A few comments (& questions!) from a condensed matter physicist

Daniel S. Fisher, Stanford University Simons Inst. Berkeley, Mar 21, 2014

Numbers Evolvability Models and Extrapolation

Large and Small Numbers

Number of bacteria, N: Total on Earth ~ $10^{29} - 10^{31}$ T = # generations < 10^{12}

Total bacterial cell divisions ever ~ $\# \text{ of ``attempts''} \quad A \sim NT \sim 10^{39-43} \sim e^{90-100}$??

Total # vertebrates ever: $N > 10^{13} T \sim 10^{9} A \sim 10^{22}$?

Large and Small Numbers

Number of bacteria, N: Total on Earth ~ $10^{29} - 10^{31}$ T = # generations < 10^{12}

Total bacterial cell divisions ever ~ $\# \text{ of ``attempts''} \quad A \sim NT \sim |0^{39-43} \sim e^{90-100}$??

Total # vertebrates ever: $N > 10^{13} T \sim 10^{9} A \sim 10^{22}$?

"Niches"?? => # possible problems to solve? Complexity of environments and organisms? Dimensions? Fitnesses? (Bergstrom) genome sizes, # chemicals +++

Large and Small Numbers

Number of bacteria, N: Total on Earth ~ $10^{29} - 10^{31}$ T = # generations < 10^{12}

Total bacterial cell divisions ever ~ $\# \text{ of ``attempts''} \quad A \sim NT \sim |0^{39-43} \sim e^{90-100}$??

Total # vertebrates ever: $N > 10^{13} T \sim 10^{9} A \sim 10^{22}$?

"Niches"?? => # possible problems to solve? Complexity of environments and organisms? Dimensions? Fitnesses? (Bergstrom) genome sizes, # chemicals +++

Rates of genetic change processes: (Livnat, Koonin) mutations, duplications, recombination, gene transfer Polynomial or not? (Gang of Five) K ~ # variables (= n) ... # mutns to cross valley

If non-poly but eg # attempts needed $A \sim \exp(c K^{1/3})$ can get $K \sim 10^6$ if c=1 $K \sim 2000$ if c = 8 (factorization?)

If polynomial: A~ K^H Does recombination change H?

Polynomial or not? (Gang of Five) K ~ # variables (= n) ... # mutns to cross valley

If non-poly but eg # attempts needed $A \sim \exp(c K^{1/3})$ can get $K \sim 10^6$ if c=1 $K \sim 2000$ if c = 8 (factorization?)

If polynomial: A~ K^H Does recombination change H?

What should be surprised by?

Are extremely rare events needed? (= Does size of Earth matter?) If so => rarest that can occur can have specific properties

Nature of Selection & Dynamics?

Is A ~ NT the right combination? Tradeoff of population size vs time?

Well mixed: all vs all ? (Warmuth)
Spatial structure: local competition? Spatial spread?
Time dependent environment? Multiple scales: Crucial (Kussell, Watson)

Diversity: creation and maintenance crucial (Immunology: Luo, Bergstrom)

Nature of Selection & Dynamics?

Is A ~ NT the right combination? Tradeoff of population size vs time?

Well mixed: all vs all ? (Warmuth)
Spatial structure: local competition? Spatial spread?
Time dependent environment? Multiple scales: Crucial (Kussell, Watson)

Diversity: creation and maintenance crucial (Immunology: Luo, Bergstrom)

Asymptotics crucial:

eg: time to evolve ~ I/N vs I/√N .. K vs √K & regimes (Weissman, Pippenger) Universality??

Evolvability Paradox?

Tuesday, April 1, 14

Evolvability Paradox?

Biology: (apparent) "mechanisms" (Livnat, Masel, Altenberg)

Comp. Sci. "solution" of hard problem one of huge # of possible problems (Wan, P. Valiant)

& ¿(Siggia, Steel, Watson)?

Biology finds its own problems to "solve"

measured property

time

Evolvability & "Edge of Chaos" ?

Organismic biology: betw."modular" & "random network"?

Selection on individual genes vs genomes? Why recombination rates what they are?

Generation of variation & selection ~ same time scale??

Difficulty: polynomial K^H --- exponential e^{CK} marginal? eg exp(C K^{1/3})

Specific Contexts, Models, & Extrapolation?

Prebiotic autocatalytic sets (Steel) Morphological development (Siggia) "Toy" models (Watson)

Extrapolation to "real" numbers?

Want: Define class of problems

Measures of "size" (K) of problem?

possible problems to solve? (eg virus many poss. hosts)
Difficulty? (& dependence on competition, recomb, etc)
Universality?

Specific Contexts, Models, & Extrapolation?

Prebiotic autocatalytic sets (Steel) Morphological development (Siggia) "Toy" models (Watson)

Extrapolation to "real" numbers?

Want: Define class of problems

Measures of "size" (K) of problem?

possible problems to solve? (eg virus many poss. hosts)
Difficulty? (& dependence on competition, recomb, etc)
Universality?

Limits to Complexity?

Gene regulation in bacteria genome sizes G ~ 10⁵ - 10⁷ # of transcription factors ~ c G² => max G