Quantum Algorithms: An overview of techniques

András Gilyén
Institute for Quantum Information and Matter

Caltech

The Quantum Wave in Computing Boot Camp
Berkeley, 28th January 2020

Outline

Main quantum tricks and techniques

- Quantum Fourier Transform
- The SWAP test
- Unitaries as representations
- Quantum simulation
- Dissipative \& stochastic state preparation
- Quantum walks, Grover search

Quantum Fourier Transform

Discrete \& Quantum Fourier Transform (QFT)

QFT over \mathbb{Z}_{N}

$$
\operatorname{DFT}_{N}=\operatorname{QFT}_{N}=\frac{1}{\sqrt{N}}\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{N-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{N-1} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)(N-1)}
\end{array}\right) \text {, where } \omega=e^{\frac{2 \pi i}{N}} .
$$

Discrete \& Quantum Fourier Transform (QFT)

QFT over \mathbb{Z}_{N}

$$
\operatorname{DFT}_{N}=Q F T_{N}=\frac{1}{\sqrt{N}}\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{N-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{N-1} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)(N-1)}
\end{array}\right) \text {, where } \omega=e^{\frac{2 \pi i}{N}} .
$$

In particular $Q F T_{N}:|j\rangle \mapsto \sum_{k=0}^{N-1} e^{\frac{2 \pi i j k}{N}}|k\rangle$,

Discrete \& Quantum Fourier Transform (QFT)

QFT over \mathbb{Z}_{N}

$$
\operatorname{DFT}_{N}=Q F T_{N}=\frac{1}{\sqrt{N}}\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{N-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{N-1} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)(N-1)}
\end{array}\right) \text {, where } \omega=e^{\frac{2 \pi i}{N}} .
$$

In particular $Q F T_{N}:|j\rangle \mapsto \sum_{k=0}^{N-1} e^{\frac{2 \pi i \cdot k}{N}}|k\rangle$, and $Q F T_{2}=H$.

Discrete \& Quantum Fourier Transform (QFT)

QFT over \mathbb{Z}_{N}

$$
D F T_{N}=Q F T_{N}=\frac{1}{\sqrt{N}}\left(\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{N-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{N-1} & \omega^{2(N-1)} & \ldots & \omega^{(N-1)(N-1)}
\end{array}\right) \text {, where } \omega=e^{\frac{2 \pi i}{N}}
$$

In particular $Q F T_{N}:|j\rangle \mapsto \sum_{k=0}^{N-1} e^{\frac{2 \pi j i k}{N}}|k\rangle$, and $Q F T_{2}=H$.
For $N=2^{n}, Q F T_{N}$ can be implemented using $O(n \log (n))$ two-qubit gates.

Discrete \& Quantum Fourier Transform (QFT)

QFT over \mathbb{Z}_{N}

$$
D F T_{N}=Q F T_{N}=\frac{1}{\sqrt{N}}\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{N-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{N-1} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)(N-1)}
\end{array}\right) \text {, where } \omega=e^{\frac{2 \pi i}{N}} .
$$

In particular $Q F T_{N}:|j\rangle \mapsto \sum_{k=0}^{N-1} e^{\frac{2 \pi \pi k}{N}}|k\rangle$, and $Q F T_{2}=H$.
For $N=2^{n}, Q F T_{N}$ can be implemented using $O(n \log (n))$ two-qubit gates. (The same construction as in FFT, which has complexity $O(N \log (N))=O\left(2^{n} n\right)$.)

The Deutsch-Jozsa algorithm (1992)

Problem

- Given a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ decide whether it is constant (0 or 1) or balanced ($50 \% 0$ and 1).
- The function is given as an oracle $O_{f}:|x\rangle|b\rangle \mapsto|x\rangle|b \oplus f(x)\rangle$.

The Deutsch-Jozsa algorithm (1992)

Problem

- Given a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ decide whether it is constant (0 or 1) or balanced ($50 \% 0$ and 1).
- The function is given as an oracle $O_{f}:|x\rangle|b\rangle \mapsto|x\rangle|b \oplus f(x)\rangle$.

The Deutsch-Jozsa algorithm (1992)

Problem

- Given a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ decide whether it is constant (0 or 1) or balanced ($50 \% 0$ and 1).
- The function is given as an oracle $O_{f}:|x\rangle|b\rangle \mapsto|x\rangle|b \oplus f(x)\rangle$.

The Deutsch-Jozsa algorithm (1992)

Problem

- Given a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ decide whether it is constant (0 or 1) or balanced ($50 \% 0$ and 1).
- The function is given as an oracle $O_{f}:|x\rangle|b\rangle \mapsto|x\rangle|b \oplus f(x)\rangle$.

Take away message

- Constructive interference can be used as a computational resource
- Studying problems in a black-box setting gives useful insights

The Bernstein-Vazirani algorithm (1992)

Probiem

- Given a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ so that $f(x)=s \cdot x(\bmod 2)$; find s.
- The function is given as an oracle $O_{f}:|x\rangle|b\rangle \mapsto|x\rangle|b \oplus f(x)\rangle$.

The Bernstein-Vazirani algorithm (1992)

Problem

- Given a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ so that $f(x)=s \cdot x(\bmod 2)$; find s.
- The function is given as an oracle $O_{f}:|x\rangle|b\rangle \mapsto|x\rangle|b \oplus f(x)\rangle$.

The Bernstein-Vazirani algorithm (1992)

Problem

- Given a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ so that $f(x)=s \cdot x(\bmod 2)$; find s.
- The function is given as an oracle $O_{f}:|x\rangle|b\rangle \mapsto|x\rangle|b \oplus f(x)\rangle$.

The Bernstein-Vazirani algorithm (1992)

Probiem

- Given a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ so that $f(x)=s \cdot x(\bmod 2)$; find s.
- The function is given as an oracle $O_{f}:|x\rangle|b\rangle \mapsto|x\rangle|b \oplus f(x)\rangle$.

Take away message

- Shows the power of Fourier transform (over the group \mathbb{Z}_{2}^{n})
- (+1 Phase kickback is a surprising and useful quantum effect)

Jordan's quantum algorithm for gradients (2004)

A generalization of the Bernstein-Vazirani algorithm $\left(\mathbb{Z}_{2} \leadsto \mathbb{Z}_{K}\right)$

- Given a function $f: \mathbb{Z}_{K}^{n} \rightarrow \mathbb{Z}_{K}$ so that $f(x)=s \cdot x(\bmod K)$; find s.

Jordan's quantum algorithm for gradients (2004)

A generalization of the Bernstein-Vazirani algorithm $\left(\mathbb{Z}_{2} \leadsto \mathbb{Z}_{K}\right)$

- Given a function $f: \mathbb{Z}_{K}^{n} \rightarrow \mathbb{Z}_{K}$ so that $f(x)=s \cdot x(\bmod K)$; find s.
- The function is given as a phase oracle $U_{f}:|x\rangle \mapsto e^{\frac{2 \pi}{K} f(x)}|x\rangle=e^{2 \pi i \frac{i \alpha}{K}}|x\rangle$.

$$
|0\rangle^{\otimes n}-Q F T_{K}^{\otimes n}-U_{f}-\left(Q F T_{K}^{-1}\right)^{\otimes n} \text { - }
$$

Jordan's quantum algorithm for gradients (2004)

A generalization of the Bernstein-Vazirani algorithm $\left(\mathbb{Z}_{2} \leadsto \mathbb{Z}_{K}\right)$

- Given a function $f: \mathbb{Z}_{K}^{n} \rightarrow \mathbb{Z}_{K}$ so that $f(x)=s \cdot x(\bmod K)$; find s.

$$
|0\rangle^{\otimes n}-Q F T_{K}^{\otimes n}-U_{f}-\left(Q F T_{K}^{-1}\right)^{\otimes n}-\infty
$$

(Recall: $\left.Q F T_{K}:|j\rangle \mapsto \frac{1}{\sqrt{K}} \sum_{\ell=0}^{K-1} e^{2 \pi i_{k}^{i}}|\ell\rangle\right)$

Jordan's quantum algorithm for gradients (2004)

A generalization of the Bernstein-Vazirani algorithm $\left(\mathbb{Z}_{2} \leadsto \mathbb{Z}_{K}\right)$

- Given a function $f: \mathbb{Z}_{K}^{n} \rightarrow \mathbb{Z}_{K}$ so that $f(x)=s \cdot x(\bmod K)$; find s.
- The function is given as a phase oracle $U_{f}:|x\rangle \mapsto e^{\frac{2 \pi}{K} f(x)}|X\rangle=e^{2 \pi i \frac{j x}{K}}|x\rangle$.

$$
|0\rangle^{\otimes n}-Q F T_{K}^{\otimes n}-U_{f}-\left(Q F T_{K}^{-1}\right)^{\otimes n}-\infty
$$

(Recall: QFT $_{K}:|j\rangle \mapsto \frac{1}{\sqrt{K}} \sum_{\ell=0}^{K-1} e^{2 \pi \pi_{K}^{i}}|\ell\rangle$)

Jordan's algorithm $\left(\mathbb{Z}_{K} \rightsquigarrow \mathbb{R}\right)$

- For a differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ we have $f\left(x_{0}+\delta_{x}\right) \approx f\left(x_{0}\right)+\nabla f \cdot \delta_{x}$
- Discretize \mathbb{R} and run the above algorithm for large enough K (resolution is $\approx \frac{1}{K}$)
- Implement $U_{f}:\left|\delta_{x}\right\rangle \mapsto e^{\frac{2 \pi}{K} f\left(x_{0}+\delta_{x}\right)}\left|\delta_{x}\right\rangle \approx e^{\frac{2 \pi i\left(x_{0}\right)}{K}} e^{\frac{2 n\left(\overrightarrow{n^{\prime} f(\delta x)}\right.}{K}}\left|\delta_{x}\right\rangle$ with one evaluation of f

Generalizations and applications of Jordan's algorithm

Convex functions

- Have at least one subgradient at every point
- Around most points can be well approximated by a linear function

Generalizations and applications of Jordan's algorithm

Convex functions

- Have at least one subgradient at every point
- Around most points can be well approximated by a linear function

Separating hyperplanes

Exponential speed-up for finding separating hyperplanes (2018):

- Apeldoorn, G, Gribling, de Wolf
- Chakrabarti, Childs, Li, Wu

Generalizations and applications of Jordan's algorithm

Convex functions

- Have at least one subgradient at every point
- Around most points can be well approximated by a linear function

Separating hyperplanes

Exponential speed-up for finding separating hyperplanes (2018):

- Apeldoorn, G, Gribling, de Wolf
- Chakrabarti, Childs, Li, Wu

Gradient computation for variational qauntum circits (QAOA)

$>\frac{1}{\varepsilon}$ Quadratic speed-up for computing the gradient (G, Arunachalam, Wiebe 2017)

Phase estimation $\left(\mathbb{Z}_{2}^{n} \rightsquigarrow \mathbb{Z}_{2^{n}}\right)$

Phase estimation problem

Given $U=\sum_{\lambda} e^{2 \pi i \lambda}\left|\psi_{\lambda} X \psi_{\lambda}\right|$ and an eigenstate $\left|\psi_{\lambda}\right\rangle$ output λ.

Phase estimation $\left(\mathbb{Z}_{2}^{n} n \rightarrow \mathbb{Z}_{2^{n}}\right)$

Phase estimation problem

Given $U=\sum_{\lambda} e^{2 \pi i \lambda}\left|\psi_{\lambda} X \psi_{\lambda}\right|$ and an eigenstate $\left|\psi_{\lambda}\right\rangle$ output λ.

Phase estimation $\left(\mathbb{Z}_{2}^{n} n \rightarrow \mathbb{Z}_{2} n\right)$

Phase estimation problem

Given $U=\sum_{\lambda} e^{2 \pi i \lambda}\left|\psi_{\lambda} X \psi_{\lambda}\right|$ and an eigenstate $\left|\psi_{\lambda}\right\rangle$ output λ.

$$
|0\rangle^{\otimes n}|\psi\rangle \stackrel{H^{\otimes n}}{\mapsto} \sum_{k=0}^{2^{n}-1}|k\rangle|\psi\rangle \stackrel{U^{k}}{\mapsto}\left(\sum_{k=0}^{2^{n}-1} e^{2 \pi i \lambda k}|k\rangle\right)|\psi\rangle \stackrel{\substack{\text { QFT-1 }-1}}{\mapsto}\left|\approx 2^{n} \lambda\right\rangle|\psi\rangle
$$

The Hidden subgroup problem (HSP) $\left(\mathbb{Z}_{2^{n}} \leadsto \rightarrow G\right)$

Problem

- Input: Oracle access to a function $f: G \rightarrow S$ for some group G and (finite) set S
- Promise: There is a subgroup $H \leq G$ such that $f(x)=f(y)$ iff $x^{-1} y \in H$
- Goal: Find H (and a system of its generators)

The Hidden subgroup problem (HSP) $\left(\mathbb{Z}_{2^{n}} \leadsto \rightarrow G\right)$

Problem

- Input: Oracle access to a function $f: G \rightarrow S$ for some group G and (finite) set S
- Promise: There is a subgroup $H \leq G$ such that $f(x)=f(y)$ iff $x^{-1} y \in H$
- Goal: Find H (and a system of its generators)

Algorithm for solving the problem - Kitaev (1995)

$$
\frac{1}{\sqrt{|G|}} \sum_{g \in G}|g\rangle-O_{f}-Q F T_{G}-\infty
$$

The Hidden subgroup problem (HSP) $\left(\mathbb{Z}_{2^{n}} \leadsto \rightarrow G\right)$

Probiem

- Input: Oracle access to a function $f: G \rightarrow S$ for some group G and (finite) set S
- Promise: There is a subgroup $H \leq G$ such that $f(x)=f(y)$ iff $x^{-1} y \in H$
- Goal: Find H (and a system of its generators)

Algorithm for solving the problem - Kitaev (1995)

$$
\frac{1}{\sqrt{|G|}} \sum_{g \in G}|g\rangle-O_{f}-Q F T_{G}-\nless
$$

Works well for Abelian groups

- Samples a uniformly random character / irrep. of G that is trivial on H
- One can find a generator system of H after a few repetitions
- We can implement $Q F T_{G}$ efficiently

Some examples of the Abelian HSP

Simon's problem

\downarrow Function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$ (the group is \mathbb{Z}_{2}^{n})

- Subgroup: $\{0, s\}$, i.e., $f(x)=f(y)$ iff $x-y \in\{0, s\}$
- Output: s

Some examples of the Abelian HSP

Simon's probiem

\downarrow Function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$ (the group is \mathbb{Z}_{2}^{n})

- Subgroup: $\{0, s\}$, i.e., $f(x)=f(y)$ iff $x-y \in\{0, s\}$
- Output: s

Period finding (and Shor's algorithm)

- Function: $f: \mathbb{Z} \rightarrow \mathbb{Z}_{N}$ (in Shor's algorithm $f(x)=a^{x} \bmod N$ for some a)
- Subgroup: $p \cdot \mathbb{Z}$, i.e, $f(x)=f(y)$ iff $x-y \in p \cdot \mathbb{Z}$
- Output: p

Some examples of the Abelian HSP

Simon's problem

\downarrow Function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$ (the group is \mathbb{Z}_{2}^{n})

- Subgroup: $\{0, s\}$, i.e., $f(x)=f(y)$ iff $x-y \in\{0, s\}$
- Output: s

Period finding (and Shor's algorithm)

- Function: $f: \mathbb{Z} \rightarrow \mathbb{Z}_{N}$ (in Shor's algorithm $f(x)=a^{x} \bmod N$ for some a)
- Subgroup: $p \cdot \mathbb{Z}$, i.e, $f(x)=f(y)$ iff $x-y \in p \cdot \mathbb{Z}$
- Output: p

Discrete \log (for given γ, A find a such that $\mathrm{A}=\gamma^{\mathrm{a}}$)

- Function: $f: \mathbb{Z}_{N} \times \mathbb{Z}_{N} \rightarrow \mathbb{Z}_{N}$ mapping $(x, y) \mapsto \gamma^{x} A^{-y} \bmod N$
- Subgroup: $\langle(a, 1)\rangle$, i.e., $f(x, y)=f\left(x^{\prime}, y^{\prime}\right)$ iff $\exists c \in \mathbb{Z}_{N}:\left(x-x^{\prime}, y-y^{\prime}\right)=(a c, c)$
- Output: a

More advanced algorithms based on Abelian HSPs

- Solving Pell's equation (Hallgren 2002)

$$
x^{2}-d y^{2}=1
$$

- Solving the principal ideal problem (Hallgren 2002)
- Period finding over \mathbb{R} and \mathbb{R}^{n}
- Computing the unit group of number fields
- Breaking elliptic curve based cryptography
- \vdots

More advanced algorithms based on Abelian HSPs

- Solving Pell's equation (Hallgren 2002)

$$
x^{2}-d y^{2}=1
$$

- Solving the principal ideal problem (Hallgren 2002)
- Period finding over \mathbb{R} and \mathbb{R}^{n}
- Computing the unit group of number fields
- Breaking elliptic curve based cryptography
- \vdots

More advanced algorithms based on Abelian HSPs

- Solving Pell's equation (Hallgren 2002)

$$
x^{2}-d y^{2}=1
$$

- Solving the principal ideal problem (Hallgren 2002)
- Period finding over \mathbb{R} and \mathbb{R}^{n}
- Computing the unit group of number fields
- Breaking elliptic curve based cryptography
-

See Sean Hallgren's talk on Thursday for more on this direction!

The non-Abelian HSP

What works and what does not

\downarrow QFT $_{G}$ is somewhat harder to define and implement

- Unclear how to efficiently recover the subgroup
- However, the same algorithm is actually query efficient (Barnum \& Knill 2002)

The non-Abelian HSP

What works and what does not

\downarrow QFT $_{G}$ is somewhat harder to define and implement

- Unclear how to efficiently recover the subgroup
- However, the same algorithm is actually query efficient (Barnum \& Knill 2002)
- Some cases can be solved efficiently, e.g., normal subgroups (Hallgren, Russell, Ta-Shma 2000), solvable groups (Watrous 2001), nil-2 groups (Ivanyos, Sanselme, Sántha 2007), and certain semidirect product p-groups of constant nilpotency class (Ivanyos, Sántha 2015)
- Kuperberg's algorithm (2003) solves HSP in the dihedral group in time

$$
O(2 \sqrt{\log (G)})
$$

The non-Abelian HSP

What works and what does not

\downarrow QFT $_{G}$ is somewhat harder to define and implement

- Unclear how to efficiently recover the subgroup
- However, the same algorithm is actually query efficient (Barnum \& Knill 2002)
- Some cases can be solved efficiently, e.g., normal subgroups (Hallgren, Russell, Ta-Shma 2000), solvable groups (Watrous 2001), nil-2 groups (Ivanyos, Sanselme, Sántha 2007), and certain semidirect product p-groups of constant nilpotency class (Ivanyos, Sántha 2015)
- Kuperberg's algorithm (2003) solves HSP in the dihedral group in time

$$
O(2 \sqrt{\log (G)})
$$

Important example: Graph isomorphism (i.e., deciding whether $G \simeq G^{\prime}$)

- Group: $S_{2 n}$, Function: permute the vertices of $G \cup G^{\prime}$
- Subgroup: Automorphisms of $G \cup G^{\prime}$
- Output: whether there is a generator interchanging vertices of G and G^{\prime}

The SWAP test

A simpler algorithm for graph isomorphism

Prepare a uniform superposition

\vee Let $\left|\psi_{0}\right\rangle \propto \sum_{s \in S_{n}}|s(G)\rangle$

- Let $\left|\psi_{1}\right\rangle \propto \sum_{s \in S_{n}}\left|s\left(G^{\prime}\right)\right\rangle$
- Observe that

$$
\left\langle\psi_{0} \mid \psi_{1}\right\rangle= \begin{cases}1 & \text { if } G \simeq G^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

A simpler algorithm for graph isomorphism

Prepare a uniform superposition

$>$ Let $\left|\psi_{0}\right\rangle \propto \sum_{s \in S_{n}}|s(G)\rangle$
$>$ Let $\left|\psi_{1}\right\rangle \propto \sum_{s \in S_{n}}\left|s\left(G^{\prime}\right)\right\rangle$

- Observe that

$$
\left\langle\psi_{0} \mid \psi_{1}\right\rangle= \begin{cases}1 & \text { if } G \simeq G^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

The SWAP test

A simpler algorithm for graph isomorphism

Prepare a uniform superposition

$>$ Let $\left|\psi_{0}\right\rangle \propto \sum_{s \in S_{n}}|s(G)\rangle$

- Let $\left|\psi_{1}\right\rangle \propto \sum_{s \in S_{n}}\left|s\left(G^{\prime}\right)\right\rangle$
- Observe that

$$
\left\langle\psi_{0} \mid \psi_{1}\right\rangle= \begin{cases}1 & \text { if } G \simeq G^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

The SWAP test

The probability of getting outcome + is

$$
\frac{1}{2}+\frac{1}{2}\left|\left\langle\psi_{0} \mid \psi_{1}\right\rangle\right|^{2}
$$

Unitaries as representations

Towards approximating the Jones polynomial

The Hadamard test

Towards approximating the Jones polynomial

The Hadamard test

The probability of getting outcome + is

$$
\frac{1}{2}+\frac{1}{2} \operatorname{Re}(\langle\psi| U|\psi\rangle)
$$

Towards approximating the Jones polynomial

The Hadamard test

The probability of getting outcome + is

$$
\frac{1}{2}+\frac{1}{2} \operatorname{Re}(\langle\psi| U|\psi\rangle)
$$

The Jones polynomial - a link invariant

A link is a collection of loops embedded into \mathbb{R}^{3}, in a possibly intertwined way. A link invariant is a quantity associated to links that is invariant under smooth transformations of the embedding.

Towards approximating the Jones polynomial

The Hadamard test

The probability of getting outcome + is

$$
\frac{1}{2}+\frac{1}{2} \operatorname{Re}(\langle\psi| U|\psi\rangle)
$$

The Jones polynomial - a link invariant

A link is a collection of loops embedded into \mathbb{R}^{3}, in a possibly intertwined way. A link invariant is a quantity associated to links that is invariant under smooth transformations of the embedding.

Approximating the Jones polynomial

Links from braids

A braid is a collection of parallel strands, where adjacent strands are allowed to cross under or over each other. One can get a link by connecting the bottom and top ends of the strands.

Approximating the Jones polynomial

Links from braids

A braid is a collection of parallel strands, where adjacent strands are allowed to cross under or over each other. One can get a link by connecting the bottom and top ends of the strands.

Braids form a group under the operation of concatenation. The Jones polynomial of various links formed by a braid can be expressed in terms of the Temperley-Lieb algebra - a representation of the braid group.

Approximating the Jones polynomial

Links from braids

A braid is a collection of parallel strands, where adjacent strands are allowed to cross under or over each other. One can get a link by connecting the bottom and top ends of the strands.

Braids form a group under the operation of concatenation. The Jones polynomial of various links formed by a braid can be expressed in terms of the Temperley-Lieb algebra - a representation of the braid group.

Quantum algorithms and connections to field theory

- For a root of unity $e^{2 \pi i / k}$, the relevant representation is unitary; the corresponding value of the Jones polynomial can be approx. evaluated via estimating $\langle\psi| U|\psi\rangle$. This (BQP-complete) algorithm is due to Aharonov, Jones, and Landau (2006).

Approximating the Jones polynomial

Links from braids

A braid is a collection of parallel strands, where adjacent strands are allowed to cross under or over each other. One can get a link by connecting the bottom and top ends of the strands.

Braids form a group under the operation of concatenation. The Jones polynomial of various links formed by a braid can be expressed in terms of the Temperley-Lieb algebra - a representation of the braid group.

Quantum algorithms and connections to field theory

- For a root of unity $e^{2 \pi i / k}$, the relevant representation is unitary; the corresponding value of the Jones polynomial can be approx. evaluated via estimating $\langle\psi| U|\psi\rangle$. This (BQP-complete) algorithm is due to Aharonov, Jones, and Landau (2006).
- Witten showed that the Jones polynomial is closely related to topological quantum field theory (TQFT).

Approximating the Jones polynomial

Links from braids

A braid is a collection of parallel strands, where adjacent strands are allowed to cross under or over each other. One can get a link by connecting the bottom and top ends of the strands.

Braids form a group under the operation of concatenation. The Jones polynomial of various links formed by a braid can be expressed in terms of the Temperley-Lieb algebra - a representation of the braid group.

Quantum algorithms and connections to field theory

- For a root of unity $e^{2 \pi i / k}$, the relevant representation is unitary; the corresponding value of the Jones polynomial can be approx. evaluated via estimating $\langle\psi| U|\psi\rangle$. This (BQP-complete) algorithm is due to Aharonov, Jones, and Landau (2006).
- Witten showed that the Jones polynomial is closely related to topological quantum field theory (TQFT).
- Friedman, Kitaev, Larsen, and Wang (2001) showed that quantum computers can efficiently simulate TQFTs.

Quantum simulation

(Dynamical) Hamiltonian simulation

Time-independent Hamiltonians

Schrödinger's equation ($\hbar=1$) for time-independent quantum systems:

$$
\frac{d}{d t}|\psi\rangle=-i H|\psi\rangle \Longrightarrow|\psi(t)\rangle=e^{-i t H}|\psi(0)\rangle
$$

Recap - matrix functions

Any Hermitian matrix H can be diagonalised using some unitary V such that $H=V^{\dagger} D V=\sum_{\lambda} \lambda|\lambda X \lambda|$.

(Dynamical) Hamiltonian simulation

Time-independent Hamiltonians

Schrödinger's equation $(\hbar=1)$ for time-independent quantum systems:

$$
\frac{d}{d t}|\psi\rangle=-i H|\psi\rangle \Longrightarrow|\psi(t)\rangle=e^{-i t H}|\psi(0)\rangle
$$

Recap - matrix functions

Any Hermitian matrix H can be diagonalised using some unitary V such that $H=V^{\dagger} D V=\sum_{\lambda} \lambda|\lambda X \lambda|$. For any $f: \mathbb{R} \rightarrow \mathbb{C}$ we can define

$$
f(H):=V^{\dagger} f(D) V=\sum_{\lambda} f(\lambda)|\lambda \times \lambda|
$$

(Dynamical) Hamiltonian simulation

Time-independent Hamiltonians

Schrödinger's equation ($\hbar=1$) for time-independent quantum systems:

$$
\frac{d}{d t}|\psi\rangle=-i H|\psi\rangle \Longrightarrow|\psi(t)\rangle=e^{-i t H}|\psi(0)\rangle
$$

Recap - matrix functions

Any Hermitian matrix H can be diagonalised using some unitary V such that $H=V^{\star} D V=\sum_{\lambda} \lambda|\lambda X \lambda|$. For any $f: \mathbb{R} \rightarrow \mathbb{C}$ we can define

$$
f(H):=V^{\dagger} f(D) V=\sum_{\lambda} f(\lambda)|\lambda X \lambda|
$$

Product formula approach (Lloyd 1996)

Time-independent local Hamiltonians

Let $H=\sum_{k=1}^{K} H_{k}$, where each term H_{k} acts on a constant (say 2) number of qubits.

Product formula approach (Lloyd 1996)

Time-independent local Hamiltonians

Let $H=\sum_{k=1}^{K} H_{k}$, where each term H_{k} acts on a constant (say 2) number of qubits. WLOG. assume $\forall k$: $\left\|H_{k}\right\| \leq 1$. We can approximate the time-evolution by

$$
e^{-i t H}=\left(e^{-\frac{i H}{r}}\right)^{r}=\left(e^{-\frac{i H_{1}}{r}} e^{-\frac{i H_{2}}{r}} \cdots e^{-\frac{i H H_{K}}{r}}\right)^{r}+O\left(\frac{(t K)^{2}}{r}\right) .
$$

Choosing $r=\Theta\left((t K)^{2} / \varepsilon\right)$ guarantees an ε-approximation.

Product formula approach (Lloyd 1996)

Time-independent local Hamiltonians

Let $H=\sum_{k=1}^{K} H_{k}$, where each term H_{k} acts on a constant (say 2) number of qubits. WLOG. assume $\forall k$: $\left\|H_{k}\right\| \leq 1$. We can approximate the time-evolution by

$$
e^{-i t H}=\left(e^{-\frac{i H}{r}}\right)^{r}=\left(e^{-\frac{i H H_{1}}{r}} e^{-\frac{i H H_{2}}{r}} \cdots e^{-\frac{i H_{K}}{r}}\right)^{r}+O\left(\frac{(t K)^{2}}{r}\right) .
$$

Choosing $r=\Theta\left((t K)^{2} / \varepsilon\right)$ guarantees an ε-approximation.
(Query) Optimal Hamiltonian simulation of sparse matrices
>

- Quantum Signal Processing (QSP): (Low \& Chuang 2016)

$$
O\left(t\|H\|_{\max } s+\log (1 / \varepsilon)\right)
$$

For a recent survey see: Childs, Maslov, Nam, Ross, Su - arXiv: 1711.10980

More generalizations and improvements

A few more recent generic results (without being exhaustive)

- Time-dependent sparse Hamiltonians: (Berry, Child, Su, Wang, Wiebe 2019)

$$
\tilde{O}\left(s \int_{0}^{t}\|H(\tau)\|_{\max } d \tau\right)
$$

- Quantum chemistry: (Babbush, Berry, McClean, Neven 2019)

$$
\widetilde{O}\left(N^{\frac{1}{3}} \eta^{\frac{8}{3}}\right) \text {, with } N: \# \text { plane wave orbitals, } \eta: \# \text { electrons }
$$

- Lattice Hamiltonians: (Haah, Hastings, Kothari, Low: QIP'19)

$$
\widetilde{O}(n t)
$$

- ..., multi-product formulas, interaction picture simulation, ...

More generalizations and improvements

A few more recent generic results (without being exhaustive)

- Time-dependent sparse Hamiltonians: (Berry, Child, Su, Wang, Wiebe 2019)

$$
\tilde{O}\left(s \int_{0}^{t}\|H(\tau)\|_{\max } d \tau\right)
$$

- Quantum chemistry: (Babbush, Berry, McClean, Neven 2019)

$$
\widetilde{O}\left(N^{\frac{1}{3}} \eta^{\frac{8}{3}}\right) \text {, with } N: \# \text { plane wave orbitals, } \eta: \# \text { electrons }
$$

- Lattice Hamiltonians: (Haah, Hastings, Kothari, Low: QIP'19)

$$
\widetilde{O}(n t)
$$

- ..., multi-product formulas, interaction picture simulation, ...

Simulating quantum field theory? See Preskill's recent survey: arXiv: 1811.10085

Dissipative \& stochastic state preparation

Ground state preparation of frustration-free Hamiltonians

Ground state preparation of frustration-free Hamiltonians

The resampling algorithm

while not all constraints checked do

- pick an unchecked constraint and check (measure) it
- if unsatisfied then
randomly resample all adjacent (qu)bits
mark all adjacent constraints as unchecked

Ground state preparation of frustration-free Hamiltonians

The resampling algorithm

while not all constraints checked do

- pick an unchecked constraint and check (measure) it
- if unsatisfied then
randomly resample all adjacent (qu)bits mark all adjacent constraints as unchecked
- Ground state preparation by dissipation (Verstraete, Wolf, Cirac 2008)

Ground state preparation of frustration-free Hamiltonians

The resampling algorithm

while not all constraints checked do

- pick an unchecked constraint and check (measure) it
- if unsatisfied then
randomly resample all adjacent (qu)bits mark all adjacent constraints as unchecked
- Ground state preparation by dissipation (Verstraete, Wolf, Cirac 2008)
- Efficient version in the classical version (Moser \& Tardos 2009)

Ground state preparation of frustration-free Hamiltonians

The resampling algorithm

while not all constraints checked do

- pick an unchecked constraint and check (measure) it
- if unsatisfied then randomly resample all adjacent (qu)bits mark all adjacent constraints as unchecked
- Ground state preparation by dissipation (Verstraete, Wolf, Cirac 2008)
- Efficient version in the classical version (Moser \& Tardos 2009)
- Efficient commuting quantum Lovász Local Lemma (Sattath \& Arad; Schwarz, Cubitt, Verstraete - 2013)
- Efficient non-commuting version for uniformly gapped systems (G \& Sattath 2016)

Ground state preparation of frustration-free Hamiltonians

The resampling algorithm

while not all constraints checked do

- pick an unchecked constraint and check (measure) it
- if unsatisfied then randomly resample all adjacent (qu)bits mark all adjacent constraints as unchecked
- Ground state preparation by dissipation (Verstraete, Wolf, Cirac 2008)
- Efficient version in the classical version (Moser \& Tardos 2009)
- Efficient commuting quantum Lovász Local Lemma (Sattath \& Arad; Schwarz, Cubitt, Verstraete - 2013)
- Efficient non-commuting version for uniformly gapped systems (G \& Sattath 2016)

A loosely related result

- Quant. Metropolis samp. (Temme, Osborne, Vollbrecht, Poulin, Verstraete 2009)

Quantum walks

Continuous-time quantum / random walks

Laplacian of a weighted graph

Let $G=(V, E)$ be a finite simple graph, with non-negative edge-weights $w: E \rightarrow \mathbb{R}_{+}$. The Laplacian is defined as

$$
u \neq v: L_{u v}=w_{u v} \text {, and } L_{u u}=-\sum_{v} w_{u v} .
$$

Continuous-time quantum / random walks

Laplacian of a weighted graph

Let $G=(V, E)$ be a finite simple graph, with non-negative edge-weights $w: E \rightarrow \mathbb{R}_{+}$. The Laplacian is defined as

$$
u \neq v: L_{u v}=w_{u v} \text {, and } L_{u u}=-\sum_{v} w_{u v} .
$$

Continuous-time walks

Evolution of the state:

$$
\frac{d}{d t} p_{u}(t)=\sum_{v \in V} L_{u v} p_{v}(t) \quad \Longrightarrow \quad p(t)=e^{t L} p(0)
$$

Continuous-time quantum / random walks

Laplacian of a weighted graph

Let $G=(V, E)$ be a finite simple graph, with non-negative edge-weights $w: E \rightarrow \mathbb{R}_{+}$. The Laplacian is defined as

$$
u \neq v: L_{u v}=w_{u v}, \text { and } L_{u u}=-\sum_{v} w_{u v} .
$$

Continuous-time walks

Evolution of the state:

$$
\begin{array}{rlr}
\frac{d}{d t} p_{u}(t)=\sum_{v \in V} L_{u v} p_{v}(t) & \Longrightarrow & p(t)=e^{t L} p(0) \\
i \frac{d}{d t} \psi_{u}(t)=\sum_{v \in V} L_{u v} \psi_{v}(t) & \Longrightarrow & \psi(t)=e^{-i t L} \psi(0)
\end{array}
$$

Exponential speedup by a quantum walk

Childs, Cleve, Deotto, Farhi, Gutmann, and Spielman: quant-ph/0209131

