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The model

What can the PI learn from the two devices 
through classical interaction only?

• Devices are described by quantum 
mechanics

• Devices cannot signal to each other

PI: polynomial time investigator

|"⟩



The model The PI might wonder: are these boxes…

• Performing a quantum computation correctly?

• Generating secure random bits?

• Holding a ground state of a local Hamiltonian?

• Capable of solving the Halting Problem?

• Using infinite-dimensional entanglement?

PI: polynomial time investigator

|"⟩

All verifiable using multiprover protocols!



The model • PI is computationally limited “verifier”

• Devices are “provers”
• More computationally powerful than PI
• Trying to convince a skeptical verifier of some claim X, 

e.g.
• “N is product of two primes”
• “boxes are generating secure random bits”
• “quantum circuit C accepts whp”

• Multiprover protocol: efficient interactive procedure to 
determine if X is true
• Completeness: if X true, provers can convince verifier 

whp

• Soundness: if X false, provers cannot convince verifier 
whpVerifier

|"⟩
Prover Prover

Verifier: want to verify X using the 
fewest assumptions.

Prover: want to convince the verifier of 
a statement X (even if untrue)



The multiprover lens

• Cryptography
• Delegated quantum computation
• Randomness expansion
• Device independent quantum 

cryptography
• Zero knowledge

• Complexity theory
• Complexity of MIP*
• Hamiltonian complexity

• Foundations of quantum mechanics
• Rigidity of quantum correlations
• Finite vs infinite dimensional quantum 

correlations

• Pure mathematics
• Functional analysis
• Representation theory
• Algebra
• Noncommutative optimization



This talk, and the next

•Multiprover protocols I
• Simple rigidity
• Application: A simple interactive proof for quantum computations

•Multiprover protocols II
• Advanced rigidity
• Application: Complexity of MIP* 



Classical verification of quantumness
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x y

a b

EPR (1935): Can the behavior of these 
boxes be described by classical physics?

Bell (1964): No!



The Magic Square game

X1 X2 X3

X4 X5 X6

X7 X8 X9

0

0

0
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Row sums

Column
sums



The Magic Square game

X1 X2 X3

X4 X5 X6

X7 X8 X9

0

0

0

0 0 1

Row sums

Column
sums

Winning conditions:
• Constraint satisfaction: a1+a4+a7 = 1
• Consistency: b = a4

This CSP is not satisfiable. 
Classical devices win with prob. ≤ 17/18

(X1, X4, X7) X4

(a1,a4,a7) b

Random constraint Random variable

Assignment: Assignment:
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The Magic Square game

X1 X2 X3

X4 X5 X6

X7 X8 X9

0

0

0

0 0 1

Row sums

Column
sums

Winning conditions:
• Constraint satisfaction: a1+a4+a7 = 1
• Consistency: b = a4

(X1, X4, X7) X4

(a1,a4,a7) b

Random constraint Random variable

Assignment: Assignment:

By sharing four entangled qubits, devices 
can win MS game with probability 1!



The Magic Square game

!"!# !#!" !"!"
!#!$ !$!# !$!$
!"!$ !$!" !%!%

(X1, X4, X7) X4

(a1,a4,a7) b

Random constraint Random variable

Assignment: Assignment:
“Spooky” quantum strategy
• Upon receiving a variable/constraint, provers 

measure their share of &'( ⊗* using 
corresponding Pauli observables |&'(⟩ = 1

2 00 + |11⟩

&'( ⊗*
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(X1, X4, X7) X4

(a1,a4,a7) b

Random constraint Random variable

Assignment: Assignment:

Experimental test for nonclassical physics:

• Play Magic Square with two devices

• If devices consistently win the game, 
they cannot be classical!

Many Bell tests carried out experimentally!
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(X1, X4, X7) X4

(a1,a4,a7) b

Random constraint Random variable

Assignment: Assignment:

Assuming QM, there is essentially a 
unique quantum strategy to win 
Magic Square with probability 1.

Theorem: If " ,% win Magic Square
with probability 1, there is local change of 
basis where

• " ≡ '() ⊗+

• % ≡ Pauli , and - measurements on EPR 
pairs.

? ?



(X1, X4, X7) X4

(a1,a4,a7) b

Random constraint Random variable

Assignment: Assignment:

Assuming QM, there is essentially a 
unique quantum strategy to win 
Magic Square with probability 1.

Theorem: If ! ,# win Magic Square
with probability 1, there is local change of 
basis where

• ! ≡ %&' ⊗)

• # ≡ Pauli * and + measurements on EPR 
pairs.

%&' ⊗)

,-/,/ ,-/,/



A classical leash on quantum systems

• Magic Square gives a classical test for specific quantum behavior!
• Many other games with similar rigidity phenomena: CHSH, GHZ, …
• Topic also called self-testing.

• Simple game, powerful tool.

• Rigidity properties are the heart of many quantum multiprover
protocols.
• Advances in rigidity lead to advances in protocol design.



Testing many qubits
• Certify ! qubits of entanglement?
• Play ! independent instances of Magic Square.

"#, "%, … , "' (#, (%, … , ('

)#, )%, … , )' *#, *%, … , *'
Sequential rigidity: Reichardt, Unger, Vazirani (Nature 2013)
Parallel rigidity: Coudron, Natarajan (2016)

+,( ⊗%'

.//.1

Theorem: If 2 ,3 win !-fold Magic Square
with probability 1, there is local change of 
basis where

• 2 ≡ +,( ⊗%'

• 3 ≡ tensor products of Pauli 5 and 6
measurements on EPR pairs.



Classical verification of quantum computations
(In the multiprover setting)



A longstanding problem

• Can a quantum computer efficiently prove its correctness to a classical 
verifier?

• Before 2012, the best results used semi-classical verifiers (ABE08, BFK08)

• Reichardt-Unger-Vazirani (2012): classical verification of quantum 
computations in the multiprover setting.

• Mahadev (2018): classical verification of quantum computations in 
single prover setting, with crypto assumptions.



RUV

• Introduces many beautiful ideas
• Analysis of sequential CHSH

• Interleaving of rigidity tests with 
computation tests

• Combining rigidity with 
measurement-based computation

• Tour-de-force
• 100 pages
• Prover complexity for !–gate circuit: Ω !#$%&
• Many rounds of interaction



Grilo’s verification protocol

• Much simpler than RUV

• 20 pages

• 1 round protocol

• I can describe it to you 
in this talk



Grilo’s verification protocol

Does first qubit of circuit C measure
to |1⟩ with high probability?

PI: polynomial time investigator



Grilo’s verification protocol
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• Provers trying to prove output of 
C is |1⟩ with high probability.

• Completeness: if statement true,
then provers have quantum strategy 
that causes verifier whp.

• Soundness: if statement untrue, 
verifier always rejects whp.

• Prover efficiency: provers should run in
polynomial time.



Measurement-based verification

• Suppose verifier has trusted measurement device
• Device receives untrusted state from prover
• Can command device to measure each qubit in X or Z basis.

• Then verifier can easily check arbitrary BQP
computations!

Trusted
measuring 
device

“measure qubits using 
basis XZXXZZZXXZ…”

|"⟩

“010101001…”

Untrusted state



Measurement-based verification

• Feynman-Kitaev circuit-to-Hamiltonian construction

• Ground state of !: history state of computation

circuit " → Hamiltonian ! = !% +⋯+!(

) = 1
+ + 1,-./

0
1 ⊗ |)-⟩

state of circuit at time 1

Biamonte-Love: WLOG terms 
are tensor products of X/Z 
measurements



Measurement-based verification

• Feynman-Kitaev circuit-to-Hamiltonian construction

• (YES) If output of ! accepts with probability 1,  then history state " satisfies 
" # " = 0

• (NO) If output of ! accepts with probability ≤ 1/3,  then &' " # " ≥ &
)*+,(.)

for all 0 .

circuit ! → Hamiltonian # = #& +⋯+#'



Measurement-based verification

• Feynman-Kitaev circuit-to-Hamiltonian construction

• (YES) If output of ! accepts with probability 1,  then history state " satisfies 
" # " = 0

• (NO) If output of ! accepts with probability ≤ 1/3,  then &' " # " ≥ &
)

for all * .

circuit ! → Hamiltonian # = #& +⋯+#'

Simple Hamiltonian amplification trick. Results in non-local 
Hamiltonian, but only polynomial-size blow-up.



Measurement-based verification

Measurement Protocol
• Prover sends |"⟩ to trusted measuring device
• Verifier commands device to measure random term $%
• Verifier accepts if outcomes correspond to 

kernel of $%.
Trusted
measuring 
device“measure qubits using 

basis XZXXZZZXXZ…”

|"⟩
Untrusted state

“010101001…”

• (YES) Verifier always accepts, if "
is history state.

• (NO) Verifier rejects with probability ≥ '
(,

for all |"⟩



Grilo’s verification protocol

• Goal: determine if output of C is |1⟩ whp.

• Verifier first computes
Hamiltonian $ from %.

• Let & be # of qubits Hamiltonian 
acts on. Let ' ≫ &.

|)⟩

A B



Grilo’s verification protocol

• Force one prover to act as trusted measurement device.

• With prob. ½ , verifier performs
Rigidity Test
• Play ! parallel MS games.

|#⟩

A B



Grilo’s verification protocol

• Force prover B to act as trusted measurement device.

• With prob. ½ , verifier performs
Rigidity Test
• Play ! parallel MS games.

• With prob. ½, verifier performs
Energy Test
• Use prover A to teleport ground state |#⟩

to prover B, and prover B measures state.

%&' ⊗)

“measure qubits using 
basis XZXXZZZXXZ…”

“010101001…”

A B



Energy test

• Pick ! random EPR pairs out of "

• Tell prover A (“teleporter”) to 
teleport |$⟩ through those EPRs

• Pick random term &', and “hide”&' in random X/Z basis string (

• Send ( to prover B (“measurer”)

• Accept if outcomes corresponding
to hidden &' pass measurement
protocol

A B



Energy test

• Pick random subset ! ⊆ [$] of  & EPR pairs

• Tell prover A (“teleporter”) to 
teleport |(⟩ through those EPRs,
and prover reports teleportation 
keys * ∈ 0,1 /0

A B

|(⟩



Energy test

• Pick random subset ! ⊆ [$] of  & EPR pairs

• Tell prover A (“teleporter”) to 
teleport |(⟩ through those EPRs,
and prover reports teleportation 
keys * ∈ 0,1 /0

• Keys * indicate 1/3 errors
on each qubit.

A B

|(⟩
!

*

1434|(⟩



Energy test

• Pick random term !"
• Pick random basis string # ∈ %, ' (

such that #|* consistent with !"

A B

!" = ,-. ⊗ ,01 ⊗ ,0.

2

# = '%3'%44

5 %6'6|7⟩



Energy test

• Pick random term !"
• Pick random basis string # ∈ %, ' (

such that #|* consistent with !"

• Tell prover B (“measurer”) to 
measure EPR pairs using
basis choice #, and report 
outcomes + ∈ 0,1 (.

A B

.

+

!" = 012 ⊗ 045 ⊗ 042

# = '%6'%77

8 %9'9|:⟩



Energy test

• !|# corresponds to measuring $%&%|'⟩
with )*

• Decode !|# using keys +. 

• Accept if
outcomes correspond to kernel of )*. 

A B

+ !

)* = -./ ⊗ -12 ⊗ -1/

3 = &$4&$55

6 $%&%|'⟩



Grilo’s verification protocol

• (YES case) Suppose circuit ! accepts with probability 1.

• There exists |#⟩ such that # % # = 0. 

• Prover B performs measurement 
protocol honestly,  so verifier 
always accepts.

A B



Grilo’s verification protocol

• Conversely, suppose provers succeeded with probability 1 − #.
• Pass Rigidity Test with probability ≥ 1 − 2#
• Pass Energy Test with probability ≥ 1 − 2#

• Pass Rigidity Test
• Prover B is &'() *# -close to 

ideal, trusted measurement device

• Shared state is &'() *# -close to +,- ⊗/

A B



Grilo’s verification protocol

• Key fact: prover B cannot tell difference between Rigidity and Energy Tests
• Passing Rigidity Test ⇒ Prover B ≈ trusted measurer in both tests
• Passing Energy Test ⇒

• For all keys #, residual state on 
prover B’s side passes trusted 
measurement protocol whp.

• Implies $ has ground energy ≈ 0, 
thus circuit & accepts with probability 1.

A B



Grilo’s verification protocol

• Completeness: if circuit ! accepts with probability 1, there is prover strategy that 
is accepted with probability 1.

• Soundness: if circuit ! accepts with probability ≤ #
$, then all prover strategies are 

rejected with inverse-polynomial probability.



Grilo’s verification protocol

• Completeness: if circuit ! accepts with probability 1, there is prover strategy that 
is accepted with probability 1.

• Soundness: if circuit ! accepts with probability ≤ #
$, then all prover strategies are 

rejected with high probability.

• Prover complexity: %&'((*, ,) for *-qubit circuits with , gates

• Number of rounds: 1

Standard amplification tricks for 1-round protocols



Recap

• Multiprover protocols is a useful framework to study complex 
quantum systems

• Rigidity gives a powerful classical leash on quantum systems

• Certifying EPR pairs and X/Z measurements is enough to verify 
arbitrary BQP computations

• Next: the frontier of rigidity, and complexity of multiprover protocols



Last time

• 2014 Simons program: Quantum Hamiltonian Complexity

• Classically verifiable quantum computation (Reichardt-Unger-Vazirani)

• Infinite, robust randomness expansion (Miller-Shi, Coudron-Y.)

• Device-independent quantum key distribution (Vazirani-Vidick)

• NEXP ⊆ MIP* (Ito-Vidick)

• Few nonlocal games: CHSH, Magic Square, GHZ



Multiprover protocols today

• 2020 Simons program: The Quantum Wave in Computing

• Simple protocols for verifying quantum computations

• Tight security analysis of DIQKD protocols 

• MIP* = RE

• Zero knowledge protocols

• A zoo of nonlocal games

• NIST Randomness Beacon

What advances in multiprover protocols 
will appear the next Simons quantum program?


