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The model

What can the Pl learn from the two devices
through classical interaction only?

 Devices are described by quantum
mechanics

* Devices cannot signal to each other

Pl: polynomial time investigator



The model The PI might wonder: are these boxes...
 Performing a quantum computation correctly?
* Generating secure random bits?

 Holding a ground state of a local Hamiltonian?
e (Capable of solving the Halting Problem?

* Using infinite-dimensional entanglement?

All verifiable using multiprover protocols!

Pl: polynomial time investigator



The model

Prover: want to convince the verifier of . Devices are “provers”

a statement X (even if untrue)  More computationally powerful than PI
il * Trying to convince a skeptical verifier of some claim X,
e.g.

 “Nis product of two primes”

* “boxes are generating secure random bits”

* “guantum circuit C accepts whp”

Pl is computationally limited “verifier”

Multiprover protocol: efficient interactive procedure to
determine if X is true
 Completeness: if X true, provers can convince verifier
whp

* Soundness: if X false, provers cannot convince verifier
Verifier: want to verify X using the whp
fewest assumptions.



The multiprover lens

. Cryptography
* Delegated quantum computation
* Randomness expansion
* Device independent quantum
cryptography
* Zero knowledge

 Complexity theory
* Complexity of MIP*
* Hamiltonian complexity

* Foundations of quantum mechanics
* Rigidity of quantum correlations
* Finite vs infinite dimensional quantum
correlations

* Pure mathematics
* Functional analysis
* Representation theory
e Algebra
* Noncommutative optimization



This talk, and the next

* Multiprover protocols |
e Simple rigidity
* Application: A simple interactive proof for guantum computations

* Multiprover protocols Il
* Advanced rigidity
* Application: Complexity of MIP*



Classical verification of guantumness



EPR (1935): Can the behavior of these
boxes be described by classical physics?

Bell (1964): No!




The Magic Square game

Row sums

| Xl X2 X3
0 | X, Xo X
0 | X, Xz X

Column

0 0 1 sums



Th e M a gl C Sq u a re ga m e Random constraint Random variable
(Xy, Xq, Xo) X,

Row sums l l

0
Xl XZ X3
0
X, X X
0 | X, Xy X
Column l l
O O 1 sums Assignment: Assignment:
(a;,a4,37) b
This CSP is not satisfiable. Winning conditions:
Classical devices win with prob. <17/18 * Constraint satisfaction: 3,+3,+3; = 1
* Consistency: b = dy




The Magic Square game

Row sums
01X, X, X
01 X, Xe X
0| X5 Xg X

Column

0 0 1 sums

By sharing four entangled qubits, devices
can win MS game with probability 1!

Random constraint Random variable

(X1, X4, X7) Xy

} }

| }

Assignment: Assignment:
(alra4;a7) b

Winning conditions:
* Constraint satisfaction: a1+a4+a7 =1

* Consistency: b = dy




Th e M a gl C Sq u a re ga m e Random constraint Random variable
(Xy, Xq, Xo) X,

}

0x0; 070y OxOy |EPR)®?2

0,0, 0707 070,

Ox0z 0z0x  OyOy

| }

Assignment: Assignment:
“Spooky” quantum strategy (ay,a425) b

e Upon receiving a variable/constraint, provers
measure their share of |[EPR)®? using
corresponding Pauli observables |[EPR) = EUOO) +|11))



Experimental test for nonclassical physics: ~ Random constraint Random variable
(X1, Xqs X5) X4

* Play Magic Square with two devices l l

* If devices consistently win the game,
they cannot be classical!

Many Bell tests carried out experimentally! l l

Assignment: Assignment:
(a11a4)a7) b




Assuming QM, there is essentially a
unique quantum strategy to win
Magic Square with probability 1.

Theorem: If (|y), M) win Magic Square
with probability 1, there is local change of
basis where

* |¢) = |EPR)®?
e M = Pauli X and Z measurements on EPR
pairs.

Random constraint Random variable

(X4, Xq) X5) X,

Assignment: Assignment:
(a11a4;a7) b



Random constraint Random variable
Assuming QM, there is essentially a (Xy, X4, X5) X
unique quantum strategy to win l

4

Magic Square with probability 1. |EPR)®?2
oy /0
Theorem: If (|y), M) win Magic Square
with probability 1, there is local change of
basis where l l
. Assignment: Assignment:
* |y) = |[EPR)® (a1,a4,37) b

e M = Pauli X and Z measurements on EPR
pairs.




A classical leash on quantum systems

* Magic Square gives a classical test for specific quantum behavior!
* Many other games with similar rigidity phenomena: CHSH, GHZ, ...
* Topic also called self-testing.

e Simple game, powerful tool.

* Rigidity properties are the heart of many quantum multiprover
protocols.

* Advances in rigidity lead to advances in protocol design.



Testing many qubits

 Certify N qubits of entanglement?

* Play N independent instances of Magic Square.
Ql QZ R1 Rz RN
Theorem: If (|Ji), M) win N-fold Magic Square |EPR>®2N

with probability 1, there is local change of
basis where

* |y) = |[EPRY®?N
e M = tensor products of Pauli X and Z
measurements on EPR pairs.

Al,AZ, o Ay By, BZ, .., By

Sequential rigidity: Reichardt, Unger, Vazirani (Nature 2013)
Parallel rigidity: Coudron, Natarajan (2016)



Classical verification of quantum computations

(In the multiprover setting)



A longstanding problem

e Can a quantum computer efficiently prove its correctness to a classical
verifier?

Before 2012, the best results used semi-classical verifiers (ABEO8, BFK08)

* Reichardt-Unger-Vazirani (2012): classical verification of qguantum
computations in the multiprover setting.

Mahadev (2018): classical verification of quantum computations in
single prover setting, with crypto assumptions.



RUV

=~ nature

* Introduces many beautiful ideas
* Analysis of sequential CHSH

* Interleaving of rigidity tests with
computation tests

* Combining rigidity with
measurement-based computation

e Tour-de-force

Article ‘ Published: 24 April 2013

Classical command of quantum
systems

Ben W. Reichardt ™, Falk Unger & Umesh Vazirani

Nature 496, 456-460(2013) | Cite this article
545 Accesses ‘ 126 Citations ‘ 67 Altmetric | Metrics

Abstract

Quantum computation and cryptography both involve
scenarios in which a user interacts with an imperfectly

modelled or ‘untrusted’ system. It is therefore of

* 100 pages
* Prover complexity for T—gate circuit: Q(7T8%°?)
 Many rounds of interaction




Grilo’s verification protocol

* Much simpler than RUV

* 20 pages

Relativistic verifiable delegation of quantum computation

* 1 round protocol Alex B. Grilo

Abstract

The importance of being able to verify quantum computation delegated to remote servers increases
with recent development of quantum technologies. In some of the proposed protocols for this task, a
client delegates her quantum computation to non-communicating servers. The fact that the servers do not

LYY — \J A

* | can describe it to you
in this talk




Grilo’s verification protocol

j0) —{H]
0) —H—— -
j0) =] '
o) —{H] 7

W) —uHuv2Huv*Hu*

Does first qubit of circuit C measure
to |1) with high probability?

Pl: polynomial time investigator



Grilo’s verification protocol

* Provers trying to prove output of
Cis |1) with high probability.

 Completeness: if statement true,
then provers have quantum strategy
that causes verifier whp.

* Soundness: if statement untrue,
verifier always rejects whp.

* Prover efficiency: provers should run in
polynomial time.



Measurement-based verification

* Suppose verifier has trusted measurement device
* Device receives untrusted state from prover

* Can command device to measure each qubit in X or Z basis. Untrusted state
* Then verifier can easily check arbitrary BQP l
computations! Vo
- Trusted
,/: %& ) measuring
ﬂL Y , _ device
== measure qubits using

basis XZXXZZZXXZ...”

“010101001...”



Measurement-based verification  siamonte-Love: wL0G terms

are tensor products of X/Z
measurements

* Feynman-Kitaev circuit-to-Hamiltonian construction /

circuit C = Hamiltonian H = Hy + -+ H,,

* Ground state of H: history state of computation

state of circuit at time t

T
1 2
= /
|l/)> mt=0|t> ® |7~/)t>



Measurement-based verification

* Feynman-Kitaev circuit-to-Hamiltonian construction
circuit C = Hamiltonian H = Hy + -+ H,,

* (YES) If output of C accepts with probability 1, then history state |) satisfies
(WIH|Y) =0

1
poly(n)

* (NO) If output of C accepts with probability < 1/3, then %(l/)”‘”l,b) >
for all |y).



Measurement-based verification

* Feynman-Kitaev circuit-to-Hamiltonian construction
circuit C = Hamiltonian H = Hy + -+ H,,
* (YES) If output of C accepts with probability 1, then history state |) satisfies
(W|H|Yp) =0

* (NO) If output of C accepts with probability < 1/3, then %(1/)|H|1/;) > %

for all |y). /

Simple Hamiltonian amplification trick. Results in non-local
Hamiltonian, but only polynomial-size blow-up.



Measurement-based verification

Measurement Protocol

* Prover sends |i) to trusted measuring device
Untrusted state

* Verifier commands device to measure random term H; )
e Verifier accepts if outcomes correspond to
kernel of H;.
. : Trusted
* (YES) Verifier always accepts, if [) > | measuring
is history state. ) . device
measure qubits using

basis XZXXZZZXXZ...”

* (NO) Verifier rejects with probability = -,
for all |Y) “010101001...”

N | =



Grilo’s verification protocol

* Goal: determine if output of Cis |1) whp.

* Verifier first computes
Hamiltonian H from C.

* Let n be # of qubits Hamiltonian
actson. Let N > n.




Grilo’s verification protocol

* Force one prover to act as trusted measurement device.

e With prob. %2, verifier performs
Rigidity Test
* Play N parallel MS games.




Grilo’s verification protocol

* Force prover B to act as trusted measurement device.
|EPR)®N

e With prob. %2, verifier performs
Rigidity Test
* Play N parallel MS games.

* With prob. %, verifier performs
Energy Test

* Use prover A to teleport ground state [Y)
to prover B, and prover B measures state.

”010101001/v

“measure qubits using
basis XZXXZZZXXZ...”




Energy test

* Pick n random EPR pairs out of N

 Tell prover A (“teleporter”) to
teleport |Y) through those EPRs

* Pick random term H;, and “hide”
H; in random X/Z basis string s

e Send s to prover B (“measurer”

* Accept if outcomes corresponding
to hidden H; pass measurement
protocol




Energy test

* Pick random subset S € [N] of n EPR pairs
1Y)

 Tell prover A (“teleporter”) to
teleport |Y) through those EPRs,
and prover reports teleportation
keys K € {0,1}*™




Energy test

* Pick random subset S € [N] of n EPR pairs
1Y)

 Tell prover A (“teleporter”) to
teleport |Y) through those EPRs,
and prover reports teleportation
keys K € {0,1}*™

* Keys K indicate X/Z errors
on each qubit.



Energy test Hi = of ® 07 ® o}

R =72XXZXZZ
* Pick random term H; ‘//'
. L N S XK ZK )
* Pick random basis string R € {X, Z}

such that R| consistent with H;




Energy test Hi = of ® 07 ® o}
R =Z7ZXXZXZZ
e Pick random term H; ‘//'

* Pick random basis string R € {X, Z}N
such that R| consistent with H;

 Tell prover B (“measurer”) to
measure EPR pairs using
basis choice R, and report
outcomes M € {0,1}".




Energy test Hi = of ® 07 ® o}

R = ZXXZXZZ
* M| corresponds to measuring XX Z*|y) ‘/
with 1 < / XKZK )

* Decode M| using keys K.

* Accept if
outcomes correspond to kernel of H;.



Grilo’s verification protocol

* (YES case) Suppose circuit C accepts with probability 1.

 There exists |y ) such that (¢ |H|[y) = 0.

* Prover B performs measurement
protocol honestly, so verifier
always accepts.




Grilo’s verification protocol

* Conversely, suppose provers succeeded with probability 1 — €.
* Pass Rigidity Test with probability > 1 — 2¢
* Pass Energy Test with probability = 1 — 2¢

* Pass Rigidity Test

* Prover B is poly(Ne)-close to
ideal, trusted measurement device

» Shared state is poly(Ne)-close to |[EPR)®N \




Grilo’s verification protocol

» Key fact: prover B cannot tell difference between Rigidity and Energy Tests

* Passing Rigidity Test = Prover B = trusted measurer in both tests

* Passing Energy Test =

* For all keys K, residual state on
prover B’s side passes trusted
measurement protocol whp.

* Implies H has ground energy = 0, \
thus circuit C accepts with probability 1.




Grilo’s verification protocol

 Completeness: if circuit C accepts with probability 1, there is prover strategy that
is accepted with probability 1.

* Soundness: if circuit C accepts with probability < > then all prover strategies are
rejected with inverse-polynomial probability.



Grilo’s verification protocol

Completeness: if circuit C accepts with probability 1, there is prover strategy that
is accepted with probability 1.

Soundness: if circuit C accepts with probability < %, then all prover strategies are
rejected with high probability. «—

—

Standard amplification tricks for 1-round protocols

Prover complexity: poly(n, T) for n-qubit circuits with T gates

Number of rounds: 1



Recap

* Multiprover protocols is a useful framework to study complex
guantum systems

* Rigidity gives a powerful classical leash on quantum systems

* Certifying EPR pairs and X/Z measurements is enough to verify
arbitrary BQP computations

* Next: the frontier of rigidity, and complexity of multiprover protocols



Last time

* 2014 Simons program: Quantum Hamiltonian Complexity

* Classically verifiable quantum computation (Reichardt-Unger-Vazirani)
* Infinite, robust randomness expansion (Miller-Shi, Coudron-Y.)

* Device-independent quantum key distribution (vazirani-vidick)

* NEXP € MIP* (ito-Vidick)

* Few nonlocal games: CHSH, Magic Square, GHZ



Multiprover protocols today

e 2020 Simons program: The Quantum Wave in Computing

e Simple protocols for verifying quantum computations
* Tight security analysis of DIQKD protocols
* MIP* =RE

» Zero knowledge protocols , ,
What advances in multiprover protocols

* A zoo of nonlocal games will appear the next Simons quantum program?
* NIST Randomness Beacon



