
Quantum Algorithms:
An overview of techniques

András Gilyén

Institute for Quantum Information and Matter

The Quantum Wave in Computing Boot Camp
Berkeley, 28th January 2020

Outline
Main quantum tricks and techniques

I Quantum Fourier Transform

I The SWAP test

I Unitaries as representations

I Quantum simulation

I Dissipative & stochastic state preparation

I Quantum walks, Grover search

1 / 20

Quantum Fourier Transform

Discrete & Quantum Fourier Transform (QFT)
QFT over ZN

DFTN = QFTN =
1
√

N

1 1 1 . . . 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

...
...

...
. . .

...

1 ωN−1 ω2(N−1) . . . ω(N−1)(N−1)

, where ω = e

2πi
N .

In particular QFTN : |j〉 7→
∑N−1

k=0 e
2πijk

N |k 〉, and QFT2 = H.

For N = 2n, QFTN can be implemented using O(n log(n)) two-qubit gates.
(The same construction as in FFT , which has complexity O(N log(N)) = O(2nn).)

2 / 20

Discrete & Quantum Fourier Transform (QFT)
QFT over ZN

DFTN = QFTN =
1
√

N

1 1 1 . . . 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

...
...

...
. . .

...

1 ωN−1 ω2(N−1) . . . ω(N−1)(N−1)

, where ω = e

2πi
N .

In particular QFTN : |j〉 7→
∑N−1

k=0 e
2πijk

N |k 〉,

and QFT2 = H.

For N = 2n, QFTN can be implemented using O(n log(n)) two-qubit gates.
(The same construction as in FFT , which has complexity O(N log(N)) = O(2nn).)

2 / 20

Discrete & Quantum Fourier Transform (QFT)
QFT over ZN

DFTN = QFTN =
1
√

N

1 1 1 . . . 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

...
...

...
. . .

...

1 ωN−1 ω2(N−1) . . . ω(N−1)(N−1)

, where ω = e

2πi
N .

In particular QFTN : |j〉 7→
∑N−1

k=0 e
2πijk

N |k 〉, and QFT2 = H.

For N = 2n, QFTN can be implemented using O(n log(n)) two-qubit gates.
(The same construction as in FFT , which has complexity O(N log(N)) = O(2nn).)

2 / 20

Discrete & Quantum Fourier Transform (QFT)
QFT over ZN

DFTN = QFTN =
1
√

N

1 1 1 . . . 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

...
...

...
. . .

...

1 ωN−1 ω2(N−1) . . . ω(N−1)(N−1)

, where ω = e

2πi
N .

In particular QFTN : |j〉 7→
∑N−1

k=0 e
2πijk

N |k 〉, and QFT2 = H.

For N = 2n, QFTN can be implemented using O(n log(n)) two-qubit gates.

(The same construction as in FFT , which has complexity O(N log(N)) = O(2nn).)

2 / 20

Discrete & Quantum Fourier Transform (QFT)
QFT over ZN

DFTN = QFTN =
1
√

N

1 1 1 . . . 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

...
...

...
. . .

...

1 ωN−1 ω2(N−1) . . . ω(N−1)(N−1)

, where ω = e

2πi
N .

In particular QFTN : |j〉 7→
∑N−1

k=0 e
2πijk

N |k 〉, and QFT2 = H.

For N = 2n, QFTN can be implemented using O(n log(n)) two-qubit gates.
(The same construction as in FFT , which has complexity O(N log(N)) = O(2nn).)

2 / 20

The Deutsch-Jozsa algorithm (1992)
Problem

I Given a Boolean function f : {0, 1}n → {0, 1} decide whether it is constant (0 or 1)
or balanced (50% 0 and 1).

I The function is given as an oracle Of : |x〉|b〉 7→ |x〉
∣∣∣b ⊕ f(x)

〉
.

3 / 20

The Deutsch-Jozsa algorithm (1992)
Problem

I Given a Boolean function f : {0, 1}n → {0, 1} decide whether it is constant (0 or 1)
or balanced (50% 0 and 1).

I The function is given as an oracle Of : |x〉|b〉 7→ |x〉
∣∣∣b ⊕ f(x)

〉
.

|0〉⊗n Hn

Of
Hn

|1〉 H H

3 / 20

The Deutsch-Jozsa algorithm (1992)
Problem

I Given a Boolean function f : {0, 1}n → {0, 1} decide whether it is constant (0 or 1)
or balanced (50% 0 and 1).

I The function is given as an oracle Of : |x〉|b〉 7→ |x〉
∣∣∣b ⊕ f(x)

〉
.

|0〉⊗n Hn

Of
Hn

|−〉

3 / 20

The Deutsch-Jozsa algorithm (1992)
Problem

I Given a Boolean function f : {0, 1}n → {0, 1} decide whether it is constant (0 or 1)
or balanced (50% 0 and 1).

I The function is given as an oracle Of : |x〉|b〉 7→ |x〉
∣∣∣b ⊕ f(x)

〉
.

|0〉⊗n Hn

Of
Hn

|−〉

Take away message

I Constructive interference can be used as a computational resource
I Studying problems in a black-box setting gives useful insights

3 / 20

The Bernstein-Vazirani algorithm (1992)
Problem

I Given a Boolean function f : {0, 1}n → {0, 1} so that f(x) = s · x (mod 2); find s.
I The function is given as an oracle Of : |x〉|b〉 7→ |x〉|b ⊕ f(x)〉.

4 / 20

The Bernstein-Vazirani algorithm (1992)
Problem

I Given a Boolean function f : {0, 1}n → {0, 1} so that f(x) = s · x (mod 2); find s.
I The function is given as an oracle Of : |x〉|b〉 7→ |x〉|b ⊕ f(x)〉.

|0〉⊗n Hn

Of
Hn

|1〉 H H

4 / 20

The Bernstein-Vazirani algorithm (1992)
Problem

I Given a Boolean function f : {0, 1}n → {0, 1} so that f(x) = s · x (mod 2); find s.
I The function is given as an oracle Of : |x〉|b〉 7→ |x〉|b ⊕ f(x)〉.

|0〉⊗n Hn

Of
Hn

|−〉

4 / 20

The Bernstein-Vazirani algorithm (1992)
Problem

I Given a Boolean function f : {0, 1}n → {0, 1} so that f(x) = s · x (mod 2); find s.
I The function is given as an oracle Of : |x〉|b〉 7→ |x〉|b ⊕ f(x)〉.

|0〉⊗n Hn

Of
Hn

|−〉

Take away message

I Shows the power of Fourier transform (over the group Zn
2)

I (+1 Phase kickback is a surprising and useful quantum effect)

4 / 20

Jordan’s quantum algorithm for gradients (2004)
A generalization of the Bernstein-Vazirani algorithm (Z2 ZK)

I Given a function f : Zn
K → ZK so that f(x) = s · x (mod K); find s.

I The function is given as a phase oracle Uf : |x〉 7→ e
2πi
K f(x)|x〉 = e2πi sx

K |x〉.

|0〉⊗n QFT⊗n
K Uf (QFT−1

K)⊗n(
Recall: QFTK : |j〉 7→ 1

√
K

∑K−1
`=0 e2πi j`

K |`〉
)

Jordan’s algorithm (ZK R)

I For a differentiable function f : Rn → R we have f(x0 + δx) ≈ f(x0) + ∇f · δx

I Discretize R and run the above algorithm for large enough K (resolution is ≈ 1
K)

I Implement Uf : |δx〉 7→ e
2πi
K f(x0+δx)|δx〉 ≈ e

2πif(x0)
K e

2πi(∇f ·δx)
K |δx〉 with one evaluation of f

5 / 20

Jordan’s quantum algorithm for gradients (2004)
A generalization of the Bernstein-Vazirani algorithm (Z2 ZK)

I Given a function f : Zn
K → ZK so that f(x) = s · x (mod K); find s.

I The function is given as a phase oracle Uf : |x〉 7→ e
2πi
K f(x)|x〉 = e2πi sx

K |x〉.

|0〉⊗n QFT⊗n
K Uf (QFT−1

K)⊗n

(
Recall: QFTK : |j〉 7→ 1

√
K

∑K−1
`=0 e2πi j`

K |`〉
)

Jordan’s algorithm (ZK R)

I For a differentiable function f : Rn → R we have f(x0 + δx) ≈ f(x0) + ∇f · δx

I Discretize R and run the above algorithm for large enough K (resolution is ≈ 1
K)

I Implement Uf : |δx〉 7→ e
2πi
K f(x0+δx)|δx〉 ≈ e

2πif(x0)
K e

2πi(∇f ·δx)
K |δx〉 with one evaluation of f

5 / 20

Jordan’s quantum algorithm for gradients (2004)
A generalization of the Bernstein-Vazirani algorithm (Z2 ZK)

I Given a function f : Zn
K → ZK so that f(x) = s · x (mod K); find s.

I The function is given as a phase oracle Uf : |x〉 7→ e
2πi
K f(x)|x〉 = e2πi sx

K |x〉.

|0〉⊗n QFT⊗n
K Uf (QFT−1

K)⊗n(
Recall: QFTK : |j〉 7→ 1

√
K

∑K−1
`=0 e2πi j`

K |`〉
)

Jordan’s algorithm (ZK R)

I For a differentiable function f : Rn → R we have f(x0 + δx) ≈ f(x0) + ∇f · δx

I Discretize R and run the above algorithm for large enough K (resolution is ≈ 1
K)

I Implement Uf : |δx〉 7→ e
2πi
K f(x0+δx)|δx〉 ≈ e

2πif(x0)
K e

2πi(∇f ·δx)
K |δx〉 with one evaluation of f

5 / 20

Jordan’s quantum algorithm for gradients (2004)
A generalization of the Bernstein-Vazirani algorithm (Z2 ZK)

I Given a function f : Zn
K → ZK so that f(x) = s · x (mod K); find s.

I The function is given as a phase oracle Uf : |x〉 7→ e
2πi
K f(x)|x〉 = e2πi sx

K |x〉.

|0〉⊗n QFT⊗n
K Uf (QFT−1

K)⊗n(
Recall: QFTK : |j〉 7→ 1

√
K

∑K−1
`=0 e2πi j`

K |`〉
)

Jordan’s algorithm (ZK R)

I For a differentiable function f : Rn → R we have f(x0 + δx) ≈ f(x0) + ∇f · δx

I Discretize R and run the above algorithm for large enough K (resolution is ≈ 1
K)

I Implement Uf : |δx〉 7→ e
2πi
K f(x0+δx)|δx〉 ≈ e

2πif(x0)
K e

2πi(∇f ·δx)
K |δx〉 with one evaluation of f

5 / 20

Generalizations and applications of Jordan’s algorithm
Convex functions
I Have at least one subgradient at every point
I Around most points can be well approximated by a linear function

Separating hyperplanes

Exponential speed-up for finding
separating hyperplanes (2018):
I Apeldoorn, G, Gribling, de Wolf
I Chakrabarti, Childs, Li, Wu

Gradient computation for variational qauntum circits (QAOA)
I 1

ε
Quadratic speed-up for computing the gradient (G, Arunachalam, Wiebe 2017)

6 / 20

Generalizations and applications of Jordan’s algorithm
Convex functions
I Have at least one subgradient at every point
I Around most points can be well approximated by a linear function

Separating hyperplanes

Exponential speed-up for finding
separating hyperplanes (2018):
I Apeldoorn, G, Gribling, de Wolf
I Chakrabarti, Childs, Li, Wu

Gradient computation for variational qauntum circits (QAOA)
I 1

ε
Quadratic speed-up for computing the gradient (G, Arunachalam, Wiebe 2017)

6 / 20

Generalizations and applications of Jordan’s algorithm
Convex functions
I Have at least one subgradient at every point
I Around most points can be well approximated by a linear function

Separating hyperplanes

Exponential speed-up for finding
separating hyperplanes (2018):
I Apeldoorn, G, Gribling, de Wolf
I Chakrabarti, Childs, Li, Wu

Gradient computation for variational qauntum circits (QAOA)
I 1

ε
Quadratic speed-up for computing the gradient (G, Arunachalam, Wiebe 2017)

6 / 20

Phase estimation (Zn
2 Z2n)

Phase estimation problem

Given U =
∑
λ e2πiλ|ψλ〉〈ψλ| and an eigenstate |ψλ〉 output λ.

|0〉 H • . . .

QFT−1
2n

|0〉 H • . . .
...

. . .
|0〉 H . . . •

|ψ〉 U U2 . . . U2n−1︸ ︷︷ ︸∑2n−1
k=0 |k 〉〈k |⊗Uk

|0〉⊗n
|ψ〉

H⊗n

7→

2n−1∑
k=0

|k 〉|ψ〉
Uk

7→

2n−1∑
k=0

e2πiλk |k 〉

|ψ〉 QFT−1
2n
7→ | ≈ 2nλ〉|ψ〉

7 / 20

Phase estimation (Zn
2 Z2n)

Phase estimation problem

Given U =
∑
λ e2πiλ|ψλ〉〈ψλ| and an eigenstate |ψλ〉 output λ.

|0〉 H • . . .

QFT−1
2n

|0〉 H • . . .
...

. . .
|0〉 H . . . •

|ψ〉 U U2 . . . U2n−1︸ ︷︷ ︸∑2n−1
k=0 |k 〉〈k |⊗Uk

|0〉⊗n
|ψ〉

H⊗n

7→

2n−1∑
k=0

|k 〉|ψ〉
Uk

7→

2n−1∑
k=0

e2πiλk |k 〉

|ψ〉 QFT−1
2n
7→ | ≈ 2nλ〉|ψ〉

7 / 20

Phase estimation (Zn
2 Z2n)

Phase estimation problem

Given U =
∑
λ e2πiλ|ψλ〉〈ψλ| and an eigenstate |ψλ〉 output λ.

|0〉 H • . . .

QFT−1
2n

|0〉 H • . . .
...

. . .
|0〉 H . . . •

|ψ〉 U U2 . . . U2n−1︸ ︷︷ ︸∑2n−1
k=0 |k 〉〈k |⊗Uk

|0〉⊗n
|ψ〉

H⊗n

7→

2n−1∑
k=0

|k 〉|ψ〉
Uk

7→

2n−1∑
k=0

e2πiλk |k 〉

|ψ〉 QFT−1
2n
7→ | ≈ 2nλ〉|ψ〉

7 / 20

The Hidden subgroup problem (HSP) (Z2n G)
Problem

I Input: Oracle access to a function f : G → S for some group G and (finite) set S
I Promise: There is a subgroup H ≤ G such that f(x) = f(y) iff x−1y ∈ H
I Goal: Find H (and a system of its generators)

8 / 20

The Hidden subgroup problem (HSP) (Z2n G)
Problem

I Input: Oracle access to a function f : G → S for some group G and (finite) set S
I Promise: There is a subgroup H ≤ G such that f(x) = f(y) iff x−1y ∈ H
I Goal: Find H (and a system of its generators)

Algorithm for solving the problem – Kitaev (1995)

1
√
|G|

∑
g∈G |g〉

Of
QFTG

|0〉

8 / 20

The Hidden subgroup problem (HSP) (Z2n G)
Problem

I Input: Oracle access to a function f : G → S for some group G and (finite) set S
I Promise: There is a subgroup H ≤ G such that f(x) = f(y) iff x−1y ∈ H
I Goal: Find H (and a system of its generators)

Algorithm for solving the problem – Kitaev (1995)
1
√
|G|

∑
g∈G |g〉

Of
QFTG

|0〉

Works well for Abelian groups

I Samples a uniformly random character / irrep. of G that is trivial on H
I One can find a generator system of H after a few repetitions
I We can implement QFTG efficiently

8 / 20

Some examples of the Abelian HSP
Simon’s problem
I Function: f : {0, 1}n → {0, 1} (the group is Zn

2)
I Subgroup: {0, s}, i.e., f(x) = f(y) iff x − y ∈ {0, s}
I Output: s

Period finding (and Shor’s algorithm)
I Function: f : Z→ ZN (in Shor’s algorithm f(x) = ax mod N for some a)
I Subgroup: p · Z, i.e, f(x) = f(y) iff x − y ∈ p · Z
I Output: p

Discrete log (for given γ,A find a such that A = γa)
I Function: f : ZN × ZN → ZN mapping (x, y) 7→ γxA−y mod N
I Subgroup: 〈(a, 1)〉, i.e., f(x, y) = f(x ′, y ′) iff ∃c ∈ ZN : (x − x ′, y − y ′) = (ac, c)

I Output: a

For more info see, e.g., Ronald de Wolf’s lecture notes: arXiv:1907.09415

9 / 20

Some examples of the Abelian HSP
Simon’s problem
I Function: f : {0, 1}n → {0, 1} (the group is Zn

2)
I Subgroup: {0, s}, i.e., f(x) = f(y) iff x − y ∈ {0, s}
I Output: s

Period finding (and Shor’s algorithm)
I Function: f : Z→ ZN (in Shor’s algorithm f(x) = ax mod N for some a)
I Subgroup: p · Z, i.e, f(x) = f(y) iff x − y ∈ p · Z
I Output: p

Discrete log (for given γ,A find a such that A = γa)
I Function: f : ZN × ZN → ZN mapping (x, y) 7→ γxA−y mod N
I Subgroup: 〈(a, 1)〉, i.e., f(x, y) = f(x ′, y ′) iff ∃c ∈ ZN : (x − x ′, y − y ′) = (ac, c)

I Output: a

For more info see, e.g., Ronald de Wolf’s lecture notes: arXiv:1907.09415

9 / 20

Some examples of the Abelian HSP
Simon’s problem
I Function: f : {0, 1}n → {0, 1} (the group is Zn

2)
I Subgroup: {0, s}, i.e., f(x) = f(y) iff x − y ∈ {0, s}
I Output: s

Period finding (and Shor’s algorithm)
I Function: f : Z→ ZN (in Shor’s algorithm f(x) = ax mod N for some a)
I Subgroup: p · Z, i.e, f(x) = f(y) iff x − y ∈ p · Z
I Output: p

Discrete log (for given γ,A find a such that A = γa)
I Function: f : ZN × ZN → ZN mapping (x, y) 7→ γxA−y mod N
I Subgroup: 〈(a, 1)〉, i.e., f(x, y) = f(x ′, y ′) iff ∃c ∈ ZN : (x − x ′, y − y ′) = (ac, c)

I Output: a

For more info see, e.g., Ronald de Wolf’s lecture notes: arXiv:1907.09415 9 / 20

More advanced algorithms based on Abelian HSPs

I Solving Pell’s equation (Hallgren 2002)

x2 − dy2 = 1

I Solving the principal ideal problem (Hallgren 2002)
I Period finding over R and Rn

I Computing the unit group of number fields
I Breaking elliptic curve based cryptography

I
...

10 / 20

More advanced algorithms based on Abelian HSPs

I Solving Pell’s equation (Hallgren 2002)

x2 − dy2 = 1

I Solving the principal ideal problem (Hallgren 2002)
I Period finding over R and Rn

I Computing the unit group of number fields
I Breaking elliptic curve based cryptography

I
...

10 / 20

More advanced algorithms based on Abelian HSPs

I Solving Pell’s equation (Hallgren 2002)

x2 − dy2 = 1

I Solving the principal ideal problem (Hallgren 2002)
I Period finding over R and Rn

I Computing the unit group of number fields
I Breaking elliptic curve based cryptography

I
...

See Sean Hallgren’s talk on Thursday for more on this direction!

10 / 20

The non-Abelian HSP
What works and what does not
I QFTG is somewhat harder to define and implement
I Unclear how to efficiently recover the subgroup
I However, the same algorithm is actually query efficient (Barnum & Knill 2002)

I Some cases can be solved efficiently, e.g., normal subgroups (Hallgren, Russell,
Ta-Shma 2000), solvable groups (Watrous 2001), nil-2 groups (Ivanyos,
Sanselme, Sántha 2007), and certain semidirect product p-groups of constant
nilpotency class (Ivanyos, Sántha 2015)

I Kuperberg’s algorithm (2003) solves HSP in the dihedral group in time

O
(
2
√

log(G)
)

Important example: Graph isomorphism (i.e., deciding whether G ' G′)
I Group: S2n, Function: permute the vertices of G ∪ G′

I Subgroup: Automorphisms of G ∪ G′

I Output: whether there is a generator interchanging vertices of G and G′

11 / 20

The non-Abelian HSP
What works and what does not
I QFTG is somewhat harder to define and implement
I Unclear how to efficiently recover the subgroup
I However, the same algorithm is actually query efficient (Barnum & Knill 2002)
I Some cases can be solved efficiently, e.g., normal subgroups (Hallgren, Russell,

Ta-Shma 2000), solvable groups (Watrous 2001), nil-2 groups (Ivanyos,
Sanselme, Sántha 2007), and certain semidirect product p-groups of constant
nilpotency class (Ivanyos, Sántha 2015)

I Kuperberg’s algorithm (2003) solves HSP in the dihedral group in time

O
(
2
√

log(G)
)

Important example: Graph isomorphism (i.e., deciding whether G ' G′)
I Group: S2n, Function: permute the vertices of G ∪ G′

I Subgroup: Automorphisms of G ∪ G′

I Output: whether there is a generator interchanging vertices of G and G′

11 / 20

The non-Abelian HSP
What works and what does not
I QFTG is somewhat harder to define and implement
I Unclear how to efficiently recover the subgroup
I However, the same algorithm is actually query efficient (Barnum & Knill 2002)
I Some cases can be solved efficiently, e.g., normal subgroups (Hallgren, Russell,

Ta-Shma 2000), solvable groups (Watrous 2001), nil-2 groups (Ivanyos,
Sanselme, Sántha 2007), and certain semidirect product p-groups of constant
nilpotency class (Ivanyos, Sántha 2015)

I Kuperberg’s algorithm (2003) solves HSP in the dihedral group in time

O
(
2
√

log(G)
)

Important example: Graph isomorphism (i.e., deciding whether G ' G′)
I Group: S2n, Function: permute the vertices of G ∪ G′

I Subgroup: Automorphisms of G ∪ G′

I Output: whether there is a generator interchanging vertices of G and G′
11 / 20

The SWAP test

A simpler algorithm for graph isomorphism
Prepare a uniform superposition

I Let |ψ0〉 ∝
∑

s∈Sn

∣∣∣s(G)
〉

I Let |ψ1〉 ∝
∑

s∈Sn

∣∣∣s(G′)
〉

I Observe that

〈ψ0|ψ1〉 =

{
1 if G ' G′

0 otherwise

The SWAP test
|+〉 • ±

|ψ0〉 SWAP
|ψ1〉

The probability of getting outcome + is

1
2

+
1
2
|〈ψ0|ψ1〉|

2

12 / 20

A simpler algorithm for graph isomorphism
Prepare a uniform superposition

I Let |ψ0〉 ∝
∑

s∈Sn

∣∣∣s(G)
〉

I Let |ψ1〉 ∝
∑

s∈Sn

∣∣∣s(G′)
〉

I Observe that

〈ψ0|ψ1〉 =

{
1 if G ' G′

0 otherwise

The SWAP test
|+〉 • ±

|ψ0〉 SWAP
|ψ1〉

The probability of getting outcome + is

1
2

+
1
2
|〈ψ0|ψ1〉|

2

12 / 20

A simpler algorithm for graph isomorphism
Prepare a uniform superposition

I Let |ψ0〉 ∝
∑

s∈Sn

∣∣∣s(G)
〉

I Let |ψ1〉 ∝
∑

s∈Sn

∣∣∣s(G′)
〉

I Observe that

〈ψ0|ψ1〉 =

{
1 if G ' G′

0 otherwise

The SWAP test
|+〉 • ±

|ψ0〉 SWAP
|ψ1〉

The probability of getting outcome + is

1
2

+
1
2
|〈ψ0|ψ1〉|

2

12 / 20

Unitaries as representations

Towards approximating the Jones polynomial
The Hadamard test

|+〉 • ±

|ψ〉 U

13 / 20

Towards approximating the Jones polynomial
The Hadamard test

|+〉 • ±

|ψ〉 U

The probability of getting outcome + is

1
2

+
1
2

Re(〈ψ|U|ψ〉)

13 / 20

Towards approximating the Jones polynomial
The Hadamard test

|+〉 • ±

|ψ〉 U

The probability of getting outcome + is

1
2

+
1
2

Re(〈ψ|U|ψ〉)

The Jones polynomial – a link invariant

A link is a collection of loops embedded into R3,
in a possibly intertwined way. A link invariant is
a quantity associated to links that is invariant
under smooth transformations of the
embedding.

13 / 20

Towards approximating the Jones polynomial
The Hadamard test

|+〉 • ±

|ψ〉 U

The probability of getting outcome + is

1
2

+
1
2

Re(〈ψ|U|ψ〉)

The Jones polynomial – a link invariant

A link is a collection of loops embedded into R3,
in a possibly intertwined way. A link invariant is
a quantity associated to links that is invariant
under smooth transformations of the
embedding.

13 / 20

Approximating the Jones polynomial
Links from braids

A braid is a collection of parallel
strands, where adjacent strands
are allowed to cross under or over
each other. One can get a link by
connecting the bottom and top
ends of the strands.

Braids form a group under the
operation of concatenation. The
Jones polynomial of various links
formed by a braid can be
expressed in terms of the
Temperley-Lieb algebra – a
representation of the braid group.

Quantum algorithms and connections to field theory
I For a root of unity e2πi/k , the relevant representation is unitary; the corresponding

value of the Jones polynomial can be approx. evaluated via estimating 〈ψ|U|ψ〉.
This (BQP-complete) algorithm is due to Aharonov, Jones, and Landau (2006).

I Witten showed that the Jones polynomial is closely related to topological
quantum field theory (TQFT).

I Friedman, Kitaev, Larsen, and Wang (2001) showed that quantum computers can
efficiently simulate TQFTs.

14 / 20

Approximating the Jones polynomial
Links from braids

A braid is a collection of parallel
strands, where adjacent strands
are allowed to cross under or over
each other. One can get a link by
connecting the bottom and top
ends of the strands.

Braids form a group under the
operation of concatenation. The
Jones polynomial of various links
formed by a braid can be
expressed in terms of the
Temperley-Lieb algebra – a
representation of the braid group.

Quantum algorithms and connections to field theory
I For a root of unity e2πi/k , the relevant representation is unitary; the corresponding

value of the Jones polynomial can be approx. evaluated via estimating 〈ψ|U|ψ〉.
This (BQP-complete) algorithm is due to Aharonov, Jones, and Landau (2006).

I Witten showed that the Jones polynomial is closely related to topological
quantum field theory (TQFT).

I Friedman, Kitaev, Larsen, and Wang (2001) showed that quantum computers can
efficiently simulate TQFTs.

14 / 20

Approximating the Jones polynomial
Links from braids

A braid is a collection of parallel
strands, where adjacent strands
are allowed to cross under or over
each other. One can get a link by
connecting the bottom and top
ends of the strands.

Braids form a group under the
operation of concatenation. The
Jones polynomial of various links
formed by a braid can be
expressed in terms of the
Temperley-Lieb algebra – a
representation of the braid group.

Quantum algorithms and connections to field theory
I For a root of unity e2πi/k , the relevant representation is unitary; the corresponding

value of the Jones polynomial can be approx. evaluated via estimating 〈ψ|U|ψ〉.
This (BQP-complete) algorithm is due to Aharonov, Jones, and Landau (2006).

I Witten showed that the Jones polynomial is closely related to topological
quantum field theory (TQFT).

I Friedman, Kitaev, Larsen, and Wang (2001) showed that quantum computers can
efficiently simulate TQFTs.

14 / 20

Approximating the Jones polynomial
Links from braids

A braid is a collection of parallel
strands, where adjacent strands
are allowed to cross under or over
each other. One can get a link by
connecting the bottom and top
ends of the strands.

Braids form a group under the
operation of concatenation. The
Jones polynomial of various links
formed by a braid can be
expressed in terms of the
Temperley-Lieb algebra – a
representation of the braid group.

Quantum algorithms and connections to field theory
I For a root of unity e2πi/k , the relevant representation is unitary; the corresponding

value of the Jones polynomial can be approx. evaluated via estimating 〈ψ|U|ψ〉.
This (BQP-complete) algorithm is due to Aharonov, Jones, and Landau (2006).

I Witten showed that the Jones polynomial is closely related to topological
quantum field theory (TQFT).

I Friedman, Kitaev, Larsen, and Wang (2001) showed that quantum computers can
efficiently simulate TQFTs.

14 / 20

Approximating the Jones polynomial
Links from braids

A braid is a collection of parallel
strands, where adjacent strands
are allowed to cross under or over
each other. One can get a link by
connecting the bottom and top
ends of the strands.

Braids form a group under the
operation of concatenation. The
Jones polynomial of various links
formed by a braid can be
expressed in terms of the
Temperley-Lieb algebra – a
representation of the braid group.

Quantum algorithms and connections to field theory
I For a root of unity e2πi/k , the relevant representation is unitary; the corresponding

value of the Jones polynomial can be approx. evaluated via estimating 〈ψ|U|ψ〉.
This (BQP-complete) algorithm is due to Aharonov, Jones, and Landau (2006).

I Witten showed that the Jones polynomial is closely related to topological
quantum field theory (TQFT).

I Friedman, Kitaev, Larsen, and Wang (2001) showed that quantum computers can
efficiently simulate TQFTs.

14 / 20

Quantum simulation

(Dynamical) Hamiltonian simulation

Time-independent Hamiltonians

Schrödinger’s equation (~ = 1) for time-independent quantum systems:

d
dt
|ψ〉 = −iH|ψ〉 =⇒ |ψ(t)〉 = e−itH |ψ(0)〉

Recap – matrix functions

Any Hermitian matrix H can be diagonalised using some unitary V such that
H = V†DV =

∑
λ λ|λ〉〈λ|.

For any f : R→ C we can define

f(H) := V†f(D)V =
∑
λ

f(λ)|λ〉〈λ|

Wait a minute, don’t we build quantum computers using Hamiltonian simulation???

15 / 20

(Dynamical) Hamiltonian simulation

Time-independent Hamiltonians

Schrödinger’s equation (~ = 1) for time-independent quantum systems:

d
dt
|ψ〉 = −iH|ψ〉 =⇒ |ψ(t)〉 = e−itH |ψ(0)〉

Recap – matrix functions

Any Hermitian matrix H can be diagonalised using some unitary V such that
H = V†DV =

∑
λ λ|λ〉〈λ|. For any f : R→ C we can define

f(H) := V†f(D)V =
∑
λ

f(λ)|λ〉〈λ|

Wait a minute, don’t we build quantum computers using Hamiltonian simulation???

15 / 20

(Dynamical) Hamiltonian simulation

Time-independent Hamiltonians

Schrödinger’s equation (~ = 1) for time-independent quantum systems:

d
dt
|ψ〉 = −iH|ψ〉 =⇒ |ψ(t)〉 = e−itH |ψ(0)〉

Recap – matrix functions

Any Hermitian matrix H can be diagonalised using some unitary V such that
H = V†DV =

∑
λ λ|λ〉〈λ|. For any f : R→ C we can define

f(H) := V†f(D)V =
∑
λ

f(λ)|λ〉〈λ|

Wait a minute, don’t we build quantum computers using Hamiltonian simulation???

15 / 20

Product formula approach (Lloyd 1996)
Time-independent local Hamiltonians

Let H =
∑K

k=1 Hk , where each term Hk acts on a constant (say 2) number of qubits.

WLOG. assume ∀k : ‖Hk‖ ≤ 1. We can approximate the time-evolution by

e−itH = (e−
itH
r)r = (e−

itH1
r e−

itH2
r · · · e−

itHK
r)r + O

(
(tK)2

r

)
.

Choosing r = Θ((tK)2/ε) guarantees an ε-approximation.

(Query) Optimal Hamiltonian simulation of sparse matrices

I
...

I Quantum Signal Processing (QSP): (Low & Chuang 2016)

O(t‖H‖maxs + log(1/ε))

For a recent survey see: Childs, Maslov, Nam, Ross, Su – arXiv:1711.10980

16 / 20

Product formula approach (Lloyd 1996)
Time-independent local Hamiltonians

Let H =
∑K

k=1 Hk , where each term Hk acts on a constant (say 2) number of qubits.
WLOG. assume ∀k : ‖Hk‖ ≤ 1. We can approximate the time-evolution by

e−itH = (e−
itH
r)r = (e−

itH1
r e−

itH2
r · · · e−

itHK
r)r + O

(
(tK)2

r

)
.

Choosing r = Θ((tK)2/ε) guarantees an ε-approximation.

(Query) Optimal Hamiltonian simulation of sparse matrices

I
...

I Quantum Signal Processing (QSP): (Low & Chuang 2016)

O(t‖H‖maxs + log(1/ε))

For a recent survey see: Childs, Maslov, Nam, Ross, Su – arXiv:1711.10980

16 / 20

Product formula approach (Lloyd 1996)
Time-independent local Hamiltonians

Let H =
∑K

k=1 Hk , where each term Hk acts on a constant (say 2) number of qubits.
WLOG. assume ∀k : ‖Hk‖ ≤ 1. We can approximate the time-evolution by

e−itH = (e−
itH
r)r = (e−

itH1
r e−

itH2
r · · · e−

itHK
r)r + O

(
(tK)2

r

)
.

Choosing r = Θ((tK)2/ε) guarantees an ε-approximation.

(Query) Optimal Hamiltonian simulation of sparse matrices

I
...

I Quantum Signal Processing (QSP): (Low & Chuang 2016)

O(t‖H‖maxs + log(1/ε))

For a recent survey see: Childs, Maslov, Nam, Ross, Su – arXiv:1711.10980
16 / 20

More generalizations and improvements
A few more recent generic results (without being exhaustive)
I Time-dependent sparse Hamiltonians: (Berry, Child, Su, Wang, Wiebe 2019)

Õ

(
s
∫ t

0

∥∥∥H(τ)
∥∥∥
max

dτ
)

I Quantum chemistry: (Babbush, Berry, McClean, Neven 2019)

Õ
(
N

1
3η

8
3

)
, with N : #plane wave orbitals, η : #electrons

I Lattice Hamiltonians: (Haah, Hastings, Kothari, Low: QIP’19)

Õ(nt)

I . . ., multi-product formulas, interaction picture simulation, . . .

Simulating quantum field theory? See Preskill’s recent survey: arXiv:1811.10085

17 / 20

More generalizations and improvements
A few more recent generic results (without being exhaustive)
I Time-dependent sparse Hamiltonians: (Berry, Child, Su, Wang, Wiebe 2019)

Õ

(
s
∫ t

0

∥∥∥H(τ)
∥∥∥
max

dτ
)

I Quantum chemistry: (Babbush, Berry, McClean, Neven 2019)

Õ
(
N

1
3η

8
3

)
, with N : #plane wave orbitals, η : #electrons

I Lattice Hamiltonians: (Haah, Hastings, Kothari, Low: QIP’19)

Õ(nt)

I . . ., multi-product formulas, interaction picture simulation, . . .

Simulating quantum field theory? See Preskill’s recent survey: arXiv:1811.10085
17 / 20

Dissipative & stochastic
state preparation

Ground state preparation of frustration-free Hamiltonians

The resampling algorithm

while not all constraints checked do
• pick an unchecked constraint and check (measure) it
• if unsatisfied then

randomly resample all adjacent (qu)bits
mark all adjacent constraints as unchecked

I Ground state preparation by dissipation (Verstraete, Wolf, Cirac 2008)
I Efficient version in the classical version (Moser & Tardos 2009)
I Efficient commuting quantum Lovász Local Lemma

(Sattath & Arad; Schwarz, Cubitt, Verstraete – 2013)
I Efficient non-commuting version for uniformly gapped systems (G & Sattath 2016)

A loosely related result

I Quant. Metropolis samp. (Temme, Osborne, Vollbrecht, Poulin, Verstraete 2009)

18 / 20

Ground state preparation of frustration-free Hamiltonians
The resampling algorithm

while not all constraints checked do
• pick an unchecked constraint and check (measure) it
• if unsatisfied then

randomly resample all adjacent (qu)bits
mark all adjacent constraints as unchecked

I Ground state preparation by dissipation (Verstraete, Wolf, Cirac 2008)
I Efficient version in the classical version (Moser & Tardos 2009)
I Efficient commuting quantum Lovász Local Lemma

(Sattath & Arad; Schwarz, Cubitt, Verstraete – 2013)
I Efficient non-commuting version for uniformly gapped systems (G & Sattath 2016)

A loosely related result

I Quant. Metropolis samp. (Temme, Osborne, Vollbrecht, Poulin, Verstraete 2009)

18 / 20

Ground state preparation of frustration-free Hamiltonians
The resampling algorithm

while not all constraints checked do
• pick an unchecked constraint and check (measure) it
• if unsatisfied then

randomly resample all adjacent (qu)bits
mark all adjacent constraints as unchecked

I Ground state preparation by dissipation (Verstraete, Wolf, Cirac 2008)

I Efficient version in the classical version (Moser & Tardos 2009)
I Efficient commuting quantum Lovász Local Lemma

(Sattath & Arad; Schwarz, Cubitt, Verstraete – 2013)
I Efficient non-commuting version for uniformly gapped systems (G & Sattath 2016)

A loosely related result

I Quant. Metropolis samp. (Temme, Osborne, Vollbrecht, Poulin, Verstraete 2009)

18 / 20

Ground state preparation of frustration-free Hamiltonians
The resampling algorithm

while not all constraints checked do
• pick an unchecked constraint and check (measure) it
• if unsatisfied then

randomly resample all adjacent (qu)bits
mark all adjacent constraints as unchecked

I Ground state preparation by dissipation (Verstraete, Wolf, Cirac 2008)
I Efficient version in the classical version (Moser & Tardos 2009)

I Efficient commuting quantum Lovász Local Lemma
(Sattath & Arad; Schwarz, Cubitt, Verstraete – 2013)

I Efficient non-commuting version for uniformly gapped systems (G & Sattath 2016)

A loosely related result

I Quant. Metropolis samp. (Temme, Osborne, Vollbrecht, Poulin, Verstraete 2009)

18 / 20

Ground state preparation of frustration-free Hamiltonians
The resampling algorithm

while not all constraints checked do
• pick an unchecked constraint and check (measure) it
• if unsatisfied then

randomly resample all adjacent (qu)bits
mark all adjacent constraints as unchecked

I Ground state preparation by dissipation (Verstraete, Wolf, Cirac 2008)
I Efficient version in the classical version (Moser & Tardos 2009)
I Efficient commuting quantum Lovász Local Lemma

(Sattath & Arad; Schwarz, Cubitt, Verstraete – 2013)
I Efficient non-commuting version for uniformly gapped systems (G & Sattath 2016)

A loosely related result

I Quant. Metropolis samp. (Temme, Osborne, Vollbrecht, Poulin, Verstraete 2009)

18 / 20

Ground state preparation of frustration-free Hamiltonians
The resampling algorithm

while not all constraints checked do
• pick an unchecked constraint and check (measure) it
• if unsatisfied then

randomly resample all adjacent (qu)bits
mark all adjacent constraints as unchecked

I Ground state preparation by dissipation (Verstraete, Wolf, Cirac 2008)
I Efficient version in the classical version (Moser & Tardos 2009)
I Efficient commuting quantum Lovász Local Lemma

(Sattath & Arad; Schwarz, Cubitt, Verstraete – 2013)
I Efficient non-commuting version for uniformly gapped systems (G & Sattath 2016)

A loosely related result

I Quant. Metropolis samp. (Temme, Osborne, Vollbrecht, Poulin, Verstraete 2009)

18 / 20

Quantum walks

Continuous-time quantum / random walks
Laplacian of a weighted graph

Let G = (V ,E) be a finite simple graph, with non-negative edge-weights w : E → R+.
The Laplacian is defined as

u , v : Luv = wuv , and Luu = −
∑

v

wuv .

Continuous-time walks

Evolution of the state:

d
dt

pu(t) =
∑
v∈V

Luvpv(t) =⇒ p(t) = etLp(0)

i
d
dt
ψu(t) =

∑
v∈V

Luvψv(t) =⇒ ψ(t) = e−itLψ(0)

19 / 20

Continuous-time quantum / random walks
Laplacian of a weighted graph

Let G = (V ,E) be a finite simple graph, with non-negative edge-weights w : E → R+.
The Laplacian is defined as

u , v : Luv = wuv , and Luu = −
∑

v

wuv .

Continuous-time walks

Evolution of the state:

d
dt

pu(t) =
∑
v∈V

Luvpv(t) =⇒ p(t) = etLp(0)

i
d
dt
ψu(t) =

∑
v∈V

Luvψv(t) =⇒ ψ(t) = e−itLψ(0)

19 / 20

Continuous-time quantum / random walks
Laplacian of a weighted graph

Let G = (V ,E) be a finite simple graph, with non-negative edge-weights w : E → R+.
The Laplacian is defined as

u , v : Luv = wuv , and Luu = −
∑

v

wuv .

Continuous-time walks

Evolution of the state:

d
dt

pu(t) =
∑
v∈V

Luvpv(t) =⇒ p(t) = etLp(0)

i
d
dt
ψu(t) =

∑
v∈V

Luvψv(t) =⇒ ψ(t) = e−itLψ(0)

19 / 20

Exponential speedup by a quantum walk

Childs, Cleve, Deotto, Farhi, Gutmann, and Spielman: quant-ph/0209131
20 / 20

