AUTHENTICATING QUANTUM STATES

QUANTUM BOOTCAMP JANUARY 2020

QUANTUM AUTHENTICATION CODES (QAC)

prevent quantum information from being altered (while sending or storing)

$$|\psi\rangle$$
 Encode_k μΑΠΑCK4 Decode_k $|\psi\rangle$
"SIGNING" "CHECKING"

- One-time: secret key k usable only once
- If decoding rejects, information may be lost!

QAC AS A TOOL

- Authentication of a state: preventing that state from being altered at all
- Verification of a computation: preventing the input from being altered, except in one specific way
- QACs can be an ingredient of (cryptographic) verification protocols!

OVERVIEW

- PART I: quantum authentication codes (the tool)
 - Definition
 - Two different codes
 - Relation to encryption
- PART II: verifiable computation (the applications)
 - Scenario: client and server
 - Scenario: multi-party computation

PART I: QUANTUM AUTHENTICATION CODES

DEFINITION [BCG+02]

Correctness: if no attack happens, decryption "accepts", and the original message is always recovered:

 $Dec_k \circ Enc_k = \mathsf{Id}$

• Security (first attempt): if decryption accepts, the recovered message is close to the original message: $\forall \Phi_{\text{attack}} \quad \exists a \in [0, 1] \quad \forall \rho :$ $\mathbb{E}_k (Dec_k \circ \Phi_{\text{attack}} \circ Enc_k)(\rho) \approx a \cdot \rho + (1 - a) \cdot |\text{rej}\rangle\langle \text{rej}|$ "REAL"

[BCG+02] Barnum, Crépeau, Gottesman, Smith, Tapp; FOCS 2002

DEFINITION

Security (first attempt): if decryption accepts, the recovered message is close to the original message: $\forall \Phi_{\mathsf{attack}} \ \exists a \in [0,1] \ \forall \rho:$ $\mathbb{E}_k(Dec_k \circ \Phi_{\mathsf{attack}} \circ Enc_k)(\rho) \approx a \cdot \rho + (1-a) \cdot |\overline{\mathsf{rej}}\rangle\langle \mathsf{rej}|$ Security (second attempt): with side information [DNS12]: $\forall \Phi_{\mathsf{attack}} \ \exists \Phi_{\mathsf{acc}}, \Phi_{\mathsf{rei}} \ \forall \rho:$ $\mathbb{E}_k((Dec_k \otimes \mathsf{Id}_S) \circ \Phi_{\mathsf{attack}} \circ (Enc_k \otimes \mathsf{Id}_S))(\rho_{MS})$ \sim $(\mathsf{Id}_M \otimes \Phi_{\mathsf{acc}})(\rho_{MS}) + |\mathsf{rej}\rangle\langle\mathsf{rej}| \circ \Phi_{\mathsf{rej}}(\rho_S)$

[DNS12] Dupuis, Nielsen, Salvail; CRYPTO 2012

EXAMPLE: CLIFFORD CODE [BCG+02]

- Key: $C \in_R \text{Clifford}_{n+1}$
- ▶ Encoding: |ψ⟩ → C(|ψ⟩ ⊗ |0ⁿ⟩) "TRAPS"
 ▶ Decoding: apply C[†], measure traps

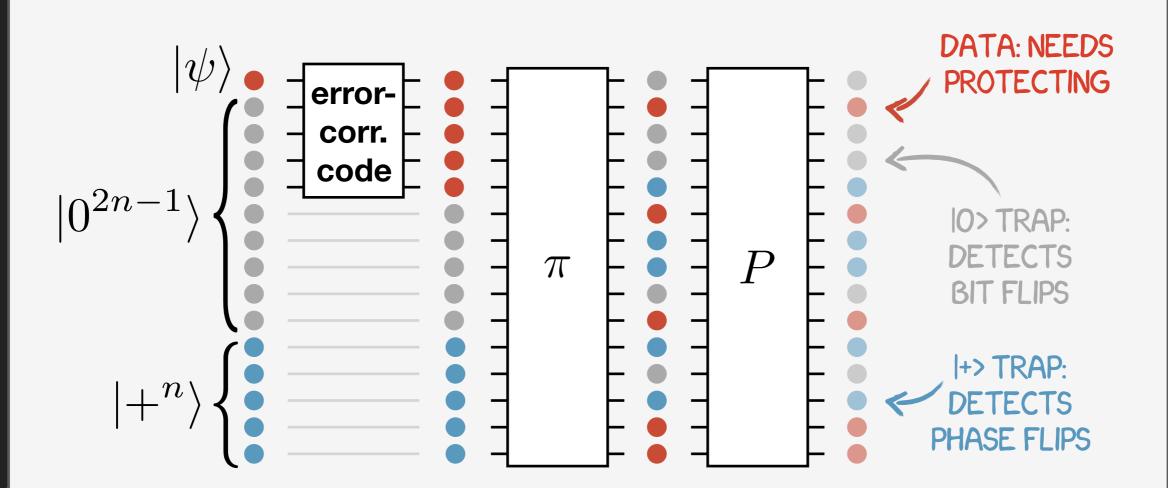
THEOREM: The Clifford code is a secure QAC.

(the probability to alter the state undetected is $\leq 2^{-n}$.)

[BCG+02] Barnum, Crépeau, Gottesman, Smith, Tapp; FOCS 2002

EXAMPLE: TRAP CODE [BGS13]

- Key: $P \in_R \operatorname{Pauli}_{3n}$, $\pi \in_R S_{3n}$
- Encoding: $|\psi\rangle \mapsto P(\pi(\mathsf{ECC}|\psi\rangle \otimes |0^n\rangle \otimes |+^n\rangle))$


[n, 1, d] Error-correcting code

[BGS13] Broadbent, Gus, Stebila; CRYPTO 2013

EXAMPLE: TRAP CODE [BGS13]

 $\bullet \text{ Key:} \qquad P \in_R \text{Pauli}_{3n}, \quad \pi \in_R S_{3n}$

• Encoding: $|\psi\rangle \mapsto P(\pi(\mathsf{ECC}|\psi\rangle \otimes |0^n\rangle \otimes |+^n\rangle))$

EXAMPLE: TRAP CODE [BGS13]

- $\blacktriangleright \text{ Key:} \qquad P \in_R \text{Pauli}_{3n}, \quad \pi \in_R S_{3n}$
- Encoding: $|\psi\rangle \mapsto P(\pi(\mathsf{ECC}|\psi\rangle \otimes |0^n\rangle \otimes |+^n\rangle))$
- Decoding: apply $\pi^{-1}P^{\dagger}$, measure traps & ECC syndrome [*n*, 1, *d*] ERROR-CORRECTING CODE

THEOREM: The trap code is a secure QAC.

(the probability to alter the state undetected is $\leq (2/3)^{d/2}$.)

[BGS13] Broadbent, Gus, Stebila; CRYPTO 2013

WHICH CODE IS "BETTER"?

- Clifford code: simple, clean analysis. Strong security.
- Trap code: more structure, encoding/decoding requires "less quantum"
- There are more: polynomial code [BCG+06], Auth-QFT-Auth [GYZ17], strong trap code [DS18], ...

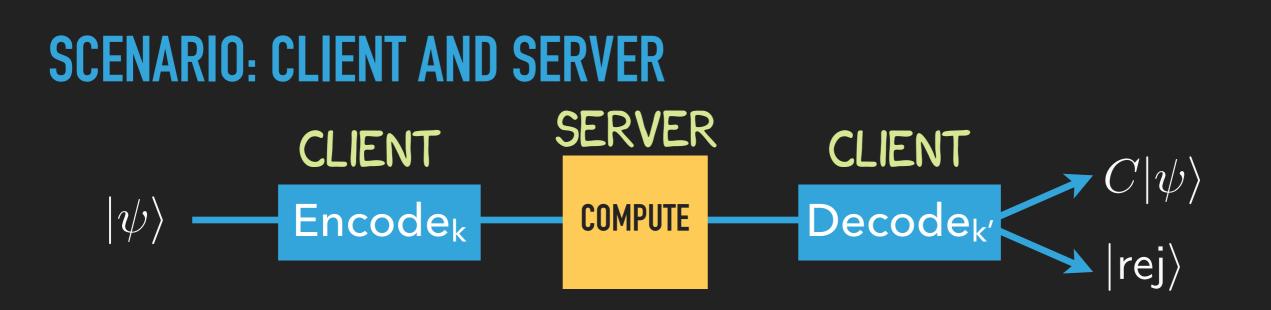
[BCG+06] Ben-Or, Crépeau, Gottesman, Hassidim, Smith; FOCS 2006. [GYZ17] Garg, Yuen, Zhandry; CRYPTO 2017. [DS18] Dulek, Speelman; TQC 2018.

THE "LANDSCAPE" OF DEFINITIONS

Stronger: key recycling [HLM16, GYZ17] (if decoding accepts, the key can be reused)

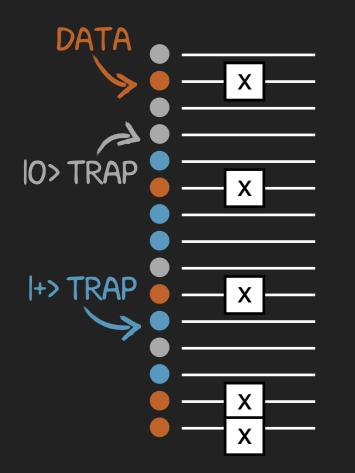
Stronger: ciphertext authentication [AGM16]

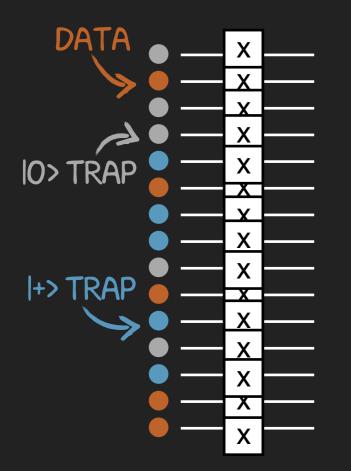
THEOREM. Q authentication implies encryption. [BCG+02]

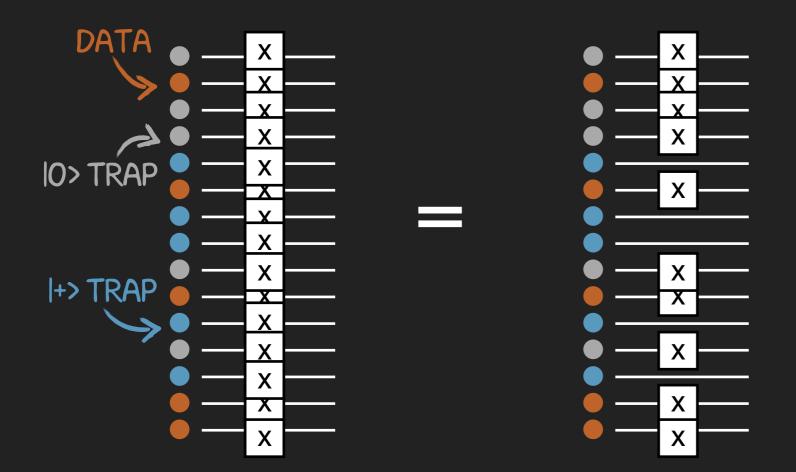

[HLM16] Hayden, Leung, Meyers; arXiv:1610.09434. [GYZ17] Garg, Yuen, Zhandry; CRYPTO 2017. [AGM16] Alagic, Gagliardoni, Majenz; Eurocrypt 2016. [BCG+02] Barnum, Crépeau, Gottesman, Smith, Tapp; FOCS 2002.

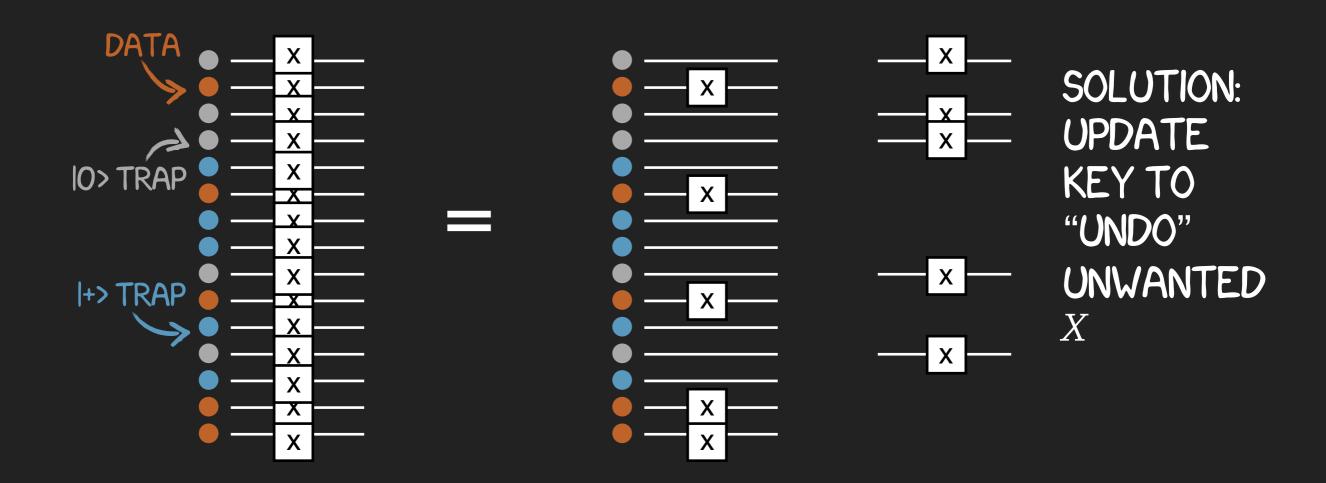
OPEN PROBLEMS

- For known codes: if decoding rejects, how much of the key is compromised? [GYZ17]
- More generally: design of "many-time" codes? [AGM16]
- How to deal with noise?
- Minimal quantum capabilities of the encoder/decoder? Can a classical client "outsource" encoding? [GV19]

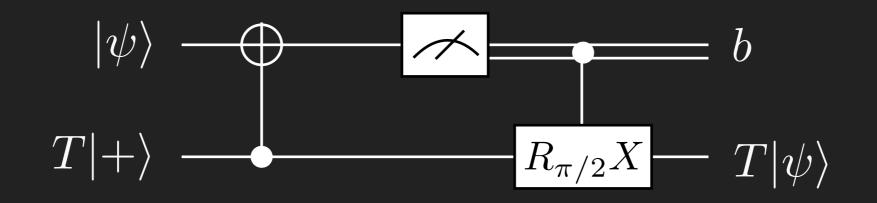

[GYZ17] Garg, Yuen, Zhandry; CRYPTO 2017. [AGM16] Alagic, Gagliardoni, Majenz; Eurocrypt 2016. [GV19] Gheorghiu, Vidick; FOCS 2019.


PART II: VERIFIABLE COMPUTATION

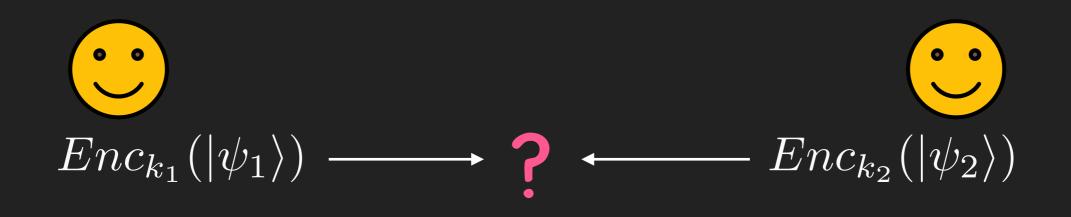



- Server does not know the key
- Client "updates" the key during/after computation
- Protocol using trap code [BGS13]: some gates are simple, some require "magic states"

[BGS13] Broadbent, Gus, Stebila; CRYPTO 2013


MAGIC STATES

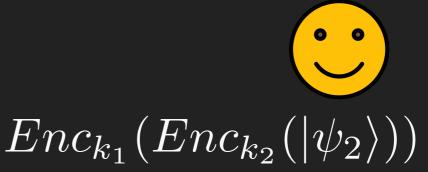
- Transversal computation works for X, Z, CNOT, and even computational-basis measurement!
- Other gates need a different trick: magic states


$$\begin{array}{c} |\psi\rangle & \bigoplus & k \\ R_{\pi/2}|+\rangle & \bigoplus & XZ & R_{\pi/2}|\psi\rangle \end{array}$$

$$R_{\pi/2} = \left[\begin{array}{cc} 1 & 0 \\ 0 & i \end{array} \right]$$

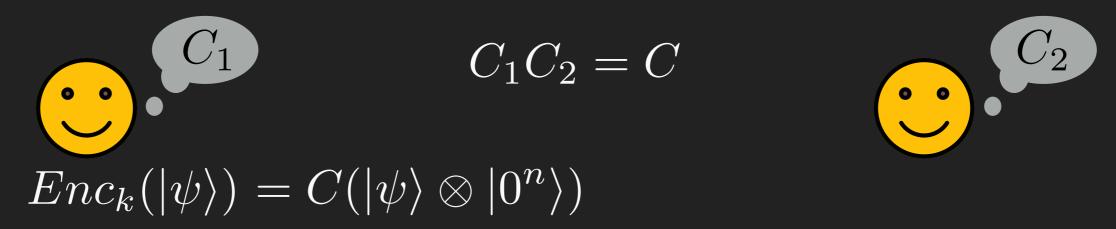
- Compute on authenticated data gate-by-gate
- Some gates ($R_{\pi/2}, H, T = R_{\pi/4}$) require authenticated magic states, created by the client.
- Some gates (T) even require interaction between client and server.




SCENARIO: MULTIPARTY QUANTUM COMPUTATION

- All players have inputs
- What happens if the inputs (and keys) get combined? Who can check/decode the result?

SOLUTION 1: "STACK" AUTHENTICATIONS [DNS12]



All players encode all states, so they can check all states

- plug and play security
 - extra work if player wants to check "inner" encoding
 - more players = longer ciphertexts

[DNS12] Dupuis, Nielsen, Salvail; CRYPTO 2012

SOLUTION 2: PUBLIC AUTHENTICATION TEST [DGJ+20]

- Players share the key to a single encoding
- If one player decodes, all players can verify the check:
 - Decoding player appends another $|0^n\rangle = GL(2n, \mathbb{F}_2)$
 - Spread out" any errors: $(C' \otimes X^r)(\mathbb{I} \otimes g)(C^{\dagger} \otimes \mathbb{I}_n)$
 - Decoding player measures n last qubits, reports r

[DGJ+20] Dulek, Grilo, Jeffery, Majenz, Schaffner; Eurocrypt 2020.

PROTOCOL: MULTIPARTY COMPUTATION

- All players' inputs are encoded. Two options:
 - "stacked" encoding
 - shared encoding (with public authentication test)
- Gate-by-gate computation using similar ideas as in client/ server setting
- Classical control using classical multiparty computation

22/23

OPEN PROBLEMS

- Other applications of "public authentication test"?
 [DGJ+20]
- Applications of multiparty computation: zero-knowledge, digital signatures, ...?
- Obfuscation of quantum circuits [AF16]
- Post-quantum secure classical multi-party computation [DGJ+20, Section 2.2]

[DGJ+20] Dulek, Grilo, Jeffery, Majenz, Schaffner; Eurocrypt 2020. [AF16] Alagic, Fefferman; arXiv:1602.01771

THANK YOU!

SUMMARY

- Quantum authentication codes (Enc_k / Dec_k) guarantee that a quantum state is unaltered (unless decoding rejects)
- Clifford code / trap code are examples of such codes
- Tool for:
 - Client-server setting: verifying that the server did the right computation
 - Multiparty computation: verifying that the other players did the right computation (but we need a way to combine encodings from different players)