
Lattice Based Cryptography
Tools and Applications

Shweta Agrawal
IIT Madras

Image Credit: Hans Hoffman, UCB Art Museum

Computing on Encrypted Data
Personalised Medicine

 “The dream for tomorrow’s medicine is
to understand the links between DNA
and disease — and to tailor therapies
accordingly. But scientists have a
problem: how to keep genetic data and
medical records secure while still
enabling the massive, cloud-based
analyses needed to make meaningful
associations.”

 2

Check Hayden, E. (2015). Nature, 519, 400-401.

Computing on Encrypted Data
Personalised Medicine

 “The dream for tomorrow’s medicine is
to understand the links between DNA
and disease — and to tailor therapies
accordingly. But scientists have a
problem: how to keep genetic data and
medical records secure while still
enabling the massive, cloud-based
analyses needed to make meaningful
associations.”

 2

Check Hayden, E. (2015). Nature, 519, 400-401.

Doesn’t FHE solve exactly this?

Prof. Bob wants to store encrypted file so that:

• Other Professors or admin assistants of CS
group can open it

• Encrypt file for each of them?

• If someone quits or new person joins? Re-
encrypt ?

• Organizational nightmare !

Access Control on Encrypted Data

Prof. Bob wants to store encrypted file so that:

Access Control on Encrypted Data

Prof. Bob wants to store encrypted file so that:

What he really wants:
Encryption for formula

Access Control on Encrypted Data

OR

Professors AND

Admin CS Group

Prof. Bob wants to store encrypted file so that:

What he really wants:
Encryption for formula

Access Control on Encrypted Data

What do we want?

What do we want?

What do we want?

OR

PROF. AND

Admin CS Group

What do we want?

What do we want?

PROF OR {Admin AND CS}

What do we want?

PROF OR {Admin AND CS}

What do we want?

Key Authority

PROF OR {Admin AND CS}

What do we want?

Key Authority

PROF OR {Admin AND CS}

What do we want?

Key Authority

PROF OR {Admin AND CS}

What do we want?

Key Authority

PROF OR {Admin AND CS}

PROF

What do we want?

Key Authority

PROF OR {Admin AND CS}

PROF

CS Admin

What do we want?

Key Authority

PROF OR {Admin AND CS}

PROF

CS Admin

What do we want?

Key Authority

PROF OR {Admin AND CS}

PROF

CS Admin

What do we want?

PROF OR {Admin AND CS}

PROF

CS Admin

What do we want?

PROF OR {Admin AND CS}

PROF

CS Admin

Attacker

What do we want?

PROF OR {Admin AND CS}

PROF

CS Admin

Attacker

What do we want?

PROF OR {Admin AND CS}

PROF

CS Admin

Attacker

What do we want?

PROF OR {Admin AND CS}

PROF

CS Admin

Attacker

What do we want?

PROF OR {Admin AND CS}

✗

PROF

CS Admin

Attacker

 5

Need New Tools & Techniques!
Main Tool: Lattice Trapdoors

Trapdoor Functions

 6

Trapdoor Functions

 6

Generate (f, T)

Trapdoor Functions

 6

Generate
f : D → R,

(f, T)

Trapdoor Functions

 6

Generate
f : D → R,

(f, T)

One Way

D

Trapdoor Functions

 6

Generate
f : D → R,

(f, T)

One Way

RD

Trapdoor Functions

 6

Generate
f : D → R,

(f, T)

One Way

RD

Trapdoor Functions

 6

x

Generate
f : D → R,

(f, T)

One Way

RD

Trapdoor Functions

 6

x
y

Easy

Generate
f : D → R,

(f, T)

One Way

f

RD

Trapdoor Functions

 6

x
y

Easy

Hard

Generate
f : D → R,

(f, T)

One Way

f

RD

Trapdoor Functions

 6

x
y

Easy

Hard

Easy given T

Generate
f : D → R,

(f, T)

One Way

f

!7

Short Integer Solution Problem

Given matrix A, find “short” (low norm) vector x such that

A
x 0=n

m

m n

Let

mod q

A ∈ ℤn×m
q , q = 𝗉𝗈𝗅𝗒(n), m = Ω(n log q)

A x = 0 mod q ∈ ℤn
q

!8

Learning With Errors Problem
Distinguish “noisy inner products” from uniform

Fix uniform s Zq
n

a1 , b1 = <a1,s> + e1
a2 , b2 = <a2,s> + e2

am , bm = <am,s>+ em

vs

ai uniform Zq
n , ei ~ ϕ Zq ai uniform Zq

n , bi uniform Zq∈∈ ∈

∈

∈

Lattice Based One Way Functions

 9

Public Key A ∈ ℤn×m
q , q = 𝗉𝗈𝗅𝗒(n), m = Ω(n log q)

Lattice Based One Way Functions

Based on SIS

• Short x, surjective

• CRHF if SIS is hard [Ajt96…]

 9

Public Key A ∈ ℤn×m
q , q = 𝗉𝗈𝗅𝗒(n), m = Ω(n log q)

fA(x) = A x mod q ∈ ℤn
q

Lattice-Based One-Way Functions

I Public key
h
· · · A · · ·

i
2 Zn⇥m

q for q = poly(n), m = ⌦(n log q).

fA(x) = Ax mod q 2 Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . .]

gA(s, e) = s
t
A+ e

t mod q 2 Zm
q

(“very short” e, injective)

OWF if LWE hard [Regev’05,P’09]

I Lattice interpretation: ⇤?(A) = {x 2 Zm : fA(x) = Ax = 0 mod q}

O

(0, q)

(q, 0)

x

O

(0, q)

(q, 0)

a1

a2

Ats

e

5 / 17

Lattice Based One Way Functions

Based on SIS

• Short x, surjective

• CRHF if SIS is hard [Ajt96…]

 9

Public Key A ∈ ℤn×m
q , q = 𝗉𝗈𝗅𝗒(n), m = Ω(n log q)

gA(s, e) = stA + et mod q ∈ ℤm
qfA(x) = A x mod q ∈ ℤn

q

Lattice-Based One-Way Functions

I Public key
h
· · · A · · ·

i
2 Zn⇥m

q for q = poly(n), m = ⌦(n log q).

fA(x) = Ax mod q 2 Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . .]

gA(s, e) = s
t
A+ e

t mod q 2 Zm
q

(“very short” e, injective)

OWF if LWE hard [Regev’05,P’09]

I Lattice interpretation: ⇤?(A) = {x 2 Zm : fA(x) = Ax = 0 mod q}

O

(0, q)

(q, 0)

x

O

(0, q)

(q, 0)

a1

a2

Ats

e

5 / 17

Based on LWE

• Very short e, injective

• OWF if LWE is hard [Reg05…]

Lattice-Based One-Way Functions

I Public key
h
· · · A · · ·

i
2 Zn⇥m

q for q = poly(n), m = ⌦(n log q).

fA(x) = Ax mod q 2 Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . .]

gA(s, e) = s
t
A+ e

t mod q 2 Zm
q

(“very short” e, injective)

OWF if LWE hard [Regev’05,P’09]

I Lattice interpretation: ⇤?(A) = {x 2 Zm : fA(x) = Ax = 0 mod q}

O

(0, q)

(q, 0)

x

O

(0, q)

(q, 0)

a1

a2

Ats

e

5 / 17
Image Credit: MP12 slides

Inverting functions for Crypto

 10

• Given

• Sample

 with prob

u = fA(x) = A x mod q

x′� ← = f −1
A (u)

∝ exp(−∥x′�∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

• Given

• Find unique

gA(s, e) = stA + et mod q

(s, e)

And

Inverting functions for Crypto

 10

• Given

• Sample

 with prob

u = fA(x) = A x mod q

x′� ← = f −1
A (u)

∝ exp(−∥x′�∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Preimage Sampleable Trapdoor Functions!

Inverting functions for Crypto

 10

• Given

• Sample

 with prob

u = fA(x) = A x mod q

x′� ← = f −1
A (u)

∝ exp(−∥x′�∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Preimage Sampleable Trapdoor Functions!

Inverting functions for Crypto

 10

• Given

• Sample

 with prob

u = fA(x) = A x mod q

x′� ← = f −1
A (u)

∝ exp(−∥x′�∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Generate (x, y) in two equivalent ways

Preimage Sampleable Trapdoor Functions!

Inverting functions for Crypto

 10

• Given

• Sample

 with prob

u = fA(x) = A x mod q

x′� ← = f −1
A (u)

∝ exp(−∥x′�∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Generate (x, y) in two equivalent ways

D R

x y

Preimage Sampleable Trapdoor Functions!

Inverting functions for Crypto

 10

• Given

• Sample

 with prob

u = fA(x) = A x mod q

x′� ← = f −1
A (u)

∝ exp(−∥x′�∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Generate (x, y) in two equivalent ways

D R

x y

OR

Preimage Sampleable Trapdoor Functions!

Inverting functions for Crypto

 10

• Given

• Sample

 with prob

u = fA(x) = A x mod q

x′� ← = f −1
A (u)

∝ exp(−∥x′�∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Generate (x, y) in two equivalent ways

D R

x y

D R

x y

OR

Preimage Sampleable Trapdoor Functions!

Inverting functions for Crypto

 10

• Given

• Sample

 with prob

u = fA(x) = A x mod q

x′� ← = f −1
A (u)

∝ exp(−∥x′�∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Generate (x, y) in two equivalent ways

D R

x y

D R

x y

Same Distribution (Discrete Gaussian, Uniform) !

OR

Preimage Sampleable Trapdoor Functions!

Inverting functions for Crypto

 10

• Given

• Sample

 with prob

u = fA(x) = A x mod q

x′� ← = f −1
A (u)

∝ exp(−∥x′�∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Generate (x, y) in two equivalent ways

D R

x y

D R

x y

Same Distribution (Discrete Gaussian, Uniform) !

OR

Latter distribution
needs lattice
trapdoors!

Walking the Edge between
Structure and Randomness:  

The Quest for Indistinguishability
Obfuscation

Shweta Agrawal
IIT Madras

What do these trapdoors look like?

!12

Lattice Trapdoors (Type 1):
Geometric View

!12

Lattice Trapdoors (Type 1):
Geometric View

v1

v2

!12

Lattice Trapdoors (Type 1):
Geometric View

v1

v2

v’2
v’1

!12

Lattice Trapdoors (Type 1):
Geometric View

Multiple Bases

v1

v2

v’2
v’1

!13

Parallelopipeds

!14

Parallelopipeds

!15

T

Good Basis

!15
“Quite short” and “nearly orthogonal”

T

Good Basis

!15

What’s my
closest lattice

point?

“Quite short” and “nearly orthogonal”

T

Good Basis

!16

Good Basis

T
V

!16

Good Basis

T
V

Output center of parallelopipid containing T

!16

Good Basis
Declared
closest
point

T
V

Output center of parallelopipid containing T

!16

Good Basis
Declared
closest
point

Pretty Accurate…

T
V

Output center of parallelopipid containing T

!17

Bad Basis

!18

Bad Basis

V

!18

Bad BasisDeclared
closest
point

V

!18

Bad Basis Closer
Lattice
point

Declared
closest
point

V

!18

Bad Basis Closer
Lattice
point

Declared
closest
point

V

Output center of parallelopipid containing T

!18

Bad Basis Closer
Lattice
point

Declared
closest
point

V

Not So Accurate…
Output center of parallelopipid containing T

!19

Basis quality and Hardness
• SVP, CVP, SIS (...) hard given arbitrary

(bad) basis
• Some hard lattice problems are easy given

a good basis
• Will exploit this asymmetry

!19

Basis quality and Hardness
• SVP, CVP, SIS (...) hard given arbitrary

(bad) basis
• Some hard lattice problems are easy given

a good basis
• Will exploit this asymmetry

Use Short Basis as Cryptographic Trapdoor!

!20

Lattice Trapdoors (Type 1)

!20

Lattice Trapdoors (Type 1)
Inverting Our Function

!20

Lattice Trapdoors (Type 1)

Recall
Want

 with prob

u = fA(x) = A x mod q

x′� ← = f −1
A (u)

∝ exp(−∥x′�∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Inverting Our Function

!20

Lattice Trapdoors (Type 1)

Recall
Want

 with prob

u = fA(x) = A x mod q

x′� ← = f −1
A (u)

∝ exp(−∥x′�∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

The Lattice

Inverting Our Function

!20

Lattice Trapdoors (Type 1)

Recall
Want

 with prob

u = fA(x) = A x mod q

x′� ← = f −1
A (u)

∝ exp(−∥x′�∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

The Lattice

Inverting Our Function

Λ = {x : Ax = 0 mod q} ⊆ ℤm
q

!20

Lattice Trapdoors (Type 1)

Recall
Want

 with prob

u = fA(x) = A x mod q

x′� ← = f −1
A (u)

∝ exp(−∥x′�∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

The Lattice

Inverting Our Function

Λ = {x : Ax = 0 mod q} ⊆ ℤm
q

Short basis for lets us sample from
with correct distribution!

f −1
A (u)Λ

Two Questions

1.How to use short basis

Two Questions

1.How to use short basis
• Randomized Nearest plane Algorithm

Two Questions

1.How to use short basis
• Randomized Nearest plane Algorithm
• Chris’s talk

Two Questions

1.How to use short basis
• Randomized Nearest plane Algorithm
• Chris’s talk

Two Questions

1.How to use short basis
• Randomized Nearest plane Algorithm
• Chris’s talk

2.How to get short basis — this talk (almost)

Two Questions

Lattice Trapdoors (Type 2)

Lattice Trapdoors (Type 2)

Lattice Trapdoors (Type 2)

 Not a short basis but

Lattice Trapdoors (Type 2)

 Not a short basis but
• Just as powerful

Lattice Trapdoors (Type 2)

 Not a short basis but
• Just as powerful
• More efficient

Lattice Trapdoors (Type 2)

 Not a short basis but
• Just as powerful
• More efficient
• Better parameters

Lattice Trapdoors (Type 2)

 Not a short basis but
• Just as powerful
• More efficient
• Better parameters
• Implies Type 1 trapdoors

Lattice Trapdoors (Type 2)

 Not a short basis but
• Just as powerful
• More efficient
• Better parameters
• Implies Type 1 trapdoors

Image Credit: https://us.macmillan.com/podcasts/podcast/better-at-everything/

https://us.macmillan.com/podcasts/podcast/better-at-everything/

!23

Type 2 Trapdoors [MP12]

fA(x) = A x mod q ∈ ℤn
q

gA(s, e) = stA + et mod q ∈ ℤm
qRecall and

!23

Type 2 Trapdoors [MP12]

fA(x) = A x mod q ∈ ℤn
q

gA(s, e) = stA + et mod q ∈ ℤm
qRecall and

 Design
 for Gadget Matrix G
 (fixed, public, offline)

f −1
G , g−1

G

1

!23

Type 2 Trapdoors [MP12]

Randomize G ↔ A via
nice unimodular
transformation

fA(x) = A x mod q ∈ ℤn
q

gA(s, e) = stA + et mod q ∈ ℤm
qRecall and

 Design
 for Gadget Matrix G
 (fixed, public, offline)

f −1
G , g−1

G

1 2

!23

Type 2 Trapdoors [MP12]

Randomize G ↔ A via
nice unimodular
transformation

fA(x) = A x mod q ∈ ℤn
q

gA(s, e) = stA + et mod q ∈ ℤm
qRecall and

 Design
 for Gadget Matrix G
 (fixed, public, offline)

f −1
G , g−1

G
Reduce

to

f −1
A , g−1

A

f −1
G , g−1

G

1 2 3

!23

Type 2 Trapdoors [MP12]

Randomize G ↔ A via
nice unimodular
transformation

fA(x) = A x mod q ∈ ℤn
q

gA(s, e) = stA + et mod q ∈ ℤm
qRecall and

 Design
 for Gadget Matrix G
 (fixed, public, offline)

f −1
G , g−1

G
Reduce

to

f −1
A , g−1

A

f −1
G , g−1

G

Transformation in Step 2 is the trapdoor!

1 2 3

!24

Step 1: for Gadget G
fG(x) = G x mod q ∈ ℤn

q gG(s, e) = stG + et mod q ∈ ℤm
qRecall and

and

f −1
G , g−1

G

g = [1, 2, 4,⋯, 2k−1] ∈ ℤ1×k
qq = 2kLet

 Invert LWE: find s s.t.

• Get lsb(s) from
• Then get next bit of s and so on.
• Works as long as every

 

s ⋅ g + e = [s + e0, 2s + e1, ⋯ 2k−1s + ek−1]

2k−1s + ek−1

ei ∈ [−q/4,q/4)

!25

Step 1: for Gadget G
fG(x) = G x mod q ∈ ℤn

q gG(s, e) = stG + et mod q ∈ ℤm
qRecall and

and

f −1
G , g−1

G

g = [1, 2, 4,⋯, 2k−1] ∈ ℤ1×k
qq = 2kLet

 Invert LWE: find s s.t.

• Get lsb(s) from
• Then get next bit of s and so on.
• Works as long as every

 

 Invert SIS: sample Gaussian preimage x s.t.

• For choose
• Let k= 2.

u = ⟨g x⟩ mod q

s ⋅ g + e = [s + e0, 2s + e1, ⋯ 2k−1s + ek−1]

2k−1s + ek−1

ei ∈ [−q/4,q/4)

i ∈ [0,…, k − 1], xi ← (2ℤ + u), u ← (u − xi)/2 ∈ ℤ
x0 ← (2z0 + u), u ← (u − 2z0 − u)/2 = − z0
x1 ← (2z1 − z0)
⟨g, x⟩ = 2z0 + u + 2(2z1 − z0) = u + 4z1 = u mod 4

Step 1: for Gadget G f −1
G , g−1

G

g = [1, 2, 4,⋯, 2k−1]Note 2
2

2

2

-1
-1

-1

⋱
⋱

2

= 0 mod qS

!26

Step 1: for Gadget G f −1
G , g−1

G

g = [1, 2, 4,⋯, 2k−1]Note 2
2

2

2

-1
-1

-1

⋱
⋱

2

= 0 mod q

 S is Short Basis for

S

g = [1, 2, 4,⋯, 2k−1]

!26

Step 1: for Gadget G f −1
G , g−1

G

g = [1, 2, 4,⋯, 2k−1]Note 2
2

2

2

-1
-1

-1

⋱
⋱

2

= 0 mod q

 S is Short Basis for

S

g = [1, 2, 4,⋯, 2k−1]

Define gadget G :

G = In ⊗ g ⋯ g ⋯
⋯ g ⋯

⋯ g ⋯

⋱
∈ ℤn×nk

q

!26

Step 1: for Gadget G f −1
G , g−1

G

g = [1, 2, 4,⋯, 2k−1]Note 2
2

2

2

-1
-1

-1

⋱
⋱

2

= 0 mod q

 S is Short Basis for

S

g = [1, 2, 4,⋯, 2k−1]

 reduce to n parallel, offline calls to f −1
G , g−1

G

Define gadget G :

G = In ⊗ g ⋯ g ⋯
⋯ g ⋯

⋯ g ⋯

⋱
∈ ℤn×nk

q

f −1
g , g−1

g

!26

!27

Step 2: Randomize G to A

!27

Step 2: Randomize G to A
1. Sample B ∈ ℤn×m′ �

q , short Gaussian R ∈ ℤm′ �×n log q
q ,

!27

Step 2: Randomize G to A

2. Define A = GB
I

I

-R

1. Sample B ∈ ℤn×m′ �
q , short Gaussian R ∈ ℤm′ �×n log q

q ,

!27

Step 2: Randomize G to A

2. Define A = GB
I

I

-R

1. Sample B ∈ ℤn×m′ �
q , short Gaussian R ∈ ℤm′ �×n log q

q ,

= G - BRB

!27

Step 2: Randomize G to A

2. Define A = GB
I

I

-R

1. Sample B ∈ ℤn×m′ �
q , short Gaussian R ∈ ℤm′ �×n log q

q ,

=

A is uniform by leftover hash lemma!

G - BRB

Walking the Edge between
Structure and Randomness:  

The Quest for Indistinguishability
Obfuscation

Shweta Agrawal
IIT Madras

Leftover Hash Lemma (oversimplified)

Walking the Edge between
Structure and Randomness:  

The Quest for Indistinguishability
Obfuscation

Shweta Agrawal
IIT Madras

Leftover Hash Lemma (oversimplified)

If

(B, BR) ≈ (B, U)

 Let B ∈ ℤn×m′�
q R ∈ ℤm′�×n log q

quniform & Gaussian

 then,m′� ≈ n log q,

 Let

Walking the Edge between
Structure and Randomness:  

The Quest for Indistinguishability
Obfuscation

Shweta Agrawal
IIT Madras

Leftover Hash Lemma (oversimplified)

If

(B, BR) ≈ (B, U)

 Let B ∈ ℤn×m′�
q R ∈ ℤm′�×n log q

quniform & Gaussian

 then,m′� ≈ n log q,

 Let

G - BRB Hence A = uniform

!29

Step 2: Randomize G to A

!29

Step 2: Randomize G to A
Have A = G - BRB

!29

Step 2: Randomize G to A
Have A = G - BRB

Define: R is a trapdoor for A with tag H ∈ ℤn×n
q ,

A ⋅ [R
I] = H ⋅ GIf

!29

Step 2: Randomize G to A
Have A = G - BRB

Define: R is a trapdoor for A with tag H ∈ ℤn×n
q ,

A ⋅ [R
I] = H ⋅ GIf

Λ⊥(G)

S
&

Basis
for

Trapdoor R
for A

!29

Step 2: Randomize G to A
Have A = G - BRB

Define: R is a trapdoor for A with tag H ∈ ℤn×n
q ,

A ⋅ [R
I] = H ⋅ GIf

Λ⊥(G)

S
&

Basis
for

Trapdoor R
for A

Λ⊥(A)

SABasis
for

!30

Step 3: Reduce to
Suppose R is a trapdoor for A with tag I ∈ ℤn×n

q ,

A ⋅ [R
I] = G

f −1
G , g−1

Gf −1
A , g−1

A

!30

Step 3: Reduce to
Suppose R is a trapdoor for A with tag I ∈ ℤn×n

q ,

A ⋅ [R
I] = G

f −1
G , g−1

G

Inverting LWE

f −1
A , g−1

A

!30

Step 3: Reduce to
Suppose R is a trapdoor for A with tag I ∈ ℤn×n

q ,

A ⋅ [R
I] = G

f −1
G , g−1

G

• Given

• Find unique

bt = stA + et mod q

(s, e)

Want:

Inverting LWE

f −1
A , g−1

A

!30

Step 3: Reduce to
Suppose R is a trapdoor for A with tag I ∈ ℤn×n

q ,

A ⋅ [R
I] = G

f −1
G , g−1

G

bt ⋅ [R
I] = st ⋅ G + et ⋅ [R

I] mod q
• Given

• Find unique

bt = stA + et mod q

(s, e)

Want:

Inverting LWE

et ⋅ [R
I] ∈ [−q/4,q/4)

Compute:

Works if

f −1
A , g−1

A

!31

A ⋅ [R
I] = G

f −1
G , g−1

G

Inverting SIS

f −1
A , g−1

AStep 3: Reduce to

!31

A ⋅ [R
I] = G

f −1
G , g−1

G

Want:
• Given

• Sample

 with prob

u = fA(x) = A x mod q

x′� ← = f −1
A (u)

∝ exp(−∥x′�∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Inverting SIS

f −1
A , g−1

AStep 3: Reduce to

!31

A ⋅ [R
I] = G

f −1
G , g−1

G

Want:
• Given

• Sample

 with prob

u = fA(x) = A x mod q

x′� ← = f −1
A (u)

∝ exp(−∥x′�∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Inverting SIS

A ⋅ x = A ⋅ [R
I] ⋅ z = G ⋅ z = u

x = [R
I] ⋅ z

Compute:
Sample

Output

z ← f −1
G (u)

Then,

f −1
A , g−1

AStep 3: Reduce to

!32

Step 3: Reduce to
A ⋅ [R

I] = G

f −1
A , g−1

A f −1
G , g−1

G

Are we done?

!32

Step 3: Reduce to
A ⋅ [R

I] = G

f −1
A , g−1

A f −1
G , g−1

G

A ⋅ x = A ⋅ [R
I] ⋅ z = G ⋅ z = u

x = [R
I] ⋅ z

Compute:
Sample

Output

z ← f −1
G (u)

Then,

Are we done?

!32

Step 3: Reduce to
A ⋅ [R

I] = G

f −1
A , g−1

A f −1
G , g−1

G

A ⋅ x = A ⋅ [R
I] ⋅ z = G ⋅ z = u

x = [R
I] ⋅ z

Compute:
Sample

Output

z ← f −1
G (u)

Then,

Are we done?

Covariance of x leaks R!

!32

Step 3: Reduce to
A ⋅ [R

I] = G

f −1
A , g−1

A f −1
G , g−1

G

A ⋅ x = A ⋅ [R
I] ⋅ z = G ⋅ z = u

x = [R
I] ⋅ z

Compute:
Sample

Output

z ← f −1
G (u)

Then,

Are we done?

Covariance of x leaks R!

Image Credit: Chris Peikert

A First Attempt

I Given u, sample z f�1
G (u) and output x =

⇥
R
I

⇤
z 2 f�1

A (u) ?

I x1 = Rz has a non-spherical Gaussian distribution of covariance

⌃ := Ex
⇥
x · xt

⇤
= Ez

⇥
R · zzt ·Rt

⇤
⇡ s2 ·RR

t.

Covariance can be measured — and it leaks R! (up to rotation)

12 / 18

!33

Step 3: Reduce to f −1
A , g−1

A f −1
G , g−1

G

!33

Step 3: Reduce to f −1
A , g−1

A f −1
G , g−1

G

Want to output spherical Gaussian!
Covariance Matrix s2I

!33

Step 3: Reduce to f −1
A , g−1

A f −1
G , g−1

G

Fix using perturbation method [P’10]
https://www.elegantthemes.com/

Want to output spherical Gaussian!
Covariance Matrix s2I

!33

Step 3: Reduce to f −1
A , g−1

A f −1
G , g−1

G

Fix using perturbation method [P’10]
https://www.elegantthemes.com/

Want to output spherical Gaussian!
Covariance Matrix s2I

‘Convolution’ Sampling Algorithm [P’10]

I Given trapdoor R of A, syndrome u, and std dev s > s1(R),

1 Generate perturbation p with covariance ⌃2 := s2 I�RR
t > 0.

2 Sample spherical z s.t. Gz = u�Ap.

3 Output x = p+
⇥
R
I

⇤
z. (Note: Ax = Ap+Gz = u.)

+ =

RR
t + (s2I�RR

t) = s2 I

Convolution⇤ Theorem

Algorithm generates a spherical discrete Gaussian over L?
u (A).

(⇤technically not a convolution, since step 2 depends on step 1.)

14 / 18

Convolution of
Gaussians

!33

Step 3: Reduce to f −1
A , g−1

A f −1
G , g−1

G

Fix using perturbation method [P’10]
https://www.elegantthemes.com/

Want to output spherical Gaussian!
Covariance Matrix s2I

‘Convolution’ Sampling Algorithm [P’10]

I Given trapdoor R of A, syndrome u, and std dev s > s1(R),

1 Generate perturbation p with covariance ⌃2 := s2 I�RR
t > 0.

2 Sample spherical z s.t. Gz = u�Ap.

3 Output x = p+
⇥
R
I

⇤
z. (Note: Ax = Ap+Gz = u.)

+ =

RR
t + (s2I�RR

t) = s2 I

Convolution⇤ Theorem

Algorithm generates a spherical discrete Gaussian over L?
u (A).

(⇤technically not a convolution, since step 2 depends on step 1.)

14 / 18

Convolution of
Gaussians

To fix covariance:
• Generate perturbation vector p with covariance

• Sample spherical z such that

• Output

(s2I − RRt)

G z = u − A p

x = p + [R
I] ⋅ z

!33

Step 3: Reduce to f −1
A , g−1

A f −1
G , g−1

G

Fix using perturbation method [P’10]
https://www.elegantthemes.com/

Want to output spherical Gaussian!
Covariance Matrix s2I

‘Convolution’ Sampling Algorithm [P’10]

I Given trapdoor R of A, syndrome u, and std dev s > s1(R),

1 Generate perturbation p with covariance ⌃2 := s2 I�RR
t > 0.

2 Sample spherical z s.t. Gz = u�Ap.

3 Output x = p+
⇥
R
I

⇤
z. (Note: Ax = Ap+Gz = u.)

+ =

RR
t + (s2I�RR

t) = s2 I

Convolution⇤ Theorem

Algorithm generates a spherical discrete Gaussian over L?
u (A).

(⇤technically not a convolution, since step 2 depends on step 1.)

14 / 18

Convolution of
Gaussians

To fix covariance:
• Generate perturbation vector p with covariance

• Sample spherical z such that

• Output

(s2I − RRt)

G z = u − A p

x = p + [R
I] ⋅ z

A ⋅ x = Ap + A [R
I] ⋅ z

A ⋅ [R
I] = G

Check

= Ap + Gz = u

Walking the Edge between
Structure and Randomness:  

The Quest for Indistinguishability
Obfuscation

Shweta Agrawal
IIT Madras

Takeaway for Applications

Let A = G - BRB

A

 Let B ∈ ℤn×m′�
q , R ∈ ℤm′�×n log q

q , uniform Gaussian

 Then, uniform, admits LWE and SIS inversion

f −1
A , g−1

A

Applications

Identity Based Encryption (IBE)

Public Key Encryption in which ANY
arbitrary string can be public key!

In short………..

IBE: How does it work?

Bob

Key Server
• Master Secret
• Public Parameters

Alice encrypts with
bob@iitm.ac.in

Receives 
 Private Key  
for bob@iitm.ac.in

Bob decrypts with  
 Private Key

Alice

Requests private key,
authenticates

1

2

3

4

Setup

Extract

Encrypt Decrypt

Public Params PP

Master secret key MSK

Security
Parameter λ

Identity ID

Secret key SK

Message
 m Ciphertext

 C
Message
 m

Identity Based Encryption

�39

 Regev PKE

�39

 Regev PKE
❖ Recall A (e) = u mod q hard to invert

❖ Secret: e, Public : A, u

�39

 Regev PKE

A e u mod q≡

❖ Recall A (e) = u mod q hard to invert

❖ Secret: e, Public : A, u

�39

 Regev PKE

❖ Encrypt (A, u) :

❖ Pick random vector s

❖ c0 = AT s + noise

❖ c1 = uT s + noise + msg

A e u mod q≡

❖ Recall A (e) = u mod q hard to invert

❖ Secret: e, Public : A, u

�39

 Regev PKE

❖ Encrypt (A, u) :

❖ Pick random vector s

❖ c0 = AT s + noise

❖ c1 = uT s + noise + msg

❖ Decrypt (e) :

❖ eT c0 – c1 = msg + noise

A e u mod q≡

❖ Recall A (e) = u mod q hard to invert

❖ Secret: e, Public : A, u

�39

 Regev PKE

❖ Encrypt (A, u) :

❖ Pick random vector s

❖ c0 = AT s + noise

❖ c1 = uT s + noise + msg

❖ Decrypt (e) :

❖ eT c0 – c1 = msg + noise

A e u mod q≡

❖ Recall A (e) = u mod q hard to invert

❖ Secret: e, Public : A, u

Encryption
matrix A

�39

 Regev PKE

❖ Encrypt (A, u) :

❖ Pick random vector s

❖ c0 = AT s + noise

❖ c1 = uT s + noise + msg

❖ Decrypt (e) :

❖ eT c0 – c1 = msg + noise

Small only
 if e is small

A e u mod q≡

❖ Recall A (e) = u mod q hard to invert

❖ Secret: e, Public : A, u

Encryption
matrix A

�40

Broad structure IBE

�40

Broad structure IBE
❖ Want to embed vector id in ciphertext and secret key.

�40

Broad structure IBE
❖ Want to embed vector id in ciphertext and secret key.

❖ Let encryption matrix Fid be publicly computable function
of id and public parameters.

�40

Broad structure IBE
❖ Want to embed vector id in ciphertext and secret key.

❖ Let encryption matrix Fid be publicly computable function
of id and public parameters.

❖ Perform Regev PKE with encryption matrix Fid

�40

Broad structure IBE
❖ Want to embed vector id in ciphertext and secret key.

❖ Let encryption matrix Fid be publicly computable function
of id and public parameters.

❖ Perform Regev PKE with encryption matrix Fid

❖ Figure out way to compute short vector e such that

�40

Broad structure IBE
❖ Want to embed vector id in ciphertext and secret key.

❖ Let encryption matrix Fid be publicly computable function
of id and public parameters.

❖ Perform Regev PKE with encryption matrix Fid

❖ Figure out way to compute short vector e such that

Fid e u mod q≡

�41

Identity Based Encryption [CHKP10]

�41

Let |id|=2
Identity Based Encryption [CHKP10]

�41

uA0 A1
0 A1

1 A2
0 A2

1

Let |id|=2

• Parameters

Identity Based Encryption [CHKP10]

�41

• Master secret key : basis for A0

uA0 A1
0 A1

1 A2
0 A2

1

Let |id|=2

• Parameters

Identity Based Encryption [CHKP10]

�41

• Master secret key : basis for A0

• Secret Key for (id=01) : short e such that F01 e = u mod q

uA0 A1
0 A1

1 A2
0 A2

1

Let |id|=2

• Parameters

Identity Based Encryption [CHKP10]

�41

• Master secret key : basis for A0

• Secret Key for (id=01) : short e such that F01 e = u mod q

 Where F01 = [A0| A1
0|A2

1] (one block per bit!)

uA0 A1
0 A1

1 A2
0 A2

1

Let |id|=2

• Parameters

Identity Based Encryption [CHKP10]

�41

• Master secret key : basis for A0

• Secret Key for (id=01) : short e such that F01 e = u mod q

 Where F01 = [A0| A1
0|A2

1] (one block per bit!)

• Figure out how to compute trapdoor for “extended” matrix [T1|T2|T3]

uA0 A1
0 A1

1 A2
0 A2

1

Let |id|=2

• Parameters

Identity Based Encryption [CHKP10]

�41

• Master secret key : basis for A0

• Secret Key for (id=01) : short e such that F01 e = u mod q

 Where F01 = [A0| A1
0|A2

1] (one block per bit!)

• Figure out how to compute trapdoor for “extended” matrix [T1|T2|T3]

• Encrypt (b, id=01): Uses regev PKE on matrix F01

uA0 A1
0 A1

1 A2
0 A2

1

Let |id|=2

• Parameters

Identity Based Encryption [CHKP10]

�42

Let |id|=2
Identity Based Encryption [CHKP10]

�42

• Secret Key for (id=01) : low norm vector e such that

 F01 e = [A0| A1
0|A2

1] e = u mod q

Let |id|=2
Identity Based Encryption [CHKP10]

�42

• Secret Key for (id=01) : low norm vector e such that

 F01 e = [A0| A1
0|A2

1] e = u mod q

• Encrypt (b, id=01):

• c0 = F01
T s + noise, c1 = uT s + noise + msg

Let |id|=2
Identity Based Encryption [CHKP10]

�42

• Secret Key for (id=01) : low norm vector e such that

 F01 e = [A0| A1
0|A2

1] e = u mod q

• Encrypt (b, id=01):

• c0 = F01
T s + noise, c1 = uT s + noise + msg

• Decrypt

• Compute eT c0 - c1 = noise + msg mod q

Let |id|=2
Identity Based Encryption [CHKP10]

IBE Security

Challenger Ch.

Adversary Ad.

IBE Security

Challenger Ch.

Adversary Ad.

Get instance of
hard problem H

IBE Security

Challenger Ch.

Adversary Ad.

Get instance of
hard problem H

ID*

IBE Security

Challenger Ch.

Adversary Ad.

PK

Get instance of
hard problem H

ID*

IBE Security

Challenger Ch.

Adversary Ad.

PK

 , ID2 , ID3 , …, IDmID1

Get instance of
hard problem H

ID*

IBE Security

Challenger Ch.

Adversary Ad.

PK

, dID2 , dID3 , …, dIDmdID1

 , ID2 , ID3 , …, IDmID1

Get instance of
hard problem H

ID*

IBE Security

Challenger Ch.

Adversary Ad.

PK

, dID2 , dID3 , …, dIDmdID1

 , ID2 , ID3 , …, IDmID1

Get instance of
hard problem H

ID*

IBE Security

Challenger Ch.

Adversary Ad.

PK

m0, m1

, dID2 , dID3 , …, dIDmdID1

 , ID2 , ID3 , …, IDmID1

Get instance of
hard problem H

ID*

IBE Security

Challenger Ch.

Adversary Ad.

PK

m0, m1

Pick b random, C* = Enc(m_b, ID*)

, dID2 , dID3 , …, dIDmdID1

 , ID2 , ID3 , …, IDmID1

Get instance of
hard problem H

ID*

IBE Security

Challenger Ch.

Adversary Ad.

PK

Guess b’

m0, m1

Pick b random, C* = Enc(m_b, ID*)

, dID2 , dID3 , …, dIDmdID1

 , ID2 , ID3 , …, IDmID1

Get instance of
hard problem H

ID*

IBE Security

Challenger Ch.

Adversary Ad.

PK

Guess b’

m0, m1

Pick b random, C* = Enc(m_b, ID*)

, dID2 , dID3 , …, dIDmdID1

 , ID2 , ID3 , …, IDmID1

Get instance of
hard problem H

Output G as
answer for H

ID*

IBE Security

Attacker wins if | Pr[b=b’] - ½ | is non-negligible
Challenger Ch.

Adversary Ad.

PK

Guess b’

m0, m1

Pick b random, C* = Enc(m_b, ID*)

, dID2 , dID3 , …, dIDmdID1

 , ID2 , ID3 , …, IDmID1

Get instance of
hard problem H

Output G as
answer for H

ID*

�44

Security Model: Key Points

• Ch. needs to be able to answer private key
queries of Ad.

• Ch. should not be able to answer query for id*

(hence can’t have master trapdoor)

• Ch. should be able to generate challenge
ciphertext so that Ad’s answer is useful.

�45

Simulation

�45

• Let challenge identity id* = 11

Simulation

�45

• Let challenge identity id* = 11

• Must not have SK for id*, hence don’t have master
secret (basis for A0)!

Simulation

�45

• Let challenge identity id* = 11

• Must not have SK for id*, hence don’t have master
secret (basis for A0)!

• Choose A0, A1
1, A2

1 random (no TD)

Simulation

�45

• Let challenge identity id* = 11

• Must not have SK for id*, hence don’t have master
secret (basis for A0)!

• Choose A0, A1
1, A2

1 random (no TD)

• Choose A1
0 A2

0 with TD

Simulation

�45

• Let challenge identity id* = 11

• Must not have SK for id*, hence don’t have master
secret (basis for A0)!

• Choose A0, A1
1, A2

1 random (no TD)

• Choose A1
0 A2

0 with TD

• Can compute basis of F01 =[A0| A1
0|A2

1]

Simulation

�45

• Let challenge identity id* = 11

• Must not have SK for id*, hence don’t have master
secret (basis for A0)!

• Choose A0, A1
1, A2

1 random (no TD)

• Choose A1
0 A2

0 with TD

• Can compute basis of F01 =[A0| A1
0|A2

1]

• Cannot compute basis of F11 =[A0| A1
1|A2

1]

Simulation

�46

Efficient Identity Based Encryption [ABB10]

�46

Parameters: A0 G uA1

Efficient Identity Based Encryption [ABB10]

�46

Parameters: A0 G uA1

Efficient Identity Based Encryption [ABB10]

Independent of |id|!

�46

Parameters: A0 G uA1

Efficient Identity Based Encryption [ABB10]

�46

Parameters:

Master Secret Key: Trapdoor for A0

A0 G uA1

Efficient Identity Based Encryption [ABB10]

�46

Parameters:

Master Secret Key: Trapdoor for A0

KeyGen for identity id :

A0 G uA1

Efficient Identity Based Encryption [ABB10]

�46

Parameters:

Master Secret Key: Trapdoor for A0

KeyGen for identity id :

A0 G uA1

Let Fid = [A0 | A1 + id×G]

Efficient Identity Based Encryption [ABB10]

�46

Parameters:

Master Secret Key: Trapdoor for A0

KeyGen for identity id :

mod q

key

e u≡Fid

A0 G uA1

Let Fid = [A0 | A1 + id×G]

Efficient Identity Based Encryption [ABB10]

�46

Parameters:

Master Secret Key: Trapdoor for A0

KeyGen for identity id :

mod q

key

e u≡Fid

A0 G uA1

Let Fid = [A0 | A1 + id×G]

Know how to compute trapdoor for “extended” matrix
[A0| any]

Efficient Identity Based Encryption [ABB10]

�47

Efficient Identity Based Encryption [ABB10]

�47

Encryption for id’ = Regev PKE on matrix Fid

Efficient Identity Based Encryption [ABB10]

�47

❖ Pick random vector s

❖ Let Fid = [A0 | A1 + id×G]

❖ C = uT s + noise + msg

❖ C’ = Fid
Ts + noise

Encryption for id’ = Regev PKE on matrix Fid

Efficient Identity Based Encryption [ABB10]

�47

❖ Pick random vector s

❖ Let Fid = [A0 | A1 + id×G]

❖ C = uT s + noise + msg

❖ C’ = Fid
Ts + noise

Fixed
size

Encryption for id’ = Regev PKE on matrix Fid

Efficient Identity Based Encryption [ABB10]

�48

C0 = uTs + noise + m and C1= Fid
Ts + noise

Efficient Identity Based Encryption [ABB10]

�48

C0 = uTs + noise + m and C1= Fid
Ts + noise

Decryption : Regev decryption

Efficient Identity Based Encryption [ABB10]

�48

❖ Let w = C0 – eTC1

C0 = uTs + noise + m and C1= Fid
Ts + noise

Decryption : Regev decryption

Efficient Identity Based Encryption [ABB10]

�48

❖ Let w = C0 – eTC1

❖ eTC1= (Fid e)Ts + noise

C0 = uTs + noise + m and C1= Fid
Ts + noise

Decryption : Regev decryption

Efficient Identity Based Encryption [ABB10]

�48

❖ Let w = C0 – eTC1

❖ eTC1= (Fid e)Ts + noise

❖ Since Fid e = u mod q, we have

C0 = uTs + noise + m and C1= Fid
Ts + noise

Decryption : Regev decryption

Efficient Identity Based Encryption [ABB10]

�48

❖ Let w = C0 – eTC1

❖ eTC1= (Fid e)Ts + noise

❖ Since Fid e = u mod q, we have

w = m + noise from which we can recover m.

C0 = uTs + noise + m and C1= Fid
Ts + noise

Decryption : Regev decryption

Efficient Identity Based Encryption [ABB10]

�49

Efficient Identity Based Encryption [ABB10]

Simulation: Let challenge identity = id*

�49

Efficient Identity Based Encryption [ABB10]

• Don’t have basis for A0

Simulation: Let challenge identity = id*

�49

Efficient Identity Based Encryption [ABB10]

• Don’t have basis for A0

• Have basis for G

Simulation: Let challenge identity = id*

�49

Efficient Identity Based Encryption [ABB10]

• Don’t have basis for A0

• Have basis for G

• Let A1 = [A0R – id* ×G]

Simulation: Let challenge identity = id*

�49

Efficient Identity Based Encryption [ABB10]

• Don’t have basis for A0

• Have basis for G

• Let A1 = [A0R – id* ×G]

Random low norm
 matrix

Simulation: Let challenge identity = id*

�49

Efficient Identity Based Encryption [ABB10]

• Don’t have basis for A0

• Have basis for G

• Let A1 = [A0R – id* ×G]

Fid = [A0| A1 +id G]

Random low norm
 matrix

Simulation: Let challenge identity = id*

�49

Efficient Identity Based Encryption [ABB10]

• Don’t have basis for A0

• Have basis for G

• Let A1 = [A0R – id* ×G]

Fid = [A0| A1 +id G]

Random low norm
 matrix

Simulation: Let challenge identity = id*

• Fid
 = [A0| A0R + (id –id*)G]

�49

Efficient Identity Based Encryption [ABB10]

• Don’t have basis for A0

• Have basis for G

• Let A1 = [A0R – id* ×G]

Fid = [A0| A1 +id G]

Random low norm
 matrix

Simulation: Let challenge identity = id*

• Fid
 = [A0| A0R + (id –id*)G]

• Need to find basis for Fid given basis for G
�49

Efficient Identity Based Encryption [ABB10]

• Don’t have basis for A0

• Have basis for G

• Let A1 = [A0R – id* ×G]

Fid = [A0| A1 +id G]

Random low norm
 matrix

Simulation: Let challenge identity = id*

• Fid
 = [A0| A0R + (id –id*)G]

• Need to find basis for Fid given basis for G
�49

Efficient Identity Based Encryption [ABB10]

�50

Efficient Identity Based Encryption [ABB10]

Let A = G - BRB

A

 Let B ∈ ℤn×m′�
q , R ∈ ℤm′�×n log q

q , uniform Gaussian

 Then, uniform, admits LWE and SIS inversion

f −1
A , g−1

A

�50

Efficient Identity Based Encryption [ABB10]

Let A = G - BRB

A

 Let B ∈ ℤn×m′�
q , R ∈ ℤm′�×n log q

q , uniform Gaussian

 Then, uniform, admits LWE and SIS inversion

f −1
A , g−1

A

MP12

• Fid
 = [A0| A0R + (id –id*)G]

�50

Efficient Identity Based Encryption [ABB10]

Let A = G - BRB

A

 Let B ∈ ℤn×m′�
q , R ∈ ℤm′�×n log q

q , uniform Gaussian

 Then, uniform, admits LWE and SIS inversion

f −1
A , g−1

A

MP12

• Fid
 = [A0| A0R + (id –id*)G]

• Can find basis for Fid given basis for G !

�50

Efficient Identity Based Encryption [ABB10]

Let A = G - BRB

A

 Let B ∈ ℤn×m′�
q , R ∈ ℤm′�×n log q

q , uniform Gaussian

 Then, uniform, admits LWE and SIS inversion

f −1
A , g−1

A

MP12

• Fid
 = [A0| A0R + (id –id*)G]

• Can find basis for Fid given basis for G !

�50

Efficient Identity Based Encryption [ABB10]

Let A = G - BRB

A

 Let B ∈ ℤn×m′�
q , R ∈ ℤm′�×n log q

q , uniform Gaussian

 Then, uniform, admits LWE and SIS inversion

f −1
A , g−1

A

Developed
in ABB10

MP12

• Fid
 = [A0| A0R + (id –id*)G]

• Can find basis for Fid given basis for G !

• Trapdoor vanishes for id = id*

�50

Efficient Identity Based Encryption [ABB10]

Let A = G - BRB

A

 Let B ∈ ℤn×m′�
q , R ∈ ℤm′�×n log q

q , uniform Gaussian

 Then, uniform, admits LWE and SIS inversion

f −1
A , g−1

A

Developed
in ABB10

MP12

�51

Real System Simulation

Efficient Identity Based Encryption [ABB10]

�51

PP = A0, A1, G
Real System Simulation

Efficient Identity Based Encryption [ABB10]

�51

PP = A0, A1, G
Real System Simulation

MSK = Trapdoor for A0

Efficient Identity Based Encryption [ABB10]

�51

PP = A0, A1, G
Real System Simulation

MSK = Trapdoor for A0 MSK = Trapdoor for G

Efficient Identity Based Encryption [ABB10]

�51

PP = A0, A1, G
Real System Simulation

MSK = Trapdoor for A0 MSK = Trapdoor for G

A1 = Randomly chosen

Efficient Identity Based Encryption [ABB10]

�51

PP = A0, A1, G
Real System Simulation

MSK = Trapdoor for A0 MSK = Trapdoor for G

A1 = Randomly chosen A1 = A0R – id* G

Efficient Identity Based Encryption [ABB10]

�51

PP = A0, A1, G
Real System Simulation

MSK = Trapdoor for A0 MSK = Trapdoor for G

A1 = Randomly chosen A1 = A0R – id* G

Indistinguishable since R is random!

Efficient Identity Based Encryption [ABB10]

�51

PP = A0, A1, G
Real System Simulation

MSK = Trapdoor for A0 MSK = Trapdoor for G

A1 = Randomly chosen

Encryption
matrix Fid = [A0|A1+id.G]

A1 = A0R – id* G

Indistinguishable since R is random!

Efficient Identity Based Encryption [ABB10]

�51

PP = A0, A1, G
Real System Simulation

MSK = Trapdoor for A0 MSK = Trapdoor for G

A1 = Randomly chosen

Encryption
matrix Fid = [A0|A1+id.G]

Encryption
matrix Fid = [A0 | A1+id.G]

 = [A0 | A0R + (id -id*)G]

A1 = A0R – id* G

Indistinguishable since R is random!

Efficient Identity Based Encryption [ABB10]

�51

PP = A0, A1, G
Real System Simulation

MSK = Trapdoor for A0 MSK = Trapdoor for G

A1 = Randomly chosen

Encryption
matrix Fid = [A0|A1+id.G]

Secret Key = short vector in Fid

Encryption
matrix Fid = [A0 | A1+id.G]

 = [A0 | A0R + (id -id*)G]

A1 = A0R – id* G

Indistinguishable since R is random!

Efficient Identity Based Encryption [ABB10]

�51

PP = A0, A1, G
Real System Simulation

MSK = Trapdoor for A0 MSK = Trapdoor for G

A1 = Randomly chosen

Encryption
matrix Fid = [A0|A1+id.G]

Secret Key = short vector in Fid Secret Key = short vector in Fid

Encryption
matrix Fid = [A0 | A1+id.G]

 = [A0 | A0R + (id -id*)G]

A1 = A0R – id* G

Indistinguishable since R is random!

Efficient Identity Based Encryption [ABB10]

�51

PP = A0, A1, G
Real System Simulation

MSK = Trapdoor for A0 MSK = Trapdoor for G

A1 = Randomly chosen

Encryption
matrix Fid = [A0|A1+id.G]

Secret Key = short vector in Fid Secret Key = short vector in Fid

Encryption
matrix Fid = [A0 | A1+id.G]

 = [A0 | A0R + (id -id*)G]

A1 = A0R – id* G

MSK ➔ Key for any id

Indistinguishable since R is random!

Efficient Identity Based Encryption [ABB10]

�51

PP = A0, A1, G
Real System Simulation

MSK = Trapdoor for A0 MSK = Trapdoor for G

A1 = Randomly chosen

Encryption
matrix Fid = [A0|A1+id.G]

Secret Key = short vector in Fid Secret Key = short vector in Fid

Encryption
matrix Fid = [A0 | A1+id.G]

 = [A0 | A0R + (id -id*)G]

A1 = A0R – id* G

MSK ➔ Key for any id Trapdoor for G ➔ Key for id ≠ id*

Indistinguishable since R is random!

Efficient Identity Based Encryption [ABB10]

Walking the Edge between
Structure and Randomness:  

The Quest for Indistinguishability
Obfuscation

Shweta Agrawal
IIT Madras

Generalizing to inner products (AFV11)

�53

Generalizing to Inner Product (KSW08)

Key : y = (y1, …, yn)

Function f(x, y) = 1 If <x . y> = 0

0 otherwise

CT : x = (x1, …, xn)

�53

Generalizing to Inner Product (KSW08)

Key : y = (y1, …, yn)

Supports:
• OR –- Bob OR Alice

•CNF/DNF formulas of bounded size

Function f(x, y) = 1 If <x . y> = 0

0 otherwise

CT : x = (x1, …, xn)

ORA,B(z) = 1 if z = A OR z = B

p(z) = (A − z)(B − z)

�53

Generalizing to Inner Product (KSW08)

Key : y = (y1, …, yn)

Supports:
• OR –- Bob OR Alice

•CNF/DNF formulas of bounded size

Function f(x, y) = 1 If <x . y> = 0

0 otherwise

CT : x = (x1, …, xn)
Ciphertext Hides

Attributes xi

ORA,B(z) = 1 if z = A OR z = B

p(z) = (A − z)(B − z)

�54

Generalizing to Inner Product (AFV11)

�54

❖ Parameters for |x| = |y| = 4:

A1 A2 A3 A4 A u

Generalizing to Inner Product (AFV11)

�54

❖ Parameters for |x| = |y| = 4:

❖ Master Secret Key: Trapdoor for A

A1 A2 A3 A4 A u

Generalizing to Inner Product (AFV11)

�54

❖ Parameters for |x| = |y| = 4:

❖ Master Secret Key: Trapdoor for A

A1 A2 A3 A4 A u

❖ Define Fy = [A |ΣyiAi]

Generalizing to Inner Product (AFV11)

�54

❖ Parameters for |x| = |y| = 4:

❖ Master Secret Key: Trapdoor for A

A1 A2 A3 A4 A u

mod qey u≡

ΣyiAiA

❖ Define Fy = [A |ΣyiAi]

Generalizing to Inner Product (AFV11)

�54

❖ Parameters for |x| = |y| = 4:

❖ Master Secret Key: Trapdoor for A

A1 A2 A3 A4 A u

key

mod qey u≡

ΣyiAiA

❖ Define Fy = [A |ΣyiAi]

Generalizing to Inner Product (AFV11)

�55

Generalizing to Inner Product (AFV11)

�55

Encryption for vector x = (x1 x2 x3 x4) :

Generalizing to Inner Product (AFV11)

�55

❖ Pick random vector s

❖ C = uT s + noise + msg

❖ C’ = ATs + noise

Encryption for vector x = (x1 x2 x3 x4) :

Generalizing to Inner Product (AFV11)

�55

❖ Pick random vector s

❖ C = uT s + noise + msg

❖ C’ = ATs + noise

Encryption for vector x = (x1 x2 x3 x4) :

❖ Set Ci = (Ai + xi G)T s + noise

Generalizing to Inner Product (AFV11)

�55

❖ Pick random vector s

❖ C = uT s + noise + msg

❖ C’ = ATs + noise

Ciphertext Hides
Attributes xi

Encryption for vector x = (x1 x2 x3 x4) :

❖ Set Ci = (Ai + xi G)T s + noise

Generalizing to Inner Product (AFV11)

�56

Decryption
(CTx, SKy) :

Generalizing to Inner Product (AFV11)

�56

Ci = (Ai + xi G)T s + noiseDecryption
(CTx, SKy) :

Generalizing to Inner Product (AFV11)

�56

Ci = (Ai + xi G)T s + noiseDecryption
(CTx, SKy) : C’ = AT s + noise

Generalizing to Inner Product (AFV11)

�56

Ci = (Ai + xi G)T s + noise

mod qey u≡ ΣyiAiA

Decryption
(CTx, SKy) : C’ = AT s + noise

Generalizing to Inner Product (AFV11)

�56

Set Cy = Σ yi Ci

 = (Σ yi Ai + Σ yi xi G)Ts + Σ yi noise

Ci = (Ai + xi G)T s + noise

mod qey u≡ ΣyiAiA

Decryption
(CTx, SKy) : C’ = AT s + noise

Generalizing to Inner Product (AFV11)

�56

Set Cy = Σ yi Ci

 = (Σ yi Ai + Σ yi xi G)Ts + Σ yi noise✕

Ci = (Ai + xi G)T s + noise

mod qey u≡ ΣyiAiA

Decryption
(CTx, SKy) : C’ = AT s + noise

Generalizing to Inner Product (AFV11)

�56

Set Cy = Σ yi Ci

 = (Σ yi Ai + Σ yi xi G)Ts + Σ yi noise✕

Ci = (Ai + xi G)T s + noise

[C’|Cy] = [A | Σ yi Ai] Ts + noise

mod qey u≡ ΣyiAiA

Decryption
(CTx, SKy) : C’ = AT s + noise

Generalizing to Inner Product (AFV11)

�56

Set Cy = Σ yi Ci

 = (Σ yi Ai + Σ yi xi G)Ts + Σ yi noise✕

But this is what we have the key for !
Perform Regev Decryption.

Ci = (Ai + xi G)T s + noise

[C’|Cy] = [A | Σ yi Ai] Ts + noise

mod qey u≡ ΣyiAiA

Decryption
(CTx, SKy) : C’ = AT s + noise

Generalizing to Inner Product (AFV11)

Walking the Edge between
Structure and Randomness:  

The Quest for Indistinguishability
Obfuscation

Shweta Agrawal
IIT Madras

Generalizing to circuits (BGG+14)

�58

Recall Ciphertext Structure

�58

Encryption for vector x = (x1 x2 x3 x4) :
Recall Ciphertext Structure

�58

C = uT s + noise + msg, C’ = ATs + noise

Encryption for vector x = (x1 x2 x3 x4) :
Recall Ciphertext Structure

�58

C = uT s + noise + msg, C’ = ATs + noise

Encryption for vector x = (x1 x2 x3 x4) :

 Ci = (Ai + xi G)T s + noise

Recall Ciphertext Structure

�58

C = uT s + noise + msg, C’ = ATs + noise

Encryption for vector x = (x1 x2 x3 x4) :

 Ci = (Ai + xi G)T s + noise

Recall Ciphertext Structure

Previously: Could evaluate on CT to obtain

�58

C = uT s + noise + msg, C’ = ATs + noise

Encryption for vector x = (x1 x2 x3 x4) :

 Ci = (Ai + xi G)T s + noise

Recall Ciphertext Structure

Previously: Could evaluate on CT to obtain

 C<x, y> = (Ay + <x, y> G)T s + noise

�58

C = uT s + noise + msg, C’ = ATs + noise

Encryption for vector x = (x1 x2 x3 x4) :

 Ci = (Ai + xi G)T s + noise

Recall Ciphertext Structure

Previously: Could evaluate on CT to obtain

 C<x, y> = (Ay + <x, y> G)T s + noise

When <x, y> = 0, obtain CT that encodes f alone,
Keygen may compute matching key

�58

C = uT s + noise + msg, C’ = ATs + noise

Encryption for vector x = (x1 x2 x3 x4) :

 Ci = (Ai + xi G)T s + noise

Recall Ciphertext Structure

Previously: Could evaluate on CT to obtain

 C<x, y> = (Ay + <x, y> G)T s + noise

When <x, y> = 0, obtain CT that encodes f alone,
Keygen may compute matching key

Generalize to arbitrary f?

�58

C = uT s + noise + msg, C’ = ATs + noise

Encryption for vector x = (x1 x2 x3 x4) :

 Ci = (Ai + xi G)T s + noise

Recall Ciphertext Structure

Previously: Could evaluate on CT to obtain

 C<x, y> = (Ay + <x, y> G)T s + noise

 Cf(x) = (Af + f(x) G)T s + noise

When <x, y> = 0, obtain CT that encodes f alone,
Keygen may compute matching key

Generalize to arbitrary f?

�59

Handling Multiplication [BGG+14]

�59

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

�59

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 C2 = (A2 + x2 G)T s + noise

�59

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

 C2 = (A2 + x2 G)T s + noise

Want

�59

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

Key Observation: x may be used in evaluation !

 C2 = (A2 + x2 G)T s + noise

Want

�59

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

Key Observation: x may be used in evaluation !

 C2 = (A2 + x2 G)T s + noise

Want

(A1 + x1 G)

�59

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

Key Observation: x may be used in evaluation !

 C2 = (A2 + x2 G)T s + noise

Want

(A1 + x1 G)

(A2 + x2 G)

�59

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

Key Observation: x may be used in evaluation !

 C2 = (A2 + x2 G)T s + noise

Want

(A1 + x1 G)

(A2 + x2 G)

G-1 (-A2)

�59

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

Key Observation: x may be used in evaluation !

 C2 = (A2 + x2 G)T s + noise

Want

(A1 + x1 G)

(A2 + x2 G)

G-1 (-A2)

G G-1 (A) = ARecall

�59

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

Key Observation: x may be used in evaluation !

 C2 = (A2 + x2 G)T s + noise

Want

(A1 + x1 G)

(A2 + x2 G)

G-1 (-A2)

(x1)

G G-1 (A) = ARecall

�59

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

Key Observation: x may be used in evaluation !

 C2 = (A2 + x2 G)T s + noise

Want

(A1 + x1 G)

(A2 + x2 G)

G-1 (-A2)

(x1)

 = (A1 G-1 (-A2) - x1 A2)

G G-1 (A) = ARecall

�59

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

Key Observation: x may be used in evaluation !

 C2 = (A2 + x2 G)T s + noise

Want

(A1 + x1 G)

(A2 + x2 G)

G-1 (-A2)

(x1)

 = (A1 G-1 (-A2) - x1 A2)

 = (x1 A2 + x1x2 G)

G G-1 (A) = ARecall

�59

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

Key Observation: x may be used in evaluation !

 C2 = (A2 + x2 G)T s + noise

Want

(A1 + x1 G)

(A2 + x2 G)

G-1 (-A2)

(x1)
+ = (A1 G-1 (-A2) - x1 A2)

 = (x1 A2 + x1x2 G)

G G-1 (A) = ARecall

�59

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

Key Observation: x may be used in evaluation !

 C2 = (A2 + x2 G)T s + noise

Want

(A1 + x1 G)

(A2 + x2 G)

G-1 (-A2)

(x1)
+ = (A1 G-1 (-A2) - x1 A2)

 = (x1 A2 + x1x2 G)

G G-1 (A) = ARecall

✕
✕

�59

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

Key Observation: x may be used in evaluation !

 C2 = (A2 + x2 G)T s + noise

Want

(A1 + x1 G)

(A2 + x2 G)

G-1 (-A2)

(x1)
+ = (A1 G-1 (-A2) - x1 A2)

 = (x1 A2 + x1x2 G)

 = (A12 + x1x2 G)

G G-1 (A) = ARecall

✕
✕

�60

Handling Multiplication [BGG+14]

�60

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 C2 = (A2 + x2 G)T s + noise

�60

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 C2 = (A2 + x2 G)T s + noise
R = G-1 (-A2)Let

�60

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = RT C1 + x1 C2
 = (A12 + x1x2 G)T s + noise
 A12 = A1 G-1 (-A2)

 C2 = (A2 + x2 G)T s + noise

Then

R = G-1 (-A2)Let

�60

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = RT C1 + x1 C2
 = (A12 + x1x2 G)T s + noise
 A12 = A1 G-1 (-A2)

 C2 = (A2 + x2 G)T s + noise

Then

G-1 (-A2) and x1 are small and do not affect noise !

R = G-1 (-A2)Let

�60

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = RT C1 + x1 C2
 = (A12 + x1x2 G)T s + noise
 A12 = A1 G-1 (-A2)

 C2 = (A2 + x2 G)T s + noise

Then

G-1 (-A2) and x1 are small and do not affect noise !

R = G-1 (-A2)Let

C = uT s + noise + msg, C’ = ATs + noise Also have

�60

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = RT C1 + x1 C2
 = (A12 + x1x2 G)T s + noise
 A12 = A1 G-1 (-A2)

 C2 = (A2 + x2 G)T s + noise

Then

G-1 (-A2) and x1 are small and do not affect noise !

R = G-1 (-A2)Let

C = uT s + noise + msg, C’ = ATs + noise Also have
 If x1x2 = 0, then C’ | Cx1 x2 = [A | A12]Ts + noise

�61

Handling Multiplication [BGG+14]

�61

Handling Multiplication [BGG+14]

 If x1x2 = 0, then C’ | Cx1 x2 = [A | A12]Ts + noise

�61

Handling Multiplication [BGG+14]

mod qe12 u≡A12AKey

 If x1x2 = 0, then C’ | Cx1 x2 = [A | A12]Ts + noise

�61

Handling Multiplication [BGG+14]

mod qe12 u≡A12AKey

 If x1x2 = 0, then C’ | Cx1 x2 = [A | A12]Ts + noise

Perform Regev Decryption

�61

Handling Multiplication [BGG+14]

mod qe12 u≡A12AKey

 If x1x2 = 0, then C’ | Cx1 x2 = [A | A12]Ts + noise

Perform Regev Decryption

 (e12)T [C’ | Cx1 x2] = (e12)T [A | A12]Ts + (e12)T noise = uT s + noise

�61

Handling Multiplication [BGG+14]

mod qe12 u≡A12AKey

 If x1x2 = 0, then C’ | Cx1 x2 = [A | A12]Ts + noise

Perform Regev Decryption

 (e12)T [C’ | Cx1 x2] = (e12)T [A | A12]Ts + (e12)T noise = uT s + noise

C = uT s + noise + msg

�61

Handling Multiplication [BGG+14]

mod qe12 u≡A12AKey

 If x1x2 = 0, then C’ | Cx1 x2 = [A | A12]Ts + noise

Perform Regev Decryption

 (e12)T [C’ | Cx1 x2] = (e12)T [A | A12]Ts + (e12)T noise = uT s + noise

C = uT s + noise + msg
-

�61

Handling Multiplication [BGG+14]

mod qe12 u≡A12AKey

 If x1x2 = 0, then C’ | Cx1 x2 = [A | A12]Ts + noise

Perform Regev Decryption

 (e12)T [C’ | Cx1 x2] = (e12)T [A | A12]Ts + (e12)T noise = uT s + noise

C = uT s + noise + msg
-

 = noise + msg

�62

More Generally [BGG+14]…

�62

More Generally [BGG+14]…

[A1 − x1G |…… |An − xnG] ̂H f,x = [A1 |… |An] Hf − f(x) G

There exist “small” such that: ̂H f,x, Hf

�62

More Generally [BGG+14]…

[A1 − x1G |…… |An − xnG] ̂H f,x = [A1 |… |An] Hf − f(x) G

There exist “small” such that: ̂H f,x, Hf

Af⏟

�62

More Generally [BGG+14]…

 Recall Ci = (Ai + xi G)T s + noise

[A1 − x1G |…… |An − xnG] ̂H f,x = [A1 |… |An] Hf − f(x) G

There exist “small” such that: ̂H f,x, Hf

Af⏟

�62

More Generally [BGG+14]…

 Recall Ci = (Ai + xi G)T s + noise

 LHS implies that

[A1 − x1G |…… |An − xnG] ̂H f,x = [A1 |… |An] Hf − f(x) G

There exist “small” such that: ̂H f,x, Hf

Af⏟

�62

More Generally [BGG+14]…

 Recall Ci = (Ai + xi G)T s + noise

 LHS implies that
̂H T
f,x [C1 |…… |Cn] = [Af − f(x) G]Ts + noise

[A1 − x1G |…… |An − xnG] ̂H f,x = [A1 |… |An] Hf − f(x) G

There exist “small” such that: ̂H f,x, Hf

Af⏟

�62

More Generally [BGG+14]…

mod qef u≡AfAKeygen provides
matching key

 Recall Ci = (Ai + xi G)T s + noise

 LHS implies that
̂H T
f,x [C1 |…… |Cn] = [Af − f(x) G]Ts + noise

[A1 − x1G |…… |An − xnG] ̂H f,x = [A1 |… |An] Hf − f(x) G

There exist “small” such that: ̂H f,x, Hf

Af⏟

�62

More Generally [BGG+14]…

mod qef u≡AfAKeygen provides
matching key

 Recall Ci = (Ai + xi G)T s + noise

 LHS implies that
̂H T
f,x [C1 |…… |Cn] = [Af − f(x) G]Ts + noise

[A1 − x1G |…… |An − xnG] ̂H f,x = [A1 |… |An] Hf − f(x) G

There exist “small” such that: ̂H f,x, Hf

Af⏟
Perform Regev Decryption as usual

�63

Generalizes to all circuits [BGG+14]

�63

Generalizes to all circuits [BGG+14]

Encrypt

�63

Generalizes to all circuits [BGG+14]

Encrypt

KeyGen

�63

Generalizes to all circuits [BGG+14]

Encrypt

KeyGen Decrypt

�63

Generalizes to all circuits [BGG+14]

Encrypt

KeyGen Decrypt

SetUp

�63

Generalizes to all circuits [BGG+14]

Encrypt

KeyGen Decrypt

SetUp

Attribute based Encryption (ABE) [SW05]

Security Definition

Attacker wins if | Pr[b=b’] - ½ | is non-negligible

Challenger Ch.

Adversary Ad.

PK

Guess b’

m0, m1

Choose random b. Return ct* = Enc(PK, x*, mb)

f1, f2 ……fm
sk(f1), sk(f2),……sk(fm)

 where fi(x*)=0

x*

�65

Security: Challenges

•Challenger needs to be able to answer private key
queries of Adversary: much more complex!

•Challenger can’t have master trapdoor(Trapdoor for A)

• Must embed LWE challenge into challenge ciphertext

�66

Strategy: Challenge CT

�66

Strategy: Challenge CT
• Let x* be challenge attributes.

�66

Strategy: Challenge CT
• Let x* be challenge attributes.

�66

Strategy: Challenge CT
• Let x* be challenge attributes.

• As before, set Ai = [ARi – xi
* G]

�66

Strategy: Challenge CT
• Let x* be challenge attributes.

• As before, set Ai = [ARi – xi
* G]

�66

Strategy: Challenge CT
• Let x* be challenge attributes.

• As before, set Ai = [ARi – xi
* G]

• Ci = (Ai + xi G)T s + noise = (ARi + (xi – xi
*)G)T s + noise

�66

Strategy: Challenge CT
• Let x* be challenge attributes.

• As before, set Ai = [ARi – xi
* G]

• Ci = (Ai + xi G)T s + noise = (ARi + (xi – xi
*)G)T s + noise

�66

Strategy: Challenge CT
• Let x* be challenge attributes.

• As before, set Ai = [ARi – xi
* G]

• Ci = (Ai + xi G)T s + noise = (ARi + (xi – xi
*)G)T s + noise

• When x = x*, challenge CT becomes (ARi)T s + noise

�66

Strategy: Challenge CT
• Let x* be challenge attributes.

• As before, set Ai = [ARi – xi
* G]

• Ci = (Ai + xi G)T s + noise = (ARi + (xi – xi
*)G)T s + noise

• When x = x*, challenge CT becomes (ARi)T s + noise

�66

Strategy: Challenge CT
• Let x* be challenge attributes.

• As before, set Ai = [ARi – xi
* G]

• Ci = (Ai + xi G)T s + noise = (ARi + (xi – xi
*)G)T s + noise

• When x = x*, challenge CT becomes (ARi)T s + noise

• Can be computed from LWE challenge

�66

Strategy: Challenge CT
• Let x* be challenge attributes.

• As before, set Ai = [ARi – xi
* G]

• Ci = (Ai + xi G)T s + noise = (ARi + (xi – xi
*)G)T s + noise

• When x = x*, challenge CT becomes (ARi)T s + noise

• Can be computed from LWE challenge

�67

Strategy: Key Queries

�67

Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

�67

Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

�67

Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

• Can show Af = [ARf – f(x*)G] for “small” Rf

�67

Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

• Can show Af = [ARf – f(x*)G] for “small” Rf

�67

Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

• Can show Af = [ARf – f(x*)G] for “small” Rf

• Recall key mod qef u≡AfA

�67

Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

• Can show Af = [ARf – f(x*)G] for “small” Rf

• Recall key mod qef u≡AfA

�67

Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

• Can show Af = [ARf – f(x*)G] for “small” Rf

• Recall key mod qef u≡AfA

�67

Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

• Can show Af = [ARf – f(x*)G] for “small” Rf

• Recall key

• Need TD for [A | Af] when f(x*) not 0.

mod qef u≡AfA

�67

Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

• Can show Af = [ARf – f(x*)G] for “small” Rf

• Recall key

• Need TD for [A | Af] when f(x*) not 0.

mod qef u≡AfA

�67

Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

• Can show Af = [ARf – f(x*)G] for “small” Rf

• Recall key

• Need TD for [A | Af] when f(x*) not 0.

• Follows from MP12

mod qef u≡AfA

�67

Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

• Can show Af = [ARf – f(x*)G] for “small” Rf

• Recall key

• Need TD for [A | Af] when f(x*) not 0.

• Follows from MP12

mod qef u≡AfA

�68

• Need TD for [A | Af] when f(x*) 0.
• Af = [ARf – f(x*)G] . Let H = f(x*).
• Recall

Then AR - H G A

 Let A ∈ ℤn×m′�
q R ∈ ℤm′�×n log q

q uniform, small

admits LWE and SIS inversion.

Strategy: Key Queries
≠

Walking the Edge between
Structure and Randomness:  

The Quest for Indistinguishability
Obfuscation

Shweta Agrawal
IIT Madras

Open Problems

Walking the Edge between
Structure and Randomness:  

The Quest for Indistinguishability
Obfuscation

Shweta Agrawal
IIT Madras

Open Problems

• Ciphertext Policy ABE

Walking the Edge between
Structure and Randomness:  

The Quest for Indistinguishability
Obfuscation

Shweta Agrawal
IIT Madras

Open Problems

• Ciphertext Policy ABE
• Better parameters: Avoid subexp modulus to noise
ratio

Walking the Edge between
Structure and Randomness:  

The Quest for Indistinguishability
Obfuscation

Shweta Agrawal
IIT Madras

Open Problems

• Ciphertext Policy ABE
• Better parameters: Avoid subexp modulus to noise
ratio
• Support uniform models of computation

Walking the Edge between
Structure and Randomness:  

The Quest for Indistinguishability
Obfuscation

Shweta Agrawal
IIT Madras

Open Problems

• Ciphertext Policy ABE
• Better parameters: Avoid subexp modulus to noise
ratio
• Support uniform models of computation

• Partial progress in SK setting [AMY19]

Walking the Edge between
Structure and Randomness:  

The Quest for Indistinguishability
Obfuscation

Shweta Agrawal
IIT Madras

Open Problems

• Ciphertext Policy ABE
• Better parameters: Avoid subexp modulus to noise
ratio
• Support uniform models of computation

• Partial progress in SK setting [AMY19]
• PK setting? Turing machines?

Walking the Edge between
Structure and Randomness:  

The Quest for Indistinguishability
Obfuscation

Shweta Agrawal
IIT Madras

Open Problems

• Ciphertext Policy ABE
• Better parameters: Avoid subexp modulus to noise
ratio
• Support uniform models of computation

• Partial progress in SK setting [AMY19]
• PK setting? Turing machines?

• Adaptive Security

Walking the Edge between
Structure and Randomness:  

The Quest for Indistinguishability
Obfuscation

Shweta Agrawal
IIT Madras

Open Problems

• Ciphertext Policy ABE
• Better parameters: Avoid subexp modulus to noise
ratio
• Support uniform models of computation

• Partial progress in SK setting [AMY19]
• PK setting? Turing machines?

• Adaptive Security
• Broadcast Encryption

Walking the Edge between
Structure and Randomness:  

The Quest for Indistinguishability
Obfuscation

Shweta Agrawal
IIT Madras

Open Problems

• Ciphertext Policy ABE
• Better parameters: Avoid subexp modulus to noise
ratio
• Support uniform models of computation

• Partial progress in SK setting [AMY19]
• PK setting? Turing machines?

• Adaptive Security
• Broadcast Encryption

• AY20 uses pairings and LWE, remove pairings?

Walking the Edge between
Structure and Randomness:  

The Quest for Indistinguishability
Obfuscation

Shweta Agrawal
IIT Madras

Open Problems

• Ciphertext Policy ABE
• Better parameters: Avoid subexp modulus to noise
ratio
• Support uniform models of computation

• Partial progress in SK setting [AMY19]
• PK setting? Turing machines?

• Adaptive Security
• Broadcast Encryption

• AY20 uses pairings and LWE, remove pairings?

Thank You!
Image Credits : Hans Hoffman, Jackson Pollock

