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Evolution Fails to Optimize Mutation Rates	

(though it would improve evolvability)

Evolution Fails to Produce Modularity For Adaptive Reasons	

(though it would improve evolvability)



Part I: Mutation Rates

• natural selection is short-sighted 

• a non-low mutation rate  

• good in the long-term 

• bad in the short term

2008



Mutation Rates

• Key driver of evolvability 

!

• Optimized? 
• (for long-term adaptation)



Experimental Design

• Identify the optimum 
• evolve organisms with different, fixed (non-evolving) 

mutation rates in new environment
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Experimental Design

• Identify the optimum 
• evolve organisms with different, fixed (non-evolving) 

mutation rates in new environment 

• Does evolution produce the optimum? 
• allow mutation rates to evolve 
• start well below and well above the optimum 
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System

• computational evolution 

• Avida 
• well-studied 

- Lenski et al. Nature 2003  

- Lenski et al. Nature 1999 

- Adami et al. PNAS 2000 

- Wilke et al. Nature 2001 

- Chow et al. Science 2004 

- etc.  

• population of self-replicating 
digital organisms



Avida Organisms

• genome: list of computer instructions 

• phenotype: execution of instructions with virtual 
hardware

Lenski et al. Nature 2003



Fitness

• limited space (overwrite neighbors) 

• faster replication = more offspring 

• extra energy = faster replication 
• traditional: 9 logic tasks (Lenski et al. 2003)



Experiments

• sweep range of fixed mutation rates  

• allow mutation rates to evolve

fixed

evolving, start high

evolving, start low



Evolved Mutation Rates Less Fit

• natural selection fails to optimize for long-term  

• ...in a complex fitness landscape (Avida default)

evolving, start high

evolving, start low

fixed



Hypothesis

Ruggedness of fitness landscape?

X Y 

X (low mutation rate):  higher avg. fitness 
!
Y (high mutation rate):  lower avg. fitness 
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Simplified Avida Environment
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Simplified Avida Environment
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Season A

•Optimized on smooth 
landscapes	


•Not optimized when 
ruggedness above 
threshold	


•Valley is crossed many 
times, but any delay = 
self-reinforcement



Same Results with Different...

• implementations of mutation rate evolution 
• size of changes 
• frequency of changes 
• increases more likely 
• self-reflexive 

• environments 
• complexity 
• static vs. changing 
• rate of change 

• ancestors



Part I: Evolvability 
Conclusions

• natural selection fails to optimize mutation rates for 
long-term adaptation on rugged fitness landscapes 

• i.e. natural selection is short-sighted 

• sounds obvious, but many disagree!
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Modularity

• Localization of function in an encapsulated unit (Lipson 2007)	


• Car (spark plug, muffler, wheel), bodies (organs), software, etc. 	


• Enables increased 	


• Complexity	


• Adaptability	


!

!



• For the same reasons as in engineering	


• reuse building blocks in new combinations	


• tinker with one module without affecting everything

Modularity: Major driver of Evolvability



Modularity

• Rare in current neuroevolution	


• Suggests selection on performance alone does not produce modularity 

Kashtan and Alon 2005



Why did modularity evolve?

• Leading Hypothesis: Selection for evolvability	


• We provide evidence for a new force:	


• Selection to minimize connection costs



Minimizing Connection Costs

• Hypothesis from founding neuroscientist (Ramón y Cajal 1899)	

• There are costs in biological networks	


• Evidence that selection acts to minimize costs	


• Test by evolving neural networks 	


• Why?	

• answer longstanding, fundamental biological question	


• harness for artificial intelligence



Retina Problem

L&R L R

Kashtan and Alon. PNAS. 2005

object on 
left side?

object on 
right side?

object on both sides? (L&R:)



Summary

• Performance Alone (PA)	


• Performance & Connection Costs (P&CC)

Clune, Mouret, & Lipson. 2013. Proceedings of the Royal Society



• P&CC significantly more modular, higher-performing (p < 0.0001) 	

• Perfect decomposition in 56% of P&CC, never for PA (p < 0.0001)	


Clune, Mouret, & Lipson. 2013. Proceedings of the Royal Society



Why?

• New technique: MOLE map	

• Multi-Objective Landscape Exploration 

Clune, Mouret, & Lipson. Proc. Royal Society. 2013



Clune et al. Proc. Royal Society. 2013

Performance Alone (PA)

Performance & Connection Costs (P&CC)



More evolvable?

• Evolved in one environment, transfer to another 	

• L-AND-R           L-OR-R	


• L-OR-R              L-AND-R	


• Ran extra trials until 50 had perfect networks

Clune, Mouret, & Lipson. Proc. Royal Society. 2013
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P&CC significantly more evolvable
 P&CC < PA (p < 0.0001)	


Evolve modularity to reduce connection costs, which 
happens to help because of problem-modularity

Clune, Mouret, & Lipson. Proc. Royal Society. 2013



Generality

• Modularity forces can combine	


• P&CC less sensitive to rate of environmental change	

• P&CC >= MVG at its strongest

�

�

Clune, Mouret, & Lipson. Proc. Royal Society. 2013
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Clune, Mouret, & Lipson. Proc. Royal Society. 2013



buffer text

0.95 0.32 0.95 0.16 0.95 0.0

0.94 0.52 0.94 0.21 0.93 0.2

0.93 0.15 0.93 0.28 0.92 0.27
Performance and Connection Cost (P&CC)

1

Modularity Improves Learning

CC minimizes 
“catastrophic 
forgetting”

Ellefsen & Clune, In prep.

buffer text

0.95 0.23 0.94 0.2 0.94 0.17

0.94 0.28 0.93 0.21 0.93 0.18

0.92 0.2 0.92 0.21 0.91 0.22
Performance Alone (PA)

1



Biological Implications

• May be a major explanatory force behind evolved 
modularity	


• May bootstrap evolvability explanations	

• initial modularity due to connection costs	


• indirect selection for evolvability takes over

Clune, Mouret, & Lipson. Proc. Royal Society. 2013



Neuroevolution Implications

• Adding a cost increased 	

• performance	


• modularity	


• evolvability	


• Could be powerful technique for evolutionary 
algorithms

Clune, Mouret, & Lipson. Proc. Royal Society. 2013



Non-Adaptive Evolvability

• Evolution fails to evolve optimal mutation rates	

• any evolvability likely due to cost of fidelity	


• Evolution fails to evolve modularity	

• any evolvability likely due to connection costs	


• How many other cases of evolvability are non-
adaptive?	


• converse: how many examples of evolvability do we know 
are adaptive?



Non-Adaptive Evolvability

• Evolution fails to evolve optimal mutation rates	

• any evolvability likely due to cost of fidelity	


• Evolution fails to evolve modularity	

• any evolvability likely due to connection costs	


• How many other cases of evolvability are non-
adaptive?	


• converse: how many examples of evolvability do we know 
are adaptive?
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Avida Organisms

• self replicate



Minimizing Connection Costs

• Many studies suggest overall wire length in brains and 
nervous systems are minimized	


• Most connections in brains are short	


• Most nodes are not connected	


• Neuron placement optimized to reduce wire length 	


• Primary reason may be connection costs	

• clear in networks with physical connections (neural)	


- building, maintenance, energy to use, signal delays, weight, etc. 	


• may also exist in other networks (e.g. genetic regulatory)	

- slow replication, slow regulation, added constraints


