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Testing for many qubits, redux

• Parameters of !-fold Magic Square

• Certifies 2! EPR pairs, and #/% Pauli measurements on those EPR pairs

• Questions/answer length: &(!) bits

• Robustness: 1 − + winning probability ⇒&(!- +)-close to textbook strategy



State-of-the-art

• Quantum low-degree test (Natarajan-Vidick 2018):

• Certifies ! EPR pairs, and "/$ Pauli measurements on those EPR pairs

• Questions/answer length: %&'('&)(!) bits

• Robustness: 1 − . winning probability ⇒0(.1)-close to textbook strategy

Exponentially shorter 
messages

Robustness 
independent of !!



Classical low-degree test

• A protocol with “classical rigidity” properties

• Crucial in probabilistically checkable proofs

• Assume provers are deterministic

• Goal: test whether their responses are consistent with a 
!-valued degree-" polynomial over !#



Classical low-degree test

• Verifier picks random 
• Point ! ∈ #$
• Line ℓ = {( + *+ ∶ + ∈ #} containing !

• Prover A responds with - ! ∈ #
• Prover B responds with univariate 

degree-. polynomial /ℓ: # → #

• Provers win if - ! = /ℓ(!)

! ℓ

-(!) /ℓ: # → #

If - is degree-.: 4ℓ should be 5|ℓ



Classical low-degree test

• Extremely efficient test for structure!

• Description of degree-! function:  
"#$
$

• Questions/answers in CLD: O(' log + )

- ℓ

/(-) 0ℓ: + → +

Theorem (AS, ALMSS, RS, …): If 

provers win w.p. ≥ 1 − 6, then 

/ is 7 6 -close to degree-!.



|"⟩

Classical low-degree test, entangled provers

“Classical rigidity” phenomenon persists 
even in presence of entangled provers!

$ ℓ

& 'ℓ: ) → )

Theorem (NV18): If provers win w.p. 
≥ 1 − ., then provers’ measurements 
are / .0 -consistent with degree-1
polynomial.



From classical to quantum low-degree testing

Very roughly:

• Perform classical low-degree testing in ! and " bases separately

• Relate the two bases using Magic Square game.



Complexity of interactive proofs

with entangled provers



• Recall: provers want to convince verifier of 
statement X, e.g., 

• “N is product of two primes”
• “quantum circuit C accepts whp”
• “graphs G, H are isomorphic”

• What statements can be verified using 
multiprover protocols with entangled 
provers?

• No assumptions on complexity of provers

• Protocol must be complete and sound

|"⟩
Prover Prover

Verifier



• MIP denotes complexity class of problems that 
can be verified with classical multiprover
protocols

• Classical provers = deterministic

• Babai, Fortnow, Lund ‘91: MIP = NEXP

• Polynomial-time verifier can check statements like 
“Turing machine M outputs 42 after exponentially 
many steps”.

• Crucial component: classical low-degree test

Prover Prover

Verifier
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• MIP* denotes complexity class of problems that 
can be verified with 
entangled-prover protocols

• MIP vs MIP*?  Consider classical MIP protocol to 
verify statement X.
• If X true, then quantum provers can also prove 

X to verifier.

• If X false, then verifier rejects all classical 
provers, but entangled provers may be able to 
cause verifier to accept!

• Soundness of classical MIP protocols may no 
longer hold against entangled provers!

Prover Prover

Verifier



|"⟩
• [Ito-Vidick 2012] NEXP ⊆ MIP*

• Showed classical protocol of Babai, Fortnow, Lund 
still safe against entangled provers.
• Classical low-degree test still guarantees structure even 

with entangled provers.

• Entanglement cannot reduce complexity of 
multiprover protocols. 

• …can entanglement expand their complexity?

Prover Prover

Verifier



• Algorithmic upper bounds on MIP*? 

• Compare: MIP⊆ DOUBLY-EXP
• Proof: Suppose X can be verified by classical MIP

protocol P. Then implies doubly exponential time 
procedure to compute whether X is true:

Enumerate over all possible deterministic provers 
for P, and calculate acceptance probability of 
verifier. 

• Why doesn’t this work for MIP*?
• Space of provers is infinite; no upper bound on 

amount of entanglement needed. 

X true?



• Best upper bound known: MIP* ⊆ RE

• [Ji-Natarajan-Vidick-Wright-Y.] MIP* = RE

• Complexity-theoretic implications

• Classical, polynomial-time verifier with entangled provers can verify 
X = “Turing machine M eventually halts”

• There is no computable upper bound on amount of entanglement needed in 
general MIP* protocols.

• No computable upper bound on MIP*



Using entanglement in MIP*

• [Natarajan-Wright] NEEXP ⊆ MIP* shows how verifier can use 
entangled provers to its advantage.

• Key idea: using rigidity, force provers to simulate exponentially large 
verification protocol.



Using entanglement in MIP*

• Goal: verify X = “Turing machine M accepts after 2" steps”

• X is NEXP statement, so there exists MIP* protocol with
• 1 round
• Verifier runs in #$%&(() time.
• Based on classical low-degree test.



Using entanglement in MIP*

• Goal: verify X = “Turing machine M accepts after 2"# steps”

• There exists protocol $%&' where:
• 1 round
• Verifier runs in 2( time.
• Based on classical low-degree test.

• Want a protocol $)*+,, that verifies X using -./0(2)-time verifier.



Question and answer reduction
!"#$ Questions: exp ( -bits

Answers: exp ( -bits

!#)* Questions: poly ( -bits
Answers: exp ( -bits

!./011 Questions: poly ( -bits
Answers: 2345 ( -bits



|"⟩

$%&'

( ℓ

* +ℓ

Reducing question size
• In $%&', point/line questions are exponential 

length
• E.g., ( ∈ -. where / = exp(5)

789 : -bit questions

789 : -bit answers



• In !"#$, point/line questions are exponential 
length
• E.g., % ∈ '( where ) = exp(/)

• Intermediate protocol !#12: forces provers to 
sample questions (%, ℓ) themselves, and then 
generate answers (5, 6ℓ) to their own questions 
(“introspection”)

• Verifier in !#12 uses questions (7, 8) of length 
9:;<(/).

|>⟩

7 8

%, 5 ℓ, 6ℓ

Reducing question size
@ABC D -bit questions

EF@ D -bit answers

!#12



• !"#$ protocol

• With prob. ½, run Quantum Low-Degree 
Test to certify exp()) EPR pairs

• With prob. ½, run Introspection protocol to 
certify:
• Provers sample point/line distribution (+, ℓ) as 

in !."/.

• Provers’ answers (0, 1ℓ) to introspected 
questions (+, ℓ) satisfy verifier in !."/!"#$

2 3

Reducing question size

4!5 ⊗789(:)

+, 0 ℓ, 1ℓ

;<=> ? -bit questions

@A; ? -bit answers



• !"#$ protocol
• exp(N) EPR pairs are used as a source of 

randomness to generate (&, ℓ)

• Challenge: needs to certify that prover A 
only samples point &, prover B only 
samples line ℓ, and there is no leakage of 
information!

• Solution crucially relies on special 
structure of point-line distribution!

!"#$

* +

Reducing question size

,!- ⊗/01(2)

&, 3 ℓ, 4ℓ

5678 9 -bit questions

:;5 9 -bit answers



• !"#$%% protocol

• Provers give succinct proofs ('(, '*) that 
they would’ve given accepting answers in 
!,-.

• Based on probabilistically checkable proofs 
(PCPs)

• Proofs are /012(3) bits long

!"#$%%

4 5

Reducing answer size

6!7 ⊗9:;(<)

'( '*

=>?@ A -bit questions

=>?@ A -bit answers



• !"#$(&)-time verifier can verify 
X = “Turing machine M accepts after 2)* steps”

• Uses Quantum Low-Degree test to certify exp(&)
EPR pairs using !"#$(&) question length

• Uses Introspection to certify sampling from 
exponentially large classical low-degree test 
questions from EPR pairs

• Use PCPs to reduce answer size to !"#$ & .
./0122

3 4

Final protocol

5.6 ⊗89:(;)

<= <>

?@AB C -bit questions

?@AB C -bit answers



Quantum low-degree 
test

Classical low-degree test

2"# sized 
low-degree 
polynomial

Schematic of 
NEEXP ⊆ MIP* poly ) -time verifier

exp ) EPR pairs



poly % -time verifier

exp % EPR pairs

Quantum low-degree 
test

Quantum low-degree test

2)* EPR pairs

Why not iterate…?

Quantum low-degree test

…
.



Consequences

• Recursively iterating the Introspection technique from Natarajan-
Wright yields MIP* protocol for verifying the Halting Problem.

• No computable upper bound on MIP*

• Resolves questions in three different areas:
• Complexity of MIP* (Computer science)
• Tsirelson’s Problem (Mathematical physics)
• Connes’ Embedding Problem (Pure mathematics)



Unexpected connections
Connes’ Embedding Problem 

(1974)
Tsirelson’s Problem (2006)

Complexity of MIP* (2004)

Is there an algorithmic 
upper bound on MIP*?

Are all quantum 
correlations in the 
commuting operator 
model approximable in 
finite dimensions?

Do all separable type II1 factors 
embed into an ultrapower of 
the hyperfinite II1 factor?



The multiprover lens

• Cryptography
• Delegated quantum computation
• Randomness expansion
• Device independent quantum 

cryptography
• Zero knowledge

• Complexity theory
• Complexity of MIP*
• Hamiltonian complexity

• Foundations of quantum mechanics
• Rigidity of quantum correlations
• Finite vs infinite dimensional quantum 

correlations

• Pure mathematics
• Functional analysis
• Representation theory
• Algebra
• Noncommutative optimization

Central tool: 
Rigidity of quantum 

correlations

Thanks!


