Non-Adaptive Evolvability

Jeff Clune

Assistant Professor
Computer Science

UNIVERSITY
OF WYOMING

Evolving Artificial
Intelligence Laboratory




Evolution Fails to Optimize Mutation Rates
(though it would improve evolvability)

Evolution Fails to Produce Modularity For Adaptive Reasons
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 natural selection is short-sighted
 a non-low mutation rate
good in the long-term

bad in the short term



Mutation Rates

o Key driver of evolvability

e Optimized?
+ (for long-term adaptation)




Experimental Design

e |dentify the optimum

evolve organisms with different, fixed (non-evolving)
mutation rates in new environment

<«— optimum

mutation rate




Experimental Design

e |dentify the optimum
evolve organisms with different, fixed (non-evolving)
mutation rates in new environment

e Does evolution produce the optimum?
allow mutation rates to evolve
start well below and well above the optimum
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System

e computational evolution

e Avida

- well-studied

- Lenski et al. Nature 2003
- Lenski et al. Nature 1999



Avida Organisms

e genome: list of computer instructions

 phenotype: execution of instructions with virtual
hardware
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Lenski et al. Nature 2003



Fithess

e |imited space (overwrite neighbors)

o faster replication = more offspring

e extra energy = faster replication
traditional: 9 logic tasks (Lenski et al. 2003)




Experiments

e sweep range of fixed mutation rates

e allow mutation rates to evolve

= evolving, start high

= evolving, start low

Log mutation rate



Evolved Mutation Rates Less Fit

evolving, start high
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e natural selection fails to optimize for long-term

e ...In a complex fitness landscape (Avida default)



Hypothesis

Ruggedness of fithess landscape?

/N

genotype space

X (low mutation rate): higher avg. fitness

Y (high mutation rate): lower avg. fitness




Simplified Avida Environment
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Simplified Avida Environment
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Season A Season B Evolution experiments

*Optimized on smooth

| | f landscapes

| | *Not optimized when
; ruggedness above
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*Valley is crossed many
times, but any delay =
self-reinforcement
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Same Results with Different...

 implementations of mutation rate evolution
- size of changes
- frequency of changes
- Increases more likely

- self-reflexive




Part |: Evolvability
Conclusions

e natural selection fails to optimize mutation rates for
long-term adaptation on rugged fitness landscapes

* |.e. natural selection is short-sighted

- sounds obvious, but many disagree!
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Modularity

* Localization of function in an encapsulated unit (ipson 2007

e Car (spark plug, muffler, wheel), bodies (organs), software, etc.

e Enables increased
e Complexity

e Adaptability
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Modularity: Major driver of Evolvability

 For the same reasons as in engineering

* reuse building blocks in new combinations




Modularity

e Rare in current neuroevolution

e Suggests selection on performance alone does not produce modularity

epoch 1: T=2
epoch 2: T=1

OUTPUT

Kashtan and Alon 2005



Why did modularity evolve!?

* |eading Hypothesis: Selection for evolvability

* We provide evidence for a new force:




Minimizing Connection Costs

 Hypothesis from founding neuroscientist (Ramén y Cajal 1899)
» There are costs in biological networks

« Evidence that selection acts to minimize costs

* Test by evolving neural networks




Kashtan and Alon. PNAS. 2005

Retina Problem

Retina BEEB

| &
object on |-
left side? ™

ob]ect on

- N |
B [
- = rlght side?
"

w! ol
LEFT (L) RIGHT (R)

object on both sides? (L&R:)




Summary

Modular problem Evolutionary process Evolutionary process

Non-modular networks

pixels for left pixels for right v In new environment
subproblem subproblem Selection on ‘\ i

performance alone | slow adaptation

variation

Selection on

performance and fast adaptation
connhection costs

variation Modular networks

 Performance Alone (PA)

* Performance & Connection Costs (P&CC)

Clune, Mouret, & Lipson. 201 3. Proceedings of the Royal Society
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* P&CC significantly more modular, higher-performing ¢ <o.0001)
* Perfect decomposition in 56% of P&CC, never for PA  <o0.0001)

Clune, Mouret, & Lipson. 201 3. Proceedings of the Royal Society



PA, perfect perf.
P&CC
P&CC, perfect pertf.
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* New technique: MOLE map

*  Multi-Objective Landscape Exploration
Clune, Mouret, & Lipson. Proc. Royal Society. 2013
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More evolvable?

e Evolved in one environment, transfer to another
* L-AND-R == | -OR-R
* L-OR-R == L-AND-R

e Ran extra trials until 50 had perfect networks




P&CC significantly more evolvable
P&CC < PA (p < 0.0001)
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Evolve modularity to reduce connection costs, which
happens to help because of problem-modularity

Clune, Mouret, & Lipson. Proc. Royal Society. 2013



Generality

MVG (P&CC)

MVG (PA)
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* Modularity forces can combine

e P&CC less sensitive to rate of environmental change
- P&CC >= MVG at its strongest

Clune, Mouret, & Lipson. Proc. Royal Society. 2013



A Non-Modular Problem
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Biological Implications

* May be a major explanatory force behind evolved
modularity

 May bootstrap evolvability explanations

» initial modularity due to connection costs

- indirect selection for evolvability takes over




Neuroevolution Implications

 Adding a cost increased
- performance
* modularity

- evolvability

e Could be powerful technique for evolutionary
algorithms

~ »




Non-Adaptive Evolvability

e Evolution fails to evolve optimal mutation rates

» any evolvability likely due to cost of fidelity

* Evolution fails to evolve modularity

» any evolvability likely due to connection costs




Non-Adaptive Evolvability

Thanks!

Evolution fails to evolve optimal mutation rates

any evolvability likely due to cost of fidelity

Evolution fails to evolve modularity

any evolvability likely due to connection costs

How many other cases of evolvability are non-
adaptive!

converse: how many examples of evolvability do we know

are adaptive!
Jeff Clune &

Computer Science UNIVERSITY
OF WYOMING




Avida Organisms

e self replicate
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Minimizing Connection Costs

e Many studies suggest overall wire length in brains and
nervous systems are minimized

Most connections in brains are short
Most nodes are not connected

»  Neuron placement optimized to reduce wire length

* Primary reason may be connection costs

» clear in networks with physical connections (neural)

- building, maintenance, energy to use, signal delays, weight, etc.

- may also exist in other networks (e.g. genetic regulatory)

- slow replication, slow regulation, added constraints



