Multiprover Protocols Part II

A lens on complexity, cryptography, and beyond

Henry Yuen University of Toronto

Testing for many qubits, redux

- Parameters of *N*-fold Magic Square
 - Certifies 2N EPR pairs, and X/Z Pauli measurements on those EPR pairs
 - Questions/answer length: O(N) bits
 - Robustness: 1ϵ winning probability $\Rightarrow O(N^2 \sqrt{\epsilon})$ -close to textbook strategy

State-of-the-art

- Quantum low-degree test (Natarajan-Vidick 2018):
 - Certifies N EPR pairs, and X/Z Pauli measurements on those EPR pairs
 - Questions/answer length: polylog(N) bits

 Exponentially shorter messages

• Robustness: $1 - \epsilon$ winning probability $\Rightarrow O(\epsilon^{\alpha})$ -close to textbook strategy

Robustness independent of *N*!

Classical low-degree test

- A protocol with "classical rigidity" properties
- Crucial in *probabilistically checkable proofs*
- Assume provers are deterministic
- Goal: test whether their responses are consistent with a \mathbb{F} -valued degree-d polynomial over \mathbb{F}^m

Classical low-degree test

- Verifier picks random
 - Point $x \in \mathbb{F}^m$
 - Line $\ell = \{u + vt : t \in \mathbb{F}\}$ containing x
- Prover A responds with $f(x) \in \mathbb{F}$
- Prover B responds with univariate degree-d polynomial $r_{\ell} \colon \mathbb{F} \to \mathbb{F}$
- Provers win if $f(x) = r_{\ell}(x)$

If f is degree-d: r_{ℓ} should be $f|_{\ell}$

Classical low-degree test

Theorem (AS, ALMSS, RS, ...): If provers win w.p. $\geq 1 - \epsilon$, then f is $O(\epsilon)$ -close to degree-d.

- Extremely efficient test for structure!
- Description of degree-d function: $\binom{m+d}{d}$
- Questions/answers in CLD: $O(m \log |\mathbb{F}|)$

Classical low-degree test, entangled provers

Theorem (NV18): If provers win w.p. $\geq 1 - \epsilon$, then provers' measurements are $O(\epsilon^{\alpha})$ -consistent with degree-*d* polynomial.

"Classical rigidity" phenomenon persists even in presence of entangled provers!

From classical to quantum low-degree testing

Very roughly:

- Perform classical low-degree testing in X and Z bases separately
- Relate the two bases using Magic Square game.

Complexity of interactive proofs

with entangled provers

- Recall: provers want to convince verifier of statement *X*, *e.g.*,
 - "N is product of two primes"
 - "quantum circuit C accepts whp"
 - "graphs G, H are isomorphic"
- What statements can be verified using multiprover protocols with entangled provers?
- No assumptions on complexity of provers
- Protocol must be **complete** and **sound**

- MIP denotes complexity class of problems that can be verified with classical multiprover protocols
- Classical provers = deterministic
- Babai, Fortnow, Lund '91: MIP = NEXP
- Polynomial-time verifier can check statements like *"Turing machine M outputs 42 after exponentially many steps"*.
- Crucial component: classical low-degree test

- MIP* denotes complexity class of problems that can be verified with *entangled-prover* protocols
- **MIP** vs **MIP***? Consider classical **MIP** protocol to verify statement *X*.
 - If X true, then quantum provers can also prove X to verifier.
 - If X false, then verifier rejects all classical provers, but *entangled provers* may be able to cause verifier to accept!
- Soundness of classical MIP protocols may no longer hold against entangled provers!

- [Ito-Vidick 2012] NEXP \subseteq MIP*
- Showed classical protocol of Babai, Fortnow, Lund still safe against entangled provers.
 - Classical low-degree test still guarantees structure even with entangled provers.
- Entanglement cannot *reduce* complexity of multiprover protocols.
- ...can entanglement *expand* their complexity?

- Algorithmic upper bounds on **MIP***?
- Compare: $MIP \subseteq DOUBLY-EXP$
- Proof: Suppose X can be verified by classical **MIP** protocol *P*. Then implies doubly exponential time procedure to compute whether X is true:

Enumerate over all possible deterministic provers for *P*, and calculate acceptance probability of verifier.

- Why doesn't this work for MIP*?
- Space of provers is infinite; no upper bound on amount of entanglement needed.

- Best upper bound known: $MIP^* \subseteq RE$
- [Ji-Natarajan-Vidick-Wright-Y.] **MIP* = RE**
- Complexity-theoretic implications
 - Classical, polynomial-time verifier with entangled provers can verify X = "Turing machine M eventually halts"
 - There is no computable upper bound on amount of entanglement needed in general MIP* protocols.
 - No computable upper bound on MIP*

Using entanglement in MIP*

- [Natarajan-Wright] NEEXP ⊆ MIP* shows how verifier can use entangled provers to its advantage.
- Key idea: using rigidity, force provers to simulate exponentially large verification protocol.

Using entanglement in MIP*

- Goal: verify X = "Turing machine M accepts after 2^N steps"
- X is **NEXP** statement, so there exists **MIP*** protocol with
 - 1 round
 - Verifier runs in *poly*(*N*) time.
 - Based on classical low-degree test.

Using entanglement in MIP*

- Goal: verify X = "Turing machine M accepts after 2^{2^N} steps"
- There exists protocol P_{Big} where:
 - 1 round
 - Verifier runs in 2^N time.
 - Based on classical low-degree test.
- Want a protocol P_{Small} that verifies X using poly(N)-time verifier.

Question and answer reduction

 P_{Big}

- In P_{Big}, point/line questions are exponential length
 - E.g., $x \in \mathbb{F}^m$ where $m = \exp(N)$

 P_{int}

- In P_{Big}, point/line questions are exponential length
 - E.g., $x \in \mathbb{F}^m$ where $m = \exp(N)$
- Intermediate protocol P_{int} : forces provers to sample questions (x, ℓ) themselves, and then generate answers (a, r_{ℓ}) to their own questions ("*introspection*")
- Verifier in P_{int} uses questions (u, v) of length poly(N).

 P_{int}

• P_{int} protocol

- With prob. ½, run Quantum Low-Degree Test to certify exp(N) EPR pairs
- With prob. ½, run Introspection protocol to certify:
 - Provers sample point/line distribution (x, ℓ) as in P_{Big} .
 - Provers' answers (a, r_{ℓ}) to introspected questions (x, ℓ) satisfy verifier in P_{Big}

 P_{int}

• P_{int} protocol

- exp(N) EPR pairs are used as a source of randomness to generate (x, ℓ)
- Challenge: needs to certify that prover A only samples point x, prover B only samples line ℓ, and there is no leakage of information!
- Solution crucially relies on special structure of point-line distribution!

Reducing answer size

P_{Small}

• P_{Small} protocol

- Provers give succinct proofs (π_A, π_B) that they would've given accepting answers in P_{int}
- Based on probabilistically checkable proofs (PCPs)
- Proofs are poly(N) bits long

Final protocol

poly(*N*)-bit questions U 12 $|EPR\rangle^{\bigotimes \exp(N)}$ π_A π_B poly(*N*)-bit answers

PSmall

- poly(N)-time verifier can verify
 X = "Turing machine M accepts after 2^{2^N} steps"
- Uses Quantum Low-Degree test to certify exp(N) EPR pairs using poly(N) question length
- Uses Introspection to certify sampling from exponentially large *classical* low-degree test questions from EPR pairs
- Use PCPs to reduce answer size to poly(N).

Consequences

- Recursively iterating the Introspection technique from Natarajan-Wright yields **MIP*** protocol for verifying the Halting Problem.
- No computable upper bound on MIP*
- Resolves questions in three different areas:
 - Complexity of **MIP*** (Computer science)
 - Tsirelson's Problem (Mathematical physics)
 - Connes' Embedding Problem (Pure mathematics)

Unexpected connections

<u>Connes' Embedding Problem</u> (1974)

Do all separable type II₁ factors embed into an ultrapower of the hyperfinite II₁ factor? <u>Tsirelson's Problem (2006)</u> Are all quantum correlations in the commuting operator model approximable in finite dimensions?

Complexity of MIP* (2004)

Is there an algorithmic upper bound on **MIP*?**

The multiprover lens

Thanks!

Cryptography

ullet

- Delegated quantum computation
- Randomness expansion

- Foundations of quantum mechanics
 - Rigidity of quantum correlations
 - Finite vs infinite dimensional quantum

Hamiltonian complexity •

Noncommutative optimization