]|blloc)) + O(nm) for IP.

With T(n) = O(n?/log(n)): O(mA)?™ -log(||b|ls) + O(nm).



M



Lower bound

Theorem

If there is an m € N and § > 0 for which an Algorithm exists that
solves IPs with m constraints in time O(m(A + ||b|/s0))?™°, then
(MIN ,4)-CONVOLUTION can be solved in time O(N?~%").

Theorem (Cygan et al. 2017)

1. There exists a § > 0 and an O(N?~°) time algorithm for
(MIN ,+)-CONVOLUTION
if and only if

2. There exists a 6 > 0 and an O(C?~%) time algorithm for
UNBOUNDED KNAPSACK.



Unbounded Knapsack c|alu

N
maXx Zp,-x,-
i=1
N
Z Wi X; < C
i=1

X17~-;XN€ZZO



Unbounded Knapsack

N
mapr,-x,- +0-y
i=1

N

ZW,-X,-—i-l-y:C
i=1
X1,y XN, Y € Z>0

m=1
Assume there is a O(m(A + ||b|0))>™ % = O(C?79).
—_———

=0(C)



Unbounded Knapsack

N
mapr,-x,- +0-y
i=1

N
ZW,-X,-—i-l-y:C
i=1

X1,y XN, Y € Z>0
m=1
Assume there is a O(m(A + ||b|0))>™ % = O(C?79).
—_———
—0(C)
m>1

Reduce A by introducing additional equalities.



carrying
"
5

2




Unbounded Knapsack cont'd

Set A = [CY™]. Write
C=CO4+A.cD4A%2.c@ ... am1. clm-1)

with each number smaller than A.

N
Z W,-(O)X,- —A-y= c©
i=1
N N
ZW,'X,': cC <« Zwi(l)x,-—f—yo—A-yl =c®
i=1 i=1

N
S wPxity— Dy =c?
i=1



Putting together the pieces c|alu

» Suppose for some fixed m there exists an algorithm that
solves IPs with m constraints in O(m(A + | b||o0))?>™ 0.

» Construction shows UNBOUNDED KNAPSACK can be solved
via IP with m constraints and biggest entry A = [CY/™].

» Running time:
O(m(A + [|b]|s))>™ " = O(m[ C*/™])>m=*
— O(m)2m76 . (Cl/m)2m75 — f(m) . C2f%.

= UNBOUNDED KNAPSACK can be solved in subquadratic time.
= (MIN, +)-CONVOLUTION can be solved in subquadratic time.



Feasibility of IP

BOOLEAN-CONVOLUTION

rn,...,ri
Input: r1,...,ry € {0,1}, Loty

S1,...,SN € {0,1}
Output: t1,...,ty € {0,1}
with
ti = Vj[”j A si—j]
Boolean Convolution can be computed in time
T(N) = O(Nlog N) time.

C | A | U Christian-Albrechts-Universitat zu Kiel



Feasibility of IP

BOOLEAN-CONVOLUTION

Input: r,...,ry €{0,1}, R
51,...,SN€{O,1} <
Output: t,...,ty € {0,1} Sto---sio1r 84 ’\Iu I SEAIEE
with /!
ti =Vl A si—j] ti

Boolean Convolution can be computed in time
T(N) = O(Nlog N) time.

= Feasibility of IP in time

T(O(mA)™) - (mlog(mA) + log(||b]|)) + O(nm)
= O(mA)™ - log(A) - log(A + || b]|sc) + O(nm).



Lower bound

K-SUM

Input: T € Ng and Z4,...,2Zx C Ny where
|Z1| + |Zo| + ...+ |Zk| = ne N.
Output: z1 € Z1,z0 € Z>. ..,z € Zk such that
zi+zon+...+z.=T.

Theorem (Abboud et al. 2017)

If SETH holds, then for every § > 0 there exists a v > 0 such that
k-SUM cannot be solved in time O( T1~%n7k).

Theorem
If the SETH holds, for every fixed m there does not exist an

algorithm that solves feasibility of IPs with m constraints in time
(™) (A + [|b]l o)™



Proximity clalu

Theorem (Eisenbrand, Weismantel 2018)

Let max{c'x: Ax = b,x € Z%4} be feasible and bounded and x*
be an optimal vertex solution of the LP relaxation. Then there is
an optimal solution z* of IP with ||z* — x*||c < m(2mA + 1)™.



Proximity

Theorem (Eisenbrand, Weismantel 2018)

Let max{c'x: Ax = b,x € Z%4} be feasible and bounded and x*
be an optimal vertex solution of the LP relaxation. Then there is
an optimal solution z* of IP with ||z* — x*||c < m(2mA + 1)™.

Reduction of right-hand side

This implies z > ¢; := max{0, [x*] — m(2mA + 1)™}. Therefore,
we get an equivalent IP max{c Ty : Ay = b,y € 724} with

b = max{b; — a] ¢,0}. -

Consequence: ||b'||oo < O(mA)™+1



Use of Proximity

Theorem (Eisenbrand, Weismantel 2018)

Optimality and Feasibility of the IP can be done in time
n-O(mA)*™*2 + [P and n- O(mA)?>™+1 4 LP, respectively.



Use of Proximity

Theorem (Eisenbrand, Weismantel 2018)

Optimality and Feasibility of the IP can be done in time
n-O(mA)*™*2 + [P and n- O(mA)?>™+1 4 LP, respectively.

Using our new result for the IP we obtain:

Theorem

Optimality and Feasibility of the IP can be done in time
O(mA)?>™ + O(nm) + LP and O(mA)™ -log?(A) + O(nm) + LP,
respectively.



Application Knapsack c|alu

UNBOUNDED KNAPSACK
with equality constraint is an IP with m =1 constraint:

n n
max{z piXi Z wixi=C,x € Zgo}.
i=1 i=1

An optimal fractional LP solution can be computed in O(A) and
O(1) time for UNBOUNDED KNAPSACK and UNBOUNDED
SUBSET-SUM.



Application Knapsack c|alu

UNBOUNDED KNAPSACK
with equality constraint is an IP with m =1 constraint:

n n
max{z piXi Z wixi=C,x € Zgo}.
i=1 i=1

An optimal fractional LP solution can be computed in O(A) and
O(1) time for UNBOUNDED KNAPSACK and UNBOUNDED
SUBSET-SUM.
Using the proximity results we get:
Running time Previous
UNBOUNDED KNAPSACK — O(A?2) O(nC), O(nA?)
UNBOUNDED SUBSET-SUM  O(Alog?(A))  O(Clog(C))



Application P||Cpax claly

SCHEDULING ON IDENTICAL MACHINES
Input: N jobs with processing times p; € Nand M < N
machines.
Output: A schedule o : {1,...,N} — {1,..., M} which
minimizes the maximum load L; = Zj:a(j):,-pj over
all machines i =1,..., M.

. I Proc. time

Jobs Machines
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Application P||Cpax claly

SCHEDULING ON IDENTICAL MACHINES
Input: N jobs with processing times p; € Nand M < N
machines.
Output: A schedule o : {1,...,N} — {1,..., M} which
minimizes the maximum load L; = Zj:a(j):,-pj over
all machines i =1,..., M.

Makespan

Machines



Application P||Cpax

Configuration IP

> cecXxc =M
ZCECCiXC:Ni ViE{l,...,m—l}
Xc € Z>o vCec(C

has m = O(1/elog(1/€)) constraints and n = |C| = 2°(1/€) many
variables. The value A < 1/e and ||b|lcc < N.

Previous best result: 20(/¢log(1/<)) 1 O(N log N).



Application P||Cpax

Configuration IP

> cecXxc =M
ZCECCiXC:Ni ViE{l,...,m—l}
Xc € Z>o vCec(C

has m = O(1/elog(1/€)) constraints and n = |C| = 2°(1/€) many
variables. The value A < 1/e and ||b|lcc < N.

Previous best result: 20(/¢log(1/<)) 1 O(N log N).

New result: Including the rounding in time O(N + 1/elog(1/¢)),
the total running time for the ILP is:

O(mA)™ -log(A) - log(A + ||b]|sc) + O(nm) + O(N + 1/elog(1/€))
< 20(1/clog’(1/9) |og( N) + O(N) < 20(1/clog*(1/9) 4 O(N).



Conclusion clalu

>

Improved pseudo-polynomial algorithm for IP with fixed
number of constraints

Equivalence to (MIN, +)-CONVOLUTION w.r.t. improvements
Lower bound for feasibility IP under SETH

Use of proximity to reduce running time

vvyyy

Application in knapsack and scheduling



Open Question
Can we solve the following IP in time
(mA)°™ - log(||bl|o) + O(nm)?

max CTX

Ax=b
x<u
XGZ%O

Best algorithm known: n- mO(m) . AO(m*),



